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ABSTRACT

The Mutual Information (MI) is an often used measure of
dependency between two random variables utilized in informa-
tion theory, statistics and machine learning. Recently several
MI estimators have been proposed that can achieve paramet-
ric MSE convergence rate. However, most of the previously
proposed estimators have high computational complexity of
at least O(N2). We propose a unified method for empirical
non-parametric estimation of general MI function between
random vectors in Rd based on N i.i.d. samples. The re-
duced complexity MI estimator, called the ensemble depen-
dency graph estimator (EDGE), combines randomized locality
sensitive hashing (LSH), dependency graphs, and ensemble
bias-reduction methods. We prove that EDGE achieves op-
timal computational complexity O(N), and can achieve the
optimal parametric MSE rate of O(1/N) if the density is d
times differentiable. To the best of our knowledge EDGE is
the first non-parametric MI estimator that can achieve paramet-
ric MSE rates with linear time complexity. We illustrate the
utility of EDGE for the analysis of the information plane (IP)
in deep learning. Using EDGE we shed light on a controversy
on whether or not the compression property of information
bottleneck (IB) in fact holds for ReLu and other rectification
functions in deep neural networks (DNN).

1. INTRODUCTION

The Mutual Information (MI) is an often used measure of de-
pendency between two random variables or vectors [1], and it
has a wide range of applications in information theory [1] and
machine learning [2, 3]. Non-parametric MI estimation meth-
ods have been studied that use estimation strategies including
KSG [4], KDE [5] and Parzen window density estimation [6].
The performance of these estimators has been evaluated and
compared based on both empirical studies [7] and asymptotic
analysis [8]. Recently several MI estimators have been pro-
posed that can achieve parametric MSE rate of convergence.
For example, in [9] a KDE plug-in estimator for Rényi di-
vergence and mutual information achieves the MSE rate of
O(1/N) when the densities are at least d times differentiable.
Another KDE based mutual information estimator was pro-
posed in [8] that can achieve the MSE rate of O(1/N) when
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the densities are d/2 times differentiable. Recently Moon et
al [10] and Gao et al [11] respectively proposed KDE and
KNN based MI estimators for random variables with mixtures
of continuous and discrete components. Most of these esti-
mators, however, have high computational cost and require
knowledge of the density support boundary.

In this paper we propose a reduced complexity MI estima-
tor called the ensemble dependency graph estimator (EDGE).
The estimator combines randomized locality sensitive hash-
ing (LSH), dependency graphs, and ensemble bias-reduction
methods. A dependence graph is a bipartite directed graph
consisting of two sets of nodes V and U . The data points are
mapped to the sets V and U using a randomized LSH function
H that depends on a hash parameter ε. Each node is assigned
a weight that is proportional to the number of hash collisions.
Likewise, each edge between the vertices vi and uj has a
weight proportional to the number of (Xk, Yk) pairs mapped
to the node pairs (vi, uj). For a given value of the hash parame-
ter ε, a base estimator of MI is proposed as a weighted average
of non-linearly transformed of the edge weights. The proposed
EDGE estimator of MI is obtained by applying the method
of weighted ensemble bias reduction [10, 12] to a set of base
estimators with different hash parameters. This estimator is a
non-trivial extension of the LSH divergence estimator defined
in [13]. LSH-based methods have previously been used for
KNN search and graph constructions problems [14, 15], and
they result in fast and low complexity algorithms.

Recently, Shwartz-Ziv and Tishby utilized MI to study
the training process in Deep Neural Networks (DNN) [16].
Let X , T and Y respectively denote the input, hidden and
output layers. The authors of [16] introduced the information
bottleneck (IB) that represents the tradeoff between two mutual
information measures: I(X,T ) and I(T, Y ). They observed
that the training process of a DNN consists of two distinct
phases; 1) an initial fitting phase in which I(T, Y ) increases,
and 2) a subsequent compression phase in which I(X,T )
decreases. Saxe et al in [17] countered the claim of [16],
asserting that this compression property is not universal, rather
it depends on the specific activation function. Specifically,
they claimed that the compression property does not hold for
ReLu activation functions. The authors of [16] challenged
these claims, arguing that the authors of [17] had not observed
compression due to poor estimates of the MI. We use our
proposed rate-optimal ensemble MI estimator to explore this
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controversy, observing that our estimator of MI does exhibit
the compression phenomenon in the ReLU network studied
by [17].

Our contributions are as follows:

• To the best of our knowledge the proposed MI estimator
is the first estimator to have linear complexity and can
achieve the optimal MSE rate of O(1/N).

• The proposed MI estimator provides a simplified and
unified treatment of mixed continuous-discrete variables.
This is due to the hash function approach that is adopted.

• EDGE is applied to IB theory of deep learning, and
provides evidence that the compression property does
indeed occur in ReLu DNNs, contrary to the claims
of [17].

The rest of the paper is organized as follows. In Section2, we
introduce the general definition of MI and define the depen-
dence graph. In Section 3, we introduce the hash based MI
estimator and give theory for the bias and variance. In section
4 we introduce the ensemble dependence graph MI estimator
(EDGE) and show how the ensemble estimation method can
be used to improve the convergence rates. Finally, in Section 5
we provide numerical results as well as study the IP in DNNs.

