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ABSTRACT
Gaussian process (GP) audio source separation is a time-
domain approach that circumvents the inherent phase approx-
imation issue of spectrogram based methods. Furthermore,
through its kernel, GPs elegantly incorporate prior knowl-
edge about the sources into the separation model. Despite
these compelling advantages, the computational complexity
of GP inference scales cubically with the number of audio
samples. As a result, source separation GP models have been
restricted to the analysis of short audio frames. We intro-
duce an efficient application of GPs to time-domain audio
source separation, without compromising performance. For
this purpose, we used GP regression, together with spectral
mixture kernels, and variational sparse GPs. We compared
our method with LD-PSDTF (positive semi-definite tensor
factorization), KL-NMF (Kullback-Leibler non-negative ma-
trix factorization), and IS-NMF (Itakura-Saito NMF). Results
show that the proposed method outperforms these techniques.

Index Terms— Time-domain source separation, Gaus-
sian processes, spectral mixture kernels, variational inference.

1. INTRODUCTION

Single-channel audio source separation is a central problem
in signal processing research. Here, the task is to estimate a
certain number of latent signals or sources that were mixed
together in one recorded mixture signal [1]. State of the art
time-frequency methods for source separation include non-
negative matrix factorisation (NMF) [2], and probabilistic la-
tent component analysis (PLCA) [3]. These approaches de-
compose the power spectrogram of the mixture into elemen-
tary components. Then, the components are used to calculate
the individual source-spectrograms. Time-frequency meth-
ods often arbitrarily discard phase information. As a result,
the phase of each source-spectrogram must be approximated,
corrupting the reconstructed sources.

In contrast, time-domain source separation approaches
can avoid the phase approximation issue of time-frequency
methods [4, 5]. For example, Yoshii et al. [6] reconstructed
∗Supported by Colciencias scholarship 679.
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source signals from the mixture waveform directly in the
time domain. To this end, Gaussian processes (GPs) were
used to predict each source waveform. GPs are probability
distributions over functions [7]. A Gaussian process is com-
pletely defined by a mean function, and a kernel or covariance
function. In fact, the kernel determines the properties of the
functions sampled from a GP. A particularly influential work
in time domain approaches is Liutkus et al. [1], who first
formulated source separation as a GP regression task.

Although source separation Gaussian process (SSGP)
models circumvent phase approximation, the computational
complexity of GP inference scales cubically with the number
of audio samples. Hence, different approximate techniques
have been proposed to make the separation tractable. For
instance, various authors partitioned the mixture signal into
independent frames [1, 6]. Further, approximate inference in
the frequency domain was used to learn model hyperparam-
eters [1]. Alternatively, Adam et al. [8] recently proposed
to use variational sparse GPs for source separation, however
audio signals were beyond the scope of their study. Varia-
tional approaches rely on a set of inducing variables to build
a low-rank approximation of the full covariance matrix. Here,
the approximate distribution and hyperparameters are learned
together by maximising a lower bound of the true marginal
likelihood [9]. Moreover, variational inference has allowed
the application of GPs models to large datasets [10, 11].

Despite the kernel selection in SSGP models determines
the properties of sources, only standard covariance functions
have been used so far. For example, Adam et al. [8] consid-
ered stationarity, smoothness and periodicity, using exponen-
tiated quadratic times cosine kernels. Standard periodic ker-
nels [12] were applied in [1]. These kernels assume that the
source spectrum is composed of a fundamental frequency and
perfect harmonics. However, real audio signals have more in-
tricate spectra [13], and so separating audio sources requires
more flexible covariance functions. One such covariance, the
spectral mixture (SM) kernel [14], is intended for intricate
spectrum patterns. SM kernels approximate the spectral den-
sity of any stationary covariance function, using a Gaussian
mixture. Alternatively, non-parametric kernels are implicitly
considered when the covariance matrix of each source is di-
rectly optimised by maximum likelihood [6]. However, that
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study did not contemplate variational sparse GPs. To our
knowledge, it has not been determined whether incorporating
SM kernels together with variational sparse GPs into source
separation models leads to more efficient and accurate audio
source reconstructions.

In this paper we introduce a method that combines GP re-
gression [7, 1], spectral mixture kernels [14], and variational
sparse GPs [9]. We consider the mixture data as noisy obser-
vations of a function of time, composed as the sum of a known
number of sources. Further, we assume that each source fol-
lows a different GP with a distinctive spectral mixture kernel.
In addition, we adapt the kernels to reflect prior knowledge
about the typical spectral content of each source. Also, we
frame the mixture data, and for every frame we maximize
a variational lower bound of the true marginal likelihood to
learn the hyperparameters that control the amplitude of each
source. Finally, to separate the sources, we use the learned
priors to calculate the true posterior over each source.

