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ABSTRACT
DNNs play a major role in the state-of-the-art ASR systems.
They can be used for extracting features and building proba-
bilistic models for acoustic and language modelling. Despite
their huge practical success, the level of theoretical under-
standing has remained shallow. This paper investigates DNNs
from a statistical standpoint. In particular, the effect of ac-
tivation functions on the distribution of the pre-activations
and activations is investigated and discussed from both an-
alytic and empirical viewpoints. This study, among others,
shows that the pre-activation density in the bottleneck layer
can be well fitted with a diagonal GMM with a few Gaus-
sians and how and why the ReLU activation function pro-
motes sparsity. Motivated by the statistical properties of the
pre-activations, the usefulness of statistical normalisation of
bottleneck features was also investigated. To this end, meth-
ods such as mean(-variance) normalisation, Gaussianisation,
and histogram equalisation (HEQ) were employed and up to
2% (absolute) WER reduction achieved in the Aurora-4 task.

Index Terms— Deep Neural Networks, bottleneck fea-
tures, probability density function, statistical normalisation

1. INTRODUCTION

Deep Neural Networks (DNN) play a central role in build-
ing the state-of-the-art pattern recognition systems. Their re-
markable learning capability has triggered considerable re-
search and led to many novel architectures that have notably
elevated the performance in different tasks. Automatic speech
recognition (ASR) is one of the fields which has witnessed a
breakthrough due to DNNs (e.g. [1, 2]).

Despite great practical advances in terms of performance
and building large-scale systems, theoretical understanding
about deep learning has remained shallow. A deeper under-
standing of DNNs would be of considerable interest and could
help to shed further light on these mysterious black-boxes.
Furthermore, improved theoretical understanding can lead to
improved practice, potentially contributing to training algo-
rithms with faster convergence or less required training data.

In this work, we investigate the behaviour of neural net-
works from a statistical standpoint. The distribution of nodes
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in the network after using different activation functions is
analytically derived and compared with empirical studies.
The influential parameters and factors are discussed and, it
is shown how and why Rectified Linear Units (ReLUs) give
rise to sparsity. In addition, based on the statistical proper-
ties of the pre-activations, the usefulness of post-processing
bottleneck features using various statistical normalisation
techniques such as mean (and variance) normalisation, his-
togram equalisation [3] and Gaussianisation [4] has been
studied and up to 2% (absolute) WER reduction has been
achieved on the Aurora-4 [5] task.

Following an analytical study of the statistical distribu-
tions of the pre-activation and activations in a neural network
(Section 2), we compare the developed theoretical models
with empirical studies (Section 3). In Section 4, we report on
a series of speech recognition experiments to investigate the
effect of statistical normalisation of the bottleneck features.

2. STATISTICAL DISTRIBUTION OF
BOTTLENECK FEATURES

2.1. Effect of Activation Function on Density Function
Consider a node in a network with input x, weight w, out-
put y and activation function f where y = f(wTx). The
scalar z = wTx (T indicates transpose) is termed the pre-
activation. The distribution of the pre-activation z, namely
PZ(z)

1 is unknown, however, the density of y can be derived
analytically as a function of the distribution of z as follows [6]

PY (y) = PZ(f
−1(y))

∣∣∣∣ ddy f−1(y)

∣∣∣∣ (1)

where f−1 is the inverse of the activation function f . To be
invertible, f(z) should be a one-to-one function. Although
this is true for most of the activation functions such as Sig-
moid (σ) or hyperbolic tangent (tanh), it is not the case for
the rectified linear unit (ReLU) unless a modified variant such
as exponential linear unit (ELU) [7] is used. Note that the
absolute value in (1) can be discarded when f−1 is a non-
decreasing function. For the activation functions we consider,
this is the case; hence we drop the absolute value symbols.

1In PZ(z), Z denotes the random variable name and z is its value.



The process of estimating the distribution for different ac-
tivation functions is similar. Here, to save space, we derive
the density function of y when f is the tanh function:

f−1(y) =
1

2
log

1 + y

1− y
,

d

dy
f−1(y) =

1

1− y2

⇒ P tanh
Y (y) =

1

1− y2
PZ(

1

2
log

1 + y

1− y
). (2)

To understand and interpret (2), we should estimate PZ(z).