2. MUTUAL INFORMATION

In this section, we introduce the general mutual information
function based on the f-divergence measure. Then, we define
a consistent estimator for the mutual information function.
Consider the probability measures P and Q on a Euclidean
space X . Let g : (0,∞) → R be a convex function with
g(1) = 0. The f-divergence between P and Q can be defined
as follows [18, 19].

D(P‖Q) := EQ
[
g

(
dP

dQ

)]
. (1)

Mutual Information: Let X and Y be Euclidean spaces and
let PXY be a probability measure on the space X × Y . For
any measurable sets A ⊆ X and B ⊆ Y , we define the
marginal probability measures PX(A) := PXY (A× Y) and
PY (B) := PXY (X ×B). Similar to [11, 18], the general MI
denoted by I(X,Y ) is defined as

D(PXY ‖PXPY ) = E
PXPY

[
g

(
dPXY
dPXPY

)]
, (2)

where dPXY

dPXPY
is the Radon-Nikodym derivative, and g :

(0,∞) → R is, as in (1) a convex function with g(1) = 0.
Shannon mutual information is a particular cases of (1) for
which g(x) = x log x.

Fig. 1. Sample dependence graph with 4 and 3 respective
distinct hash values of X and Y data jointly encoded with
LSH, and the corresponding dependency edges.

2.1. Dependence Graphs

Consider N i.i.d samples (Xi, Yi), 1 ≤ i ≤ N drawn from the
probability measure PXY , defined on the space X ×Y . Define
the sets X = {X1, X2, ..., XN} and Y = {Y1, Y2, ..., YN}.
The dependence graph G(X,Y ) is a directed bipartite graph,
consisting of two sets of nodes V and U with cardinalities
denoted as |V | and |U |, and the set of edges EG. Each point in
the sets X and Y is mapped to the nodes in the sets U and V ,
respectively, using the hash function H , described as follows.

A vector valued hash function H is defined in a similar
way as defined in [13]. First, define the vector valued hash
function H1 : Rd → Zd as

H1(x) =[h1(x1), h1(x2), ..., h1(xd)] , (3)

where xi denotes the ith component of the vector x. In (3),
each scalar hash function h1(xi) : R→ Z is given by

h1(xi) =

⌊
xi + b

ε

⌋
, (4)

for a fixed ε > 0, where byc denotes the floor function (the
smallest integer value less than or equal to y), and b is a
fixed random variable in [0, ε]. Let F := {1, 2, .., F}, where
F := cHN and cH is a fixed tunable integer. We define a
random hash function H2 : Zd → F with a uniform density
on the output and consider the combined hashing function

H(x) := H2(H1(x)), (5)

which maps the points in Rd to F .
H(x) reveals the index of the mapped vertex in G(X,Y ).

The weights ωi and ω′j corresponding to the nodes vi and uj ,
and ωij , the weight of the edge (vi, uj), are defined as follows.

ωi =
Ni
N
, ω′j =

Mj

N
, ωij =

NijN

NiMj
, (6)

where Ni and Mj respectively are the the number of hash col-
lisions at the vertices vi and uj , and Nij is the number of joint



collisions of the nodes (Xk, Yk) at the vertex pairs (vi, uj).
The number of hash collisions is defined as the number of
instances of the input variables map to the same output value.
In particular,

Nij := # {(Xk, Yk) s.t H(Xk) = i and H(Yk) = j} . (7)

Fig. 1 represents a sample dependence graph. Note that the
nodes and edges with zero collisions do not show up in the
dependence graph.

3. THE BASE ESTIMATOR OF MI
3.1. Assumptions

The following are the assumptions we make on the probability
measures and g:

A1. The support sets X and Y are bounded.
A2. The following supremum exists and is bounded:

sup
PXPY

g

(
dPXY
dPXPY

)
≤ U.

A3. Let xD and xC respectively denote the discrete
and continuous components of the vector x. Also let
fXC

(xC) and pXD
(xD) respectively denote density and

pmf functions of these components associated with the
probability measure PX . The density functions fXC

(xC),
fYC

(yC), fXCYC
(xC , yC), and the conditional densities

fXC |XD
(xC |xD), fYC |YD

(yC |yD), fXCYC |XDYD
(xC , yC |xD, yD)

are Hölder continuous.

Hölder continuous functions: Given a support set X , a
function f : X → R is called Hölder continuous with parame-
ter 0 < γ ≤ 1, if there exists a positive constant Gf , possibly
depending on f , such that for every x 6= y ∈ X ,

|f(y)− f(x)| ≤ Gf‖y − x‖γ . (8)

A4. Assume that the function g in (2) is Lipschitz contin-
uous; i.e. g is Hölder continuous with γ = 1.

3.2. The Base Estimator of MI

For a fixed value of the hash parameter ε, we propose the
following base estimator of MI (2) function based on the de-
pendence graph:

Î(X,Y ) :=
∑

eij∈EG

ωiω
′
j g̃(ωij) , (9)

where the summation is over all edges eij : (vi → uj) of
G(X,Y ) having non-zero weight and g̃(x) := max {g(x), U}.