2. GAUSSIAN PROCESS SOURCE SEPARATION

We notate the mixture data as y = [yi]
n
i=1 at time instants

t = [ti]
n
i=1. As mentioned previously, we consider each mix-

ture audio sample yi as an observation of a mixture function
f(t) corrupted by independent Gaussian noise. Further, we
assume f(t) as the sum of J independent source functions
{sj(t)}Jj=1. These functions represent the sources to be re-
constructed. Each source sj(t) follows a different GP with
zero mean, and a distinctive spectral mixture kernel. That is,
yi = f(ti) + εi, where f(t) =

∑J
j=1 sj(t), and

sj(t) ∼ GP ( 0, kj(t, t
′) ) for j = 1, 2, . . . , J. (1)

Here, the noise follows εi ∼ N (0, ν2), with variance ν2.
The kernel for the j-th source is represented by kj(t, t′) (in-
troduced shortly in section 2.1). In addition, it is a well known
property that the sum of GPs is also a Gaussian process [7].
Therefore, the mixture function follows

f(t) ∼ GP

 0,

J∑
j=1

kj(t, t
′)

 , (2)

where its kernel is the sum of source kernels, i.e. kf (t, t′) =∑J
j=1 kj(t, t

′). We focus only on predicting the mixture func-
tion (2) as well as the sources (1) evaluated at t.

Any finite set of evaluations of a GP function follows a
multivariate normal distribution [7]. Therefore, the prior over
the mixture function, and each source evaluated at t, corre-
spond to f ∼ N (0, Kf ), and sj ∼ N

(
0, Ksj

)
respec-

tively, where the column vectors f = [f(t1), . . . , f(tn)]
>,

sj = [sj(t1), . . . , sj(tn)]
>, and the covariance matrix Kf =∑J

j=1 Ksj . The matrices
{
Ksj

}J
j=1

are computed by
evaluating the source kernels at all pair of time instants.

That is, Ksj [l, l
′] = kj(tl, tl′) for l = 1, 2, . . . , n, and

l′ = 1, 2, . . . , n. Also, when a Gaussian likelihood is as-
sumed, the priors are conjugate to the likelihood [7]. Hence,
the posterior distributions are also Gaussian. That is,

y | f ∼
n∏

i=1

N
(
yi | fi, ν2

)
, (3)

f | y ∼ N
(
f |K>f H−1y, K̂f

)
, (4)

sj | y ∼ N
(
si |K>sjH

−1y, K̂sj

)
. (5)

Here, the likelihood (3) factorizes across the mixture data,
and the posterior over the mixture function (4) has covari-
ance matrix K̂f = Kf − K>f H

−1Kf . Also, the posterior
distribution over the i-th source (5) has covariance matrix
K̂sj = Ksj−K>sjH

−1Ksj , where the matrix H = Kf+ν
2I,

and I is the identity matrix. Further, the model hyperparame-
ters are usually learned by maximizing the log-marginal like-
lihood

log p(y) = −1

2

[
y>H−1y + log |H|+ n log 2π

]
, (6)

where H needs to be inverted.
Although the source separation GP model introduced so

far is elegant, its application to large audio signals becomes
intractable. This is because the computational complexity
of GP inference scales cubically with the number of audio
samples. Specifically, learning the hyperparameters by max-
imizing the true marginal likelihood (6) is computationally
demanding, as it requires the inversion of a n × n matrix.
To overcome the limitations imposed by matrix inversion,
we instead maximized a variational lower bound of the true
marginal likelihood (6) (introduced shortly in section 2.2). In
addition, we divided the mixture data into overlapping frames
of size n̂ � n. Finally, to reconstruct the sources, we used
the hyperparameters learned for each frame to calculate the
true posterior distribution over the sources (eq. (5)). The
rest of this section is structured as follows. Section 2.1 intro-
duces the spectral mixture kernel used for each source. Then,
section 2.2 presents the lower bound of the true marginal
likelihood we maximized for learning the hyperparameters.