2.2. Approximating PZ(z)
PZ(z) could be approximated as a Gaussian distribution,
which can be justified by the central limit theorem (CLT) [6]
since the pre-activation z is the weighted sum of the activa-
tions of the previous layer. The CLT makes some assumptions
which may not be met well; we address this in Section 3. As-
suming z ∼̇ N (z;µz, σ

2
z), (1) can be rewritten as follows

PY (y) = N (f−1(y);µz, σ
2
z)

∣∣∣∣ ddy f−1(y)

∣∣∣∣ . (3)

Next the mean (µz) and the variance (σ2
z ) should be estimated.

We assume the mean of the random variable z is zero. This
may be more plausible for a function like tanh which en-
forces sign anti-symmetry and (at least a priori) there is no
particular preference over positive/negative activation values.

As shown in Section 3, the zero-mean approximation
also holds relatively well for Sigmoid and ReLU activations.
Viewed from the perspective of the model’s weights, although
in these two cases the activations are always positive, there is
no reason to (a priori) prefer positive weight values over neg-
ative ones or vice versa. This, approximately and in expected
sense, pushes the mean of the random variable z toward zero.

2.3. Density Estimating for Nodes with tanh Activation
Assuming z ∼̇ N (z; 0, σ2

z), the density function forP tanh
Y (y),

with some algebraic manipulation, can be derived as follows

P tanh
Y (y) =

1

1− y2
N (

1

2
log

1 + y

1− y
; 0, σ2

z))

=
1

1− y2︸ ︷︷ ︸
F<1>
Y (y)

1√
2πσz

(1 + y

1− y
)− 1

8σ2z
log 1+y

1−y︸ ︷︷ ︸
F<2>
Y (y,σz)

(4)

where F<1>
Y (y) and F<2>

Y (y, σz) are two main factors of
P tanh
Y (y). The structure of the former is related to the acti-

vation function type of the current layer (y) and the form of
the latter relates to the pre-activations and the previous layer.
Fig. 1. shows these two parts along with P tanh

Y (y) for differ-
ent values of σz which is the main parameter of P tanh

Y (y).
As Figs. 1(b) and (c) illustrate, σz acts as a shape param-

eter and depending upon whether it is less than, equal to or
more than 1, the overall shape of the second part, and conse-
quently the total density function change. Fig. 1(c), depicts
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Fig. 1. Components of the P tanh
Y (y). (a) F<1>

Y (y), (b)
F<2>
Y (y). When σz increases F<2>

Y (y) becomes flatter and
F<1>
Y (y) dominates the product and consequently P tanh

Y (y).

P tanh
Y (y) for σz = 1, σz = 0.5 (exemplifies the shape of
P tanh
Y (y) when σz < 1) and for σz = 1.5 (represents the
σz > 1 case). When σz < 1, the second part dominates
the density and it further resembles a bell-shaped function.
On the other hand, by increasing this parameter, specifically
when σz > 1, F<2>

Y (y, σz) becomes flatter and the first fac-
tor dominates the product and the distribution P tanh

Y (y).
The question at this point would be the range of the σz

and particularly whether it is less or larger than unity.

2.4. Non-linearity of NNs and Density Shape Parameter
Although it appears hopeless to analytically derive some
approximation for σz value, looking at the Fig.1(c) from
linear/non-linear systems standpoint is insightful. After all
one of the factors which largely contributes to the capabilities
of the DNNs is that they are non-linear models. The depth
of the network which plays a crucial role in the success of
such models, becomes meaningless if the activation functions
were linear. Also recall that for y = tanh(z), by moving
away from 0 toward 1 or −1, the behaviour of this function
changes from almost linear in the vicinity of 0 to a non-linear
function when |y| gets close to one.

As Fig. 1(c) illustrates, when σz < 1, the bulk of the prob-
ability of y is around zero. This is the place where the nodes
and collectively the network behave like a linear system. It
is not desirable unless the process/function to be modelled
is approximately linear in which case, DNNs alternatives are
remarkably cheaper options. When σz > 1, the probability
mass moves toward edges (-1 and 1 for tanh) and the non-
linearity of the overall system increases which is desirable in
modelling complicated decision borders. Based on this argu-
ment, we expect σz to be noticeably larger than one to make
the model operates in the non-linear mode.