When X and Y are strongly dependent, each point Xk

hashed into the bucket (vertex) vi corresponds to a unique hash
value for Yk in U . Therefore, asymptotically ωij → 1 and the
mutual information estimation in (9) takes its maximum value.
On the other hand, when X and Y are independent, each point
Xk hashed into the bucket (vertex) vi may be associated with
different values of Yk, and therefore asymptotically ωij → ωj
and the Shannon MI estimation tends to 0.

3.3. Various LSH Functions

There are various types of LSH functions [20–22], and all of
them share the common property that they map similar items
to the same bins with high probability.

In equations (3) and (4) we considered a simple floor func-
tion on the scaled input, however in general, any other type of
LSH might be used for our estimation method. In particular,
the hash functions based on random projections can reduce
the dimensionality of data. SimHash [20], which is based
on cosine distance, and the LSH based on p-stable distribu-
tions [21] are among well known LSH functions that reduce
the dimension of data. For example, the LSH based on p-stable
distribution is defined similarly to the floor hash function in
(3) and (4), except that the input vector is projected on random
hyperplanes with p-stable distributions. The formal definition
is Hp−stable : Rd → Zr,

Hp−stable(x) = H1(XW ), (10)

where H1 is defined in (3), and W is a d × r matrix with
entries chosen independently from a stable distribution. For
high-dimensional datasets one can choose r << d in order
to reduce the dimensionality. Finally, note that for theoretical
analysis, we only focus on performance of the simple floor
hash function defined in (3) and (4).

3.4. Convergence Rates

In the following theorems we state upper bounds on the bias
and variance rates of the proposed MI estimator (9). The proofs
are given in appendices A and B. We define the notations
B[T̂ ] = E[T̂ ] − T for bias and V[T̂ ] = E[T̂ 2] − E[T̂ ]2 for
variance of T̂ . The following theorem states an upper bound
on the bias.

Theorem 3.1. Let d = dX + dY be the dimension of the
joint random variable (X,Y ). Under the aforementioned
assumptions A1-A4, and assuming that the density functions in
A3 have bounded derivatives up to order q ≥ 0, the following
upper bound on the bias of the estimator in (9) holds

B
[
Î(X,Y )

]
=

O(εγ) +O
(

1
Nεd

)
, q = 0∑q

i=1 Ciε
i +O(εq) +O

(
1

Nεd

)
q ≥ 1,

(11)

where ε is the hash parameter in (4), γ is the smoothness
parameter in (8), and Ci are real constants.

In (11), the hash parameter, ε needs to be a function of N
to ensure that the bias converges to zero. For the case of q = 0,
the optimum bias is achieved when ε =

(
1
N

)γ/(γ+d)
. When

q ≥ 1, the optimum bias is achieved for ε =
(

1
N

)1/(1+d)
.



Theorem 3.2. Under the assumptions A1-A4 the variance of
the proposed estimator can be bounded as V

[
Î(X,Y )

]
≤

O
(

1
N

)
. Further, the variance of the variable ωij is also upper

bounded by O(1/N).

3.5. Computational Complexity

We analyze the computational complexity of the proposed
estimator. The procedure for estimation of MI equivalent to
the proposed estimator in (9) is given in Algorithm 1.

Algorithm 1: MI Dependence Graph Estimator
Input :N i.i.d samples (Xk, Yk), 1 ≤ k ≤ N .

1 for each k ∈ 1 : N do
2 i← H(Xk)
3 j ← H(Yk)
4 Ni ← Ni + 1
5 Mj ←Mj + 1
6 Nij ← Nij + 1

7 ωi ← Ni/N ;ω′j ←Mj/N ;ωij ← NijN/NiMj ;

Î ←
∑
eij
ωiω

′
j g̃(ωij)

Output : Î

We go over all of the data points and map them using the
hash function H . We compute the number of marginal and
joint collisions (Ni,M ′j , Nij) and based on these we compute
the vertex and edge weights. Note that computing the hashing
of all of the data points takes about O(N) time. Finally in
the last line we compute the MI estimate by going over all
of the edges eij . The number the edges is upper bounded
by O(N), since each edge correspond to at least one pair of
(Xi, Yi). Finally, note that for high-dimensional data sets, the
computational of computing the hash function of each input
may depend on d, however, is would not be greater than O(d).
Hence, overall the the computational complexity of computing
the proposed MI estimate is linear with respect to both N and
d.

3.6. Comparison to the Other Estimation Methods

So far, various estimation methods for information measures
(entropy, divergence and mutual information) have been pro-
posed, most of which are based on kernel density estimates
(KDE) [12], k-nearest neighbors (KNN) [23] or histogram bin-
ning [24]. Certain KDE and KNN based estimators can achieve
the optimal parametric MSE rate [12, 23, 25], however, imple-
mentation of the KDE and KNN methods respectively have
O(N2) and O(kN logN) computational complexity, where
N is the number of samples. One could probably could approx-
imation methods for KDE and KNN, however, there would
be no theoretical guarantees for the estimation based on these
approximations. Empirical histograms, on the other hand, are

simpler and easier to implement, however, their convergence
rate is not as good as the KNN and KDE based methods [24].