2.1. Spectral mixture kernels for isolated sources

The kernel kj(t, t′) in (1) determines the properties of each
source sj(t), that is, smoothness, stationarity, and more im-
portantly, its spectrum. To model the typical spectral content
of each isolated source, we used spectral mixture kernels [14].
These kernels approximate the spectral density of any station-
ary covariance function using a Gaussian mixture. Further,
Alvarado et al. [15] assumed a Lorentzian mixture instead,
resulting in the Matérn-1/2 spectral mixture (MSM) kernel

kj(τ) = σ2
j exp

(
− τ
`j

)
×

D∑
d=1

α2
jd cos(ωjd τ), (7)



where τ = |t − t′|, the set of parameters
{
α2
jd, ωjd

}D

d=1
controls the energy distribution throughout all the harmon-
ics/partials of the j-th source spectrum. In addition, the
variance σ2

j controls the source amplitude, whereas the
lengthscale `j determines how fast sj(t) evolves in time.
We grouped all the kernel parameters in the set θj ={
σ2
j , `j ,

{
α2
jd, ωjd

}D

d=1

}
. We fitted a MSM kernel (7)

to the spectrum of every source. For this purpose, we used
training data consisting of one audio recording of each iso-
lated source. We denoted the training data as

{
g(j)

}J
j=1

,

where g(j) = [g(j)(xi)]
ñ
i=1 is the training data vector for

the j-th source, and x = [xi]
ñ
i=1 is the corresponding time

vector. In addition, because only one single realization g(j)

was available for each source in {sj(t)}Jj=1, we assumed the
sources to be covariance-ergodic processes with zero mean
[16, 17, 18]. Therefore, their covariances {Cj(λ)}Jj=1 were
estimated as the time average

Cj(τ̂) =
1

T

∫ T

0

g(j)(x+ τ̂) g(j)(x) dx. (8)

Here, T denotes the size (in seconds) of the window used to
compute the correlation. We used the discrete version of eq.
(8). Finally, for every source we then minimized the mean
square error (MSE) between the covariance estimator (8) and
the corresponding MSM kernel (7). That is,

L(θj) =
1

Nc

Nc∑
i=1

[kj(τ̂i)− Cj(τ̂i)]
2
, (9)

where Nc is the number of points where (8) was approxi-
mated, and θj is the set of kernel parameters in (7).

2.2. Preprocessing and inference

To reduce the computational complexity of learning the hy-
perparameters by maximizing the true marginal likelihood
(6), we divided the mixture data {ti, yi}ni=1 into W overlap-
ping frames of size n̂ � n. Therefore, the set of frames
corresponded to

{
t̂(w), ŷ(w)

}W
w=1

. In addition, for each mix-
ture frame ŷ(w), we instead maximized the lower bound
of the true marginal likelihood, proposed by Titsias [9] for
variational sparse GPs. This method depends on a smaller
set of inducing variables u ∈ Rm, where m ≤ n̂. The
set u represents the values of the function f(t) (eq. (2))
evaluated at a set of inducing points z = [zi]

m
i=1. Thus,

u = [f(z1), . . . , f(zm)]
>. The inducing points z lie on the

same domain as t, i.e. time. Moreover, the inducing points,
together with the model hyperparameters are learned by min-
imizing the Kullback-Leibler (KL) divergence between the
Gaussian approximate distribution q(u), and the true poste-

Method SDR SIR SAR Opt. time
KL-NMF 17.7 22.2 19.7 –
IS-NMF 19.1 24.0 21.0 –
LD-PSDTF 23.0 27.7 25.1 –
SSGP (proposed) 24.1 31.4 25.1 5.33
SSGP-full 22.9 22.3 24.6 284.2

Table 1. Separation metrics (dB). Optimization time (min).

rior p(f̂ | ŷ(w)). This approach leads to the following bound

L ∆
= logN

(
ŷ(w)| 0, Qn̂n̂ + ν2I

)
− 1

2ν2
tr (Kn̂n̂ −Qn̂n̂) ,

(10)
where the matrix Qn̂n̂ = Kn̂mK−1

mmKmn̂. Here, the cross
covariance Kn̂m[i, j] = kf (t

(w)
i , zj). Similarly, Kmm[i, j] =

kf (zi, zj). Where t(w)
i = t(w)[i]. Recall that kf (t, t′) is the

kernel of the mixture function (eq. (2)). In brief, the computa-
tional complexity of learning hyperparameters in each frame
was reduced from O(n̂3), to O(n̂m2).