3. EMPIRICAL STUDIES
To examine the validity of the derived formula and the associ-
ated assumptions, we compare with empirical studies. In this
regard, a time-delay neural network (TDNN) [8] consisting
of 7 layers with a bottleneck layer just before the output layer
is employed. The network was trained by Kaldi [9] (nnet3)
using WSJ-5k (SI-84 set). The input is 26-dimension mean-
variance normalised log-filterbank energies, with hidden lay-
ers 1024 nodes, and a bottleneck layer with 26 nodes. The
output layer consists of about 2000 nodes (number of state-
clustered triphones). The complete SI-84 set was used which
provides more than 5.4 M frames (for 10 ms frame shift).

3.1. Discussion
Fig. 2 depicts the error bar (mean ± standard deviation), co-
variance matrix and histograms of the pre-activation (z) as
well as the activation (y) for all the 26 bottleneck features. As
illustrated in Fig. 2(a), the mean of the pre-activation z tends
to zero and the standard deviation is larger than one which
matches with the assumptions made in Section 2.2 and ar-
gument propounded in Section 2.4. Further, the covariance
matrix diagonal-dominant structure shows that the network
decorrelates the features in the bottleneck layer. This lends
theoretical support to why the bottleneck features can be used
directly in an HMM-GMM system without the need to be
decorrelated, e.g. through discrete cosine transform (DCT).

Comparing Fig. 2(b) and (d) also explains why as bottle-
neck features, the pre-activation (z) should be used, not the
activations (y). The pre-activation distribution can be easily
fitted by a mixture of a few Gaussians whereas fitting y with a
GMM is more problematic. Finally, Fig. 2(d) shows the nodes
are mostly operating in the saturation regions (close to 1 or -
1) and this allows the network to do non-linear modelling as
argued in Section 2.4.

Fig. 3 shows similar statistics when Sigmoid is used as
activation function and the points mentioned for the tanh, ex-
tends to the logistic function, too.

3.2. Sparsity of ReLU
For the ReLU activation function there is a concentration
of activation values around positive zero (0+) (Fig. 4)2. In
this study, we observed that the histogram support extends to
about 35. However, after 0.15 the histogram values get almost
zero and the overwhelming bulk of the density occurs around
positive zero. An important advantage of this point is boost-
ing the sparsity which makes the network more biologically
plausible [10, 11] and also brings about some mathematical
advantages from modelling and learning viewpoints [12].

Glorot et al [13] observed the sparsity of ReLU and ex-
plained it based on rectifying nodes behaviour: assuming
number of negative and positive pre-activations are almost

2Fig. 4 illustrates the truncated support of Y histogram which was done
for a better visualisation.
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Fig. 3. Distributions of the pre-activation (Z) and activation
(Y ) when Sigmoid is used as activation function.

equal, applying ReLU sets half of the activations to zero.
Fig. 3(b) shows that in case of using Sigmoid function about
half of the probability mass is around 0+, too. From a statisti-
cal viewpoint, sparsity intuitively means the density function
has a dominant mode in zero. Although for Sigmoid there is a
mode at zero, it is not dominant as there is a big mode around
one. Therefore, this does not compellingly explain sparsity.

We believe the sparsity provided by ReLU is better justi-
fied based on the argument presented in Section 2.4: to get the
network operate in the non-linear mode, the operating point of
the units should be around positive zero because before zero
ReLU blocks information and after zero it acts like a linear
system. Therefore, the sparsity of ReLU is due to the coin-
cidence of zero activations with the only region where ReLU
shows the desirable non-linear behaviour.

3.3. Gaussian Approximation for Pre-activation

As seen in Figs. 2(b), 3(a) and 4(a), distribution of Z is not
Gaussian, although it can be well-fitted with a few Gaussians.
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Nevertheless, a Gaussian approximately fits the mean of all
the pre-activation densities. This, however, does not under-
mine (4) because as argued in Section 2, due to σz > 1,
F<2>
Y (y, σz) plays a marginal role and F<1>

Y (y, σz) is the
dominant factor. As such this approximation and also the er-
ror associated with the zero-mean assumption is insignificant.