LSH methods have previously been applied to the approx-
imate nearest neighbor search, however, it has never been
directly utilized for estimation of densities or information the-
oretic quantities. The simplest LSH function considered in (4)
has similarities with the histogram estimator in terms of bin-
ning, however, there are also certain differences. As opposed
to the LSH based method, the histogram binning requires a
pre-knowledge of the support set or needs an extra computa-
tion to estimate the support set. The number of the bins in the
histogram estimator gets exponentially large with increasing
dimension which results in a huge computational complexity
for high-dimensional datasets. In addition, most of the bins
would be empty. In contrast, the LSH based method results in
no empty hash bins, the number of the bins is upper bounded
by O(N), and the computational complexity is linear in di-
mension and the number of samples. The plug-in methods
including histograms, KDE and KNN require the estimation
of the densities pX , pY and pXY for computation of mutual
information, while the proposed LSH-based method finds the
mapping of X and Y data points, and then estimate the mutual
information, based on the hash collisions. Finally, by giving
an accurate bias and variance rates for the base LSH estimator,
we use an ensemble estimation technique to achieve the opti-
mal parametric convergence rate, discussed in the following
section.

4. ENSEMBLE DEPENDENCE GRAPH ESTIMATOR
(EDGE)

Given the expression for the bias in Theorem 3.1, the ensem-
ble estimation technique proposed in [12] can be applied to
improve the convergence rate of the MI estimator (9). Assume
that the densities in A3 have continuous bounded derivatives
up to the order q, where q ≥ d. Let T := {t1, ..., tT } be a
set of index values with ti < c, where c > 0 is a constant.
Let ε(t) := tN−1/2d. For a given set of weights w(t) the
weighted ensemble estimator is then defined as

Îw :=
∑
t∈T

w(t)Îε(t), (12)

where Îε(t) is the mutual information estimator with the pa-
rameter ε(t). Using (11), for q > 0 the bias of the weighted
ensemble estimator (12) takes the form

B(Îw) =

q∑
i=1

CiN−
i
2d

∑
t∈T

w(t)ti+O

(
td

N1/2

)
+O

(
1

Nεd

)
(13)

Given the form (13), as long as T ≥ q, we can select
the weights w(t) to force to zero the slowly decaying terms
in (13), i.e.

∑
t∈τ w(t)ti/d = 0 subject to the constraint

that
∑
t∈τ w(t) = 1. However, T should be strictly greater

than q in order to control the variance, which is upper bounded



Fig. 2. MSE comparison of EDGE, EDKE and KSG Shannon
MI estimators. X is a 2D Gaussian random variable with unit
covariance matrix. Y = X + aNU , where NU is a uniform
noise. The MSE rates of EDGE, EKDE and KSG are compared
for various values of a.

by the euclidean norm squared of the weights ω. In particular
we have the following theorem (the proof is given in Appendix
C):

Theorem 4.1. For T > d let w0 be the solution to:

min
w

‖w‖2

subject to
∑
t∈T

w(t) = 1,∑
t∈T

w(t)ti = 0, i ∈ N, i ≤ d. (14)

Then the MSE rate of the ensemble estimator Îw0 is O(1/N).

5. EXPERIMENTS

We first use simulated data to compare the proposed estimator
to the competing MI estimators Ensemble KDE (EKDE) [10],
and generalized KSG [11]. Both of these estimators work on
mixed continuous-discrete variables. We also apply EDGE to
study the information bottleneck in different networks trained
on MNIST hand-written datset.

Fig. 2, shows the MSE estimation rate of Shannon MI
between the continuous random variables X and Y having the
relation Y = X + aNU , where X is a 2D Gaussian random
variable with the mean [0, 0] and covariance matrix C = I2.
Here Id denote the d-dimensional identity matrix. NU is a
uniform random vector with the support NU = [0, 1]× [0, 1].
We compute the MSE of each estimator for different sample
sizes. The MSE rates of EDGE, EKDE and KSG are compared
for a = 1/5. Further, the MSE rate of EDGE is investigated for
noise levels of a = {1/10, 1/5, 1/2, 1}. As the dependency
between X and Y increases the MSE rate becomes slower.

Fig. 3, shows the MSE estimation rate of Shannon MI be-
tween a discrete random variables X and a continuous random
variable Y . We have X ∈ {1, 2, 3, 4}, and each X = x is
associated with multivariate Gaussian random vector Y , with

Fig. 3. MSE comparison of EDGE, EDKE and KSG Shannon
MI estimators. X ∈ {1, 2, 3, 4}, and eachX = x is associated
with multivariate Gaussian random vector Y , with d = 4, the
mean [x/2, 0, 0, 0] and covariance matrix C = I4.

Fig. 4. Runtime comparison of EDGE, EDKE and KSG Shan-
non MI estimators. X ∈ {1, 2, 3, 4}, and each X = x is
associated with multivariate Gaussian random vector Y , with
d = 4, the mean [x/2, 0, 0, 0] and covariance matrix C = I4.

d = 4, the expectation [x/2, 0, 0, 0] and covariance matrix
C = I4. In general in Figures 2 and 3, EDGE has better
convergence rate than EKDE and KSG estimators. Fig. 4
represents the runtime comparison for the same experiment as
in Fig. 3. It can be seen from this graph how fast our proposed
estimator performs compared to the other other methods.