3. EXPERIMENTAL EVALUATION

We tested the proposed SSGP method on the same dataset
analysed in [6]. That is, three different mixture audio signals
sampled at 16KHz, corresponding to piano, electric guitar,
and clarinet. Each mixture lasts 14 seconds, and consists of
the following sequence of music notes (C4, E4, G4, C4+E4,
C4+G4, E4+G4, and C4+E4+G4). Thus, for each mixture,
the aim was to reconstruct three source signals, each with a
corresponding note, C4, E4, and G4. The metrics used to
measure the separation performance were: source to distor-
tion ratio (SDR), source to interferences ratio (SIR), source
to artifacts ratio (SAR) [19], and root mean square error
(RMSE). We compared with LD-PSDTF (positive semi-
definite tensor factorization), KL-NMF (Kullback-Leibler
NMF), and IS-NMF (Itakura-Saito NMF) [6]. The code was
implemented using GPflow [20].

We determined the performance of the proposed method
in mixtures of three sources. That is, J = 3 in eq. (2). To
this end, we first divided the mixtures into frames of 125 mil-
liseconds (n̂ = 2001) with 50% overlap, and initialized the
kernel for each source (eq. (7) with D = 15), by minimizing
eq. (9). Then, for each mixture frame, we maximized eq. (10)
to learn the variance of each source, i.e.,

{
σ2
j

}J
j=1

. We used
two separate criteria to select z: either the inducing points
were located at the extrema of the mixture data (sparse GP),
or the inducing points were equal to the time vector (full GP).
We compared the time required for learning the hyperparam-
eters in these two scenarios. Finally, we used eq. (5), and the
learned hyperparameters to calculate the true posterior over
each source p

(
s

(w)
i |y(w)

)
. We recovered the sources ap-

plying the overlap-add method to the frame-wise predictions
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Fig. 1. Source separation metrics. SDR (a), SIR (b), SAR (c), RMSE (d).
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Fig. 2. Kernels learned for piano notes (left column). Corre-
sponding log-spectral density (right column).

[21]. We found that our method (SSGP) presented the highest
SDR and SIR metrics, and reduced the optimization time by
98.12% compared to the full GP (Table 1), indicating that our
method is efficient, robust to interferences between sources
(highest SIR), and it introduces less distortion (highest SDR).
Further, we observed that the kernels learned for each source
presented distinctive spectral patterns (Fig 2), which demon-
strates that SM kernels are appropriate for learning the rich
frequency content found in audio sources. Moreover, we ob-
served that the proposed approach reconstructed accurately
the sources (Fig 3), showing the variances learned by maxi-
mizing the lower bound were consistent with the true sources.
In addition, to establish the effect of kernel selection on the
separation performance, we carried out the same previous ex-
periment, but changing the number of components D in the
kernel eq. (7). We found that SDR, SIR and SAR metrics
stabilized when D > 3 (Fig. 1(a-c)), indicating that the pro-
posed model is less affected by kernel selection when more
than three components are used. Further, RMSE decreased
exponentially with D (Fig. 1(d)), suggesting that increasing

Fig. 3. Source reconstruction on piano mixture signal.

the number of components in the kernel leads to more accu-
rate waveform reconstructions.

4. CONCLUSIONS

Our findings indicate that combining variational sparse GPs
together with SM kernels enables time-domain source sepa-
ration GP models to reconstruct audio sources in an efficient
and informed manner, without compromising performance.
Also, RMSE results imply that suitable spectrum priors over
the sources are essential to improve source reconstruction.
Moreover, SDR, SIR, and SAR results suggest the proposed
method can be used for other applications such as multipitch-
detection, where low interference between sources (SIR) is
more relevant than reconstruction artifacts (SAR). We pro-
posed an alternative method that circumvents phase approx-
imation by addressing audio source separation from a varia-



tional time-domain perspective. The code is available at [22].
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León-Villagrá, Zoubin Ghahramani, and James Hens-
man, “GPflow: A Gaussian process library using Ten-
sorFlow,” Journal of Machine Learning Research, vol.
18, no. 40, pp. 1–6, apr 2017.

[21] J. B. Allen and L. R. Rabiner, “A unified approach to
short-time fourier analysis and synthesis,” Proceedings
of the IEEE, vol. 65, no. 11, pp. 1558–1564, Nov 1977.

[22] https://github.com/PabloAlvarado/ssgp.


	1  Introduction
	2  Gaussian process source separation
	2.1  Spectral mixture kernels for isolated sources
	2.2  Preprocessing and inference

	3  Experimental Evaluation
	4  Conclusions
	5  References