4. STATISTICAL NORMALISATION OF THE
BOTTLENECK FEATURES

Statistical properties of the pre-activations in the bottleneck
layer (Fig. 2), make the bottleneck features (BN) a good
representation for a GMM-HMM ASR system [14–16].
Also, they are amenable to be post-processed through sta-
tistical normalisation techniques. In [17–19] the effect of
pre-processing the features before feeding the DNN through
vector Taylor series (VTS) [20] and generalised VTS [21,22]
methods was studied. It was observed that in mismatched
conditions between the test and train conditions, e.g. training
with additive noise, testing in presence of channel mismatch,
significant performance gains can be achieved.

Here, we aim at investigating the usefulness of post-
processing the BN features through DCT, mean normalisation
(MN), mean-variance normalisation (MVN), Gaussianisation
(G) and histogram equalisation (HEQ). All the normalisations
has been done on the utterance level. Note that techniques
like VTS, although are more powerful for normalising the
features, are not applicable here as they require the environ-
ment model which is not available after DNN processing.

The ASR system was build based on Kaldi recipe for
Aurora-4, as described in Section 3.1. For training the net-
work, the noisy training set was used in which the data is
distorted by only additive noise. Using such training data al-
lows for a better investigation of the statistical normalisation
effect in the matched (A and B) and mismatched (C and D)
conditions (Aurora-4 has four test sets: A (clean data), B (ad-
ditive noise), C (channel mismatch) and D (both additive and
channel distortion). Table 1 shows the results for a GMM-
HMM state-clustered triphone system trained by Kaldi and
Ave4 indicated the average WER of the four test sets.

Since DNNs learn a sequence of optimal linear/non-linear

Table 1. WER for Aurora-4 (LDA-MLLT [9]).
Feature A B C D Ave4

BN 3.87 7.96 21.80 32.72 16.58
BN+MN 3.64 7.66 21.02 32.20 16.13
BN+MVN 4.07 8.31 20.34 33.04 16.44
BN+G 4.15 8.12 20.18 32.67 16.28
BN+HEQ 3.96 7.43 19.76 30.87 15.50
BN+PCA 3.75 7.88 21.56 32.46 16.41
BN+DCT 3.77 7.77 21.76 32.49 16.44
BN+DCT+MN 3.96 7.82 20.19 32.08 16.01
BN+DCT+MVN 3.98 8.15 20.77 32.79 16.42
BN+DCT+G 4.18 8.12 21.07 33.01 16.59
BN+DCT+HEQ 3.98 7.35 20.49 30.94 15.69

transforms, do not leave that much room for shallow signal
processing normalisation techniques to improve the perfor-
mance unless there is some mismatch between the test/train
conditions which makes the learned transforms subopitmal.
However, Table 1 shows, post-DNN statistical normalisation
can lead to a significant performance improvement.

Techniques like MN, MVN and Gaussianisation work
best when the feature density function is quasi-Gaussian. As
well as Figs. 2-4, the difference between the MVN and Gaus-
sianisation, although is small, indicates the feature distribu-
tion is not Normal, as for this distribution they are identical.
Among these normalisation techniques, MN returns a higher
and consistent gain over the baseline system (unprocessed
BN) in both matched and mismatched conditions.

DCT and PCA do not lead to a noticeable gain which
prove that the DNN, among others, decorrelates data in the
bottleneck layer, as shown in Fig. 2(c). Such decorrelation not
only facilitates training GMMs with diagonal covariance ma-
trices, but also helps in making the Gaussianisation and HEQ
techniques more optimal. That is, for mathematical conve-
nience both are carried out for each dimension independently.

HEQ appears to be the best option for normalising/post-
processing the BN features: theoretically, it is more flexible as
neither requires Gaussianity nor the environment model and
performance-wise, it achieves the highest gain compared with
other normalisation techniques. As seen in Table 1, the max-
imum WER reduction is 2% (absolute), achieved for test set
C when BN features were post-processed by HEQ.

5. CONCLUSION

This paper studied the DNNs from a statistical standpoint.
The density function for tanh activation functions was ana-
lytically derived, the results compared with empirical stud-
ies, and the influential factors were discussed. Furthermore,
the usefulness of statistical normalisation techniques for post-
processing bottleneck features was evaluated and histogram
equalisation returned the highest gain. Investigating the ef-
fect of statistical normalisation of the bottleneck features in
the low and middle layers is recommended for future work.
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