Next, we use EDGE to study the information bottleneck
[16] in DNNs. Fig. 5 represents the information plane of a
DNN with 4 fully connected hidden layers of width 784 −
1024 − 20 − 20 − 20 − 10 with tanh and ReLU activations.
The sequence of colored points shows different iterations of
the training process. Each gray line connects the points with
the same iterations for diferent layers. The left most sequence
of points corresponds to the last hidden layer and the right
most sequence of points corresponds to the first hidden layer.
The network is trained with Adam optimization with a learning
rate of 0.003 and cross-entropy loss functions to classify the
MNIST handwritten-digits dataset. We repeat the experiment
for 20 iterations with different randomized initializations and
take the average over all experiments. In both cases of ReLU



Fig. 5. Information plane estimated using EDGE for a neural
network of size 784−1024−20−20−20−10 trained on the
MNIST dataset with tanh (top) and ReLU (bottom) activations.

and tanh activations we observe some degree of compression in
all of the hidden layers. However, the amount of compressions
is different for ReLU and tanh activations. The average test
accuracy in both of these networks are around 0.98. This
network is the same as the one studied in [17], for which it is
claimed that no compression happens with a ReLU activation.
The base estimator used in [17] provides KDE-based lower
and upper bounds on the true MI [26]. According to our
experiments (not shown) the upper bound is in some cases
twice as large as the lower bound. In contrast, our proposed
ensemble method estimates the exact mutual information with
significantly higher accuracy.

Fig. 6 represents the information plane for another network
with 4 fully connected hidden layers of width 784 − 200 −
100 − 60 − 30 − 10 with ReLU activation. The network
is trained with Adam optimization with a learning rate of
0.003 and cross-entropy loss functions to classify the MNIST
handwritten-digits dataset. Again, we observe compression
for this network with ReLU activation.

Finally, we study the information plane curves in a CNN
with three convolutioal ReLU layers and a dense ReLU layer.
The convolutional layers respectively have depths of 4, 8, 16

Fig. 6. Information plane estimated using EDGE for a neural
network of size 784− 200− 100− 60− 30− 10 trained on
the MNIST dataset with ReLU activation.

Fig. 7. Information plane estimated using EDGE for a CNN
consisting of three convolutioal ReLU layers with the respec-
tive depths of 4, 8, 16 and a dense ReLU layer with the size of
256.

and the dense layer has the dimension 256. Max-pooling func-
tions are used in the second and third layers. Note although for
a certain initialization of the weights this model can achieve
the test accuracy of 0.99, the average test accuracy (over dif-
ferent weight initializations) is around 0.95. That’s why the
converged point of the last layer has smaller I(T, Y ) com-
pared to the examples in Fig. 5, which achieves the average
test accuracy of 0.98. Another interesting point about the in-
formation plane in CNN is that the convolutional layers have
larger I(T, Y ) compared to the hidden layers in the fully con-
nected models in 5 and 6, which implies that the convolutional
layers can extract almost all of the useful information about
the labels after small number of iterations.

6. CONCLUSION
In this paper we proposed a fast non-parametric estimation
method for MI based on random hashing, dependence graphs,
and ensemble estimation. Remarkably, the proposed estima-
tor has linear computational complexity and attains optimal
(parametric) rates of MSE convergence. We provided bias



and variance convergence rate, and validated our results by
numerical experiments.
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A. Bias Proof
We first prove a theorem that establishes an upper bound on the number of vertices in V and U .

Lemma 7.1. Cardinality of the sets U and V are upper bounded as |V | ≤ O
(
ε−d
)

and |U | ≤ O
(
ε−d
)
, respectively.

Proof. Let
{
X̃i

}LX

i=1
and

{
Ỹi

}LY

i=1
respectively denote distinct outputs of H1 with the N i.i.d points Xk and Yk as input. Then

according to [13] (Lemma 4.1), we have

LX ≤ O
(
ε−d
)
, LY ≤ O

(
ε−d
)
. (15)

Simply, because of the deterministic feature of H2, the number of its distinct inputs is greater than or equal to the number of
its outputs. So, |V | ≤ LX and |U | ≤ LY . Using the bounds in (15) completes the proof.

The bias proof is based on analyzing the hash function defined in (5). The proof consists of two main steps: 1) Finding the
expectation of hash collisions of H1; and 2) Analyzing the collision error of H2. An important point about H1 and H2 is that
collision of H1 plays a crucial role in our estimator, while the collision of H2 adds extra bias to the estimator. We introduce the
following events to formally define these two biases:

Eij :The event that there is an edge between the vertices vi and uj .
EE :The event that E is the set of all edges in G, i.e. E = EG.

E>0
vi :The event that there is at least one vector from

{
X̃i

}LX

i=1
that maps to vi using H2 .

E=1
vi :The event that there is exactly one vector from

{
X̃i

}LX

i=1
that maps to vi using H2 .

E>1
vi :The event that there are at least two vectors from

{
X̃i

}LX

i=1
that map to vi using H2 . (16)

E>0
ui

, E=1
ui

and E>1
ui

are defined similarly. Further, let for any event E, E denote the complementary event. Let E=1
ij :=

E=1
vi ∩ E

=1
ui

. Finally, we define E=1 :=
(
∩LX
i=1E

=1
vi

)
∩
(
∩LY
j=1E

=1
uj

)
, which represent the event of no collision.

Consider the notation Ĩ(X,Y ) :=
∑
eij∈EG

ωiω
′
j g̃(ωij) (Notice the difference from the definition in (9)). We can derive its

expectation as

E
[
Ĩ(X,Y )

]
= E

 ∑
eij∈EG

ωiω
′
j g̃(ωij)

∣∣∣∣EG


=
∑

eij∈EG

E
[
ωiω

′
j g̃(ωij) |Eij

]
=

∑
eij∈EG

P (E=1
ij |Eij)E

[
ωiω

′
j g̃(ωij)

∣∣E=1
ij , Eij

]
+

∑
eij∈EG

P
(
E=1
ij |Eij

)
E
[
ωiω

′
j g̃(ωij)

∣∣∣E=1
ij , Eij

]
. (17)

Note that the second term in (17) is the bias due to collision of H2 and we denote this term by BH .

7.1. Bias Due to Collision

The following lemma states an upper bound on the bias error caused by H2.

Lemma 7.2. The bias error due to collision of H2 is upper bounded as

BH ≤ O
(

1

εdN

)
. (18)



Before proving this lemma, we provide the following lemma.

Lemma 7.3. P (E=1
ij |Eij) is given by

P (E=1
ij |Eij) = 1−O

(
1

εdN

)
. (19)

Proof. Let X̃ = x̃ and Ỹ = ỹ respectively abbreviate the equations X̃1 = x̃1, ..., X̃LX
= x̃LX

and Ỹ1 = ỹ1, ..., ỸLY
= ỹLY

.
Let x̃ := {x̃1, x̃2, ..., x̃LX

} and ỹ := {ỹ1, ỹ2, ..., ỹLY
}. Define z̃ := x̃ ∪ ỹ and LZ := |z̃|.

P (E=1
ij |Eij) =

∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)
P (E=1

ij |Eij , X̃ = x̃, Ỹ = ỹ). (20)

Define a = 2 for the case i 6= j and a = 1 for the case i = j. Then we have

P (E=1
ij |Eij) =

∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)
O

((
F − a
F

)LZ−a
)

=
∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)(
1−O

(
LZ
F

))

≤
∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)(
1−O

(
LX + LY

F

))

=
∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)(
1−O

(
1

εdN

))

=

(
1−O

(
1

εdN

))∑
x̃,ỹ

P
(
X̃ = x̃, Ỹ = ỹ|Eij

)
=

(
1−O

(
1

εdN

))
, (21)

where in the fourth line we have used (15).

Proof of 7.2. N ′i and M ′j respectively are defined as the number of the input points X and Y mapped to the buckets X̃i and Ỹj
using H1. Define Ai :=

{
j : H2(X̃j) = i

}
and Bi :=

{
j : H2(Ỹj) = i

}
. For each i we can rewrite Ni and Mi as

Ni =

LX∑
j=1

1Ai
(j)N ′j , Mi =

LY∑
j=1

1Bi
(j)M ′j . (22)

Thus,



BH ≤
∑
i,j∈F

P
(
E>1
ij

)
E
[
1Eijωiω

′
j g̃(ωij)

∣∣E>1
ij

]
=
∑
i,j∈F

P
(
E>1
ij

)(
P
(
Eij |E>1

ij

)
E
[
ωiω

′
j g̃(ωij)

∣∣E>1
ij , Eij

]
+ P

(
Eij |E>1

ij

)
E
[
ωiω

′
j g̃(ωij)

∣∣E>1
ij , Eij

])
=
∑
i,j∈F

P (Eij)P
(
E>1
ij |Eij

)
E
[
ωiω

′
j g̃(ωij)

∣∣E>1
ij , Eij

]
(23)

≤ O
(

U

εdN

) ∑
i,j∈F

P (Eij)E
[
ωiω

′
j

∣∣E>1
ij , Eij

]
(24)

= O

(
U

εdN3

) ∑
i,j∈F

P (Eij)E
[
NiMj

∣∣E>1
ij , Eij

]
= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ(x̃, ỹ)
∑
i,j∈F

P (Eij)E
[
NiMj

∣∣∣E>1
ij , Eij , X̃ = x̃, Ỹ = ỹ

]

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)E

[(
LX∑
r=1

1Ai
(r)N ′r

)(
LY∑
s=1

1Bj
(s)M ′s

)∣∣∣∣∣E>1
ij , Eij , X̃ = x̃, Ỹ = ỹ

]
(25)

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)

LX∑
r=1

LY∑
s=1

E
[
(1Ai

(r))
(
1Bj

(s)
)∣∣∣E>1

ij , Eij , X̃ = x̃, Ỹ = ỹ
]
E
[
N ′rM

′
s|Eij , X̃ = x̃, Ỹ = ỹ

]

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)

LX∑
r=1

LY∑
s=1

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij , X̃ = x̃, Ỹ = ỹ

)
E
[
N ′rM

′
s|Eij , X̃ = x̃, Ỹ = ỹ

]
,

(26)

where in (23) we have used the Bayes rule, and the fact that g̃(ωij) = 0 conditioned on the event Eij . In (24) we
have used the bound in Lemma 7.3, and the upper bound on g̃(ωij) . Equation (25) is due to (22). Now we simplify

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij , X̃ = x̃, Ỹ = ỹ

)
in (26) as follows. First assume that X̃r 6= Ỹs.

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij , X̃ = x̃, Ỹ = ỹ

)
≤ P

(
r ∈ Ai, s ∈ Bj

∣∣E>1
vi , E

>1
uj
, X̃ = x̃, Ỹ = ỹ

)
= P

(
r ∈ Ai

∣∣E>1
vi , X̃ = x̃

)
P
(
s ∈ Bj

∣∣E>1
uj
, Ỹ = ỹ

)
, (27)

where the second line is because the hash function H2 is random and independent for different inputs. P
(
r ∈ Ai

∣∣E>1
vi , X̃ = x̃

)
in (27) can be written as

P
(
r ∈ Ai

∣∣E>1
vi , X̃ = x̃

)
=
P
(
r ∈ Ai, E>1

vi

∣∣X̃ = x̃
)

P
(
E>1
vi

∣∣X̃ = x̃
) . (28)

We first find P
(
E>1
vi

∣∣X̃ = x̃
)

:

P
(
E>1
vi

∣∣X̃ = x̃
)

= 1− P
(
E=0
vi

∣∣X̃ = x̃
)
− P

(
E=1
vi

∣∣X̃ = x̃
)

= 1−
(
F − 1

F

)LX

−

(
LX
F

(
F − 1

F

)Lx−1
)

=
L2
X

2F 2
+ o

(
L2
X

2F 2

)
. (29)



Next, we find P
(
r ∈ Ai, E>1

vi

∣∣X̃ = x̃
)

in (28) as follows.

P
(
r ∈ Ai, E>1

vi

∣∣X̃ = x̃
)

= P
(
E>1
vi

∣∣r ∈ Ai, X̃ = x̃
)
P
(
r ∈ Ai

∣∣X̃ = x̃
)

=

(
1−
(
F − 1

F

)LX−1
)(

1

F

)
= O

(
LX
F 2

)
(30)

Thus, using (29) and (30) yields

P
(
r ∈ Ai

∣∣E>1
vi , X̃ = x̃

)
= O

(
1

LX

)
. (31)

Similarly, we have

P
(
s ∈ Bj

∣∣E>1
uj
, Ỹ = ỹ

)
= O

(
1

LY

)
. (32)

Now assume the case X̃r = Ỹs. Then sinceH2(X̃r) = H2(Ỹs), we can simplifyP
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij , X̃ = x̃, Ỹ = ỹ

)
in (26) as

P
(
r ∈ Ai, s ∈ Bj

∣∣E>1
ij , Eij , X̃ = x̃, Ỹ = ỹ

)
= δijP

(
r ∈ Ai

∣∣E>1
vi , X̃ = x̃, Ỹ = ỹ

)
. (33)

Recalling the definition z̃ := x̃ ∪ ỹ and LZ := |z̃|, similar to

P
(
r ∈ Ai

∣∣E>1
vi , X̃ = x̃, Ỹ = ỹ

)
= O

(
1

LZ

)
. (34)

By using equations (27), (31), (32) and (34) in (26), we can write the following upper bound for the bias estimator due to
collision.

BH ≤ O
(

U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)

LX∑
r=1

LY∑
s=1

E
[
N ′rM

′
s|Eij , X̃ = x̃, Ỹ = ỹ

](
O

(
1

LXLY

)
+ δijO

(
1

LZ

))

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)E

[
LX∑
r=1

N ′r

LY∑
s=1

M ′s|Eij , X̃ = x̃, Ỹ = ỹ

](
O

(
1

LXLY

)
+ δijO

(
1

LZ

))

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

∑
i,j∈F

P (Eij)N
2

(
O

(
1

LXLY

)
+ δijO

(
1

LZ

))

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

(
O

(
N2

LXLY

)
+O

(
N

LZ

)) ∑
i,j∈F

P (Eij)

= O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

(
O

(
N2

LXLY

)
+O

(
N

LZ

))
E

∑
i,j∈F

1Eij


≤ O

(
U

εdN3

)∑
x̃,ỹ

pX̃,Ỹ

(
O

(
N2

LXLY

)
+O

(
N

LZ

))
(LXLY )

≤ O
(

1

εdN

)
. (35)



7.2. Bias without Collision

A key idea in proving Theorem 3.1 is to show that the expectation of the edge weights ωij are proportional to the Radon-Nikodym
derivative dPXY /dPXPY at the points that correspond to the vertices vi and uj . This fact is stated in the following lemma:

Lemma 7.4. Under the assumptions A1-A4, and assuming that the density functions in A3 have bounded derivatives up to order
q ≥ 0 we have:

E [ωij ] =
dPXY
dPXPY

+ B(N, ε, q, γ), (36)

where

B(N, ε, q, γ) :=

O(εγ) +O
(

1
Nεd

)
, q = 0∑q

i=1 Ciε
i +O(εq) +O

(
1

Nεd

)
, q ≥ 1,

(37)

and Ci are real constants.

Note that since ωij = NijN/NiMj , and Nij , Ni and Nj are not independent variables, deriving the expectation is not trivial.
In the following we give a lemma that provides conditions under which the expectation of a function of random variables is close
to the function of expectations of the random variables. We will use the following lemma to simplify E [ωij ].

Lemma 7.5. Assume that g(Z1, Z2, ..., Zk) : Z1 × ...×Zk → R is a Lipschitz continuous function with constant Hg > 0 with
respect to each of variables Zi, 1 ≤ i ≤ k. Let V[Zi] and V[Zi|X] respectively denote the variance and the conditional variance
of each variable Zi for a given variable X . Then we have

a) |E [g(Z1, Z2, ..., Zk)]− g(E [Z1] ,E [Z2] , ...,E [Zk])| ≤ Hg

k∑
i=1

√
V[Zi], (38)

b) |E [g(Z1, Z2, ..., Zk) |X]− g(E [Z1|X] ,E [Z2|X] , ...,E [Zk|X])| ≤ Hg

k∑
i=1

√
V[Zi|X]. (39)

Proof.

|E [g(Z1, Z2, ..., Zk)]− g(E [Z1] ,E [Z2] , ...,E [Zk])| = |E [g(Z1, Z2, ..., Zk)− g(E [Z1] ,E [Z2] , ...,E [Zk])]|
≤ E [|g(Z1, Z2, ..., Zk)− g(E [Z1] ,E [Z2] , ...,E [Zk])|] (40)
≤ E[|g(Z1, Z2, ..., Zk)− g(E [Z1] , Z2, ..., Zk) +

+ g(E [Z1] , Z2, ..., Zk)− g(E [Z1] ,E [Z2] , ..., Zk)

+ ...

+ g(E [Z1] ,E [Z2] , ...,E [Zk−1] , Zk)− g(E [Z1] ,E [Z2] , ...,E [Zk]) |]

≤ E
[∣∣∣∣g(Z1, Z2, ..., Zk)− g(E [Z1] , Z2, ..., Zk)

∣∣∣∣]
+ E

[∣∣∣∣g(E [Z1] , Z2, ..., Zk)− g(E [Z1] ,E [Z2] , ..., Zk)

∣∣∣∣]
+ ...

+ E
[∣∣∣∣g(E [Z1] , ...,E [Zk−1] , Zk)− g(E [Z1] , ...,E [Zk])

∣∣∣∣] (41)

≤ HgE [|Z1 − E [Z1]|] +HgE [|Z2 − E [Z2]|] + ...+HgE [|Zk − E [Zk]|]
(42)

≤ Hg

k∑
i=1

√
V[Zi]. (43)

In (40) and (41) we have used triangle inequalities. In (42) we have applied Lipschitz condition, and finally in (43) we have used
Cauchy-Schwarz inequality. Since the proofs of parts (a) and (b) are similar, we omit the proof of part (b).



Lemma 7.6. Define νij = Nij/N , and recall the definitions ωij = NijN/NiNj , ωi = Ni/N , and ω′j = Nj/N . Then we can
write

E [ωij ] =
E [νij ]

E [ωi]E
[
ω′j
] +O

(√
1

N

)
(44)

Proof. The proof follows by Lemma 7.5 and the fact that V[ωij ] ≤ O(1/N) (proved in Lemma 7.10).

Let xD and xC respectively denote the discrete and continuous components of the vector x, with dimensions dD and dC . Also
let fXC

(xC) and pXD
(xD) respectively denote density and pmf functions of these components associated with the probability

measure PX . Let S(x, r) be the set of all points that are within the distance r/2 of x in each dimension i, i.e.

S(x, r) : {x|∀i ≤ d, |Xi − xi| < r/2} . (45)

Denote Pr(x) := P (x ∈ S(x, r)). Then we have the following lemma.

Lemma 7.7. Let r < sX , where sX is the smallest possible distance in the discrete components of the support set, X . Under the
assumption A3, and assuming that the density functions in A3 have bounded derivatives up to the order q ≥ 0, we have

Pr(x) = P (XD = xD)rdC (f(xC |xD) + µ(r, γ, q,CX)) , (46)

where

µ(r, γ, q,CX) :=

O(rγ) , q = 0∑q
i=1 Cir

i +O(rq) , q ≥ 1.
(47)

In the above equation, CX := (C1, C2, ..., Cq), and Ci are real constants depending on the probability measure PX .

Proof. The proof is straightforward by using (8) for the case q = 0 (similar to (27)-(29) in [13]), and using the Taylor expansion
of f(xC |xD) for the case q ≥ 1 (similar to (36)-(37) in [13]).

Lemma 7.8. Let H(x) = i,H(y) = j. Under the assumptions A1-A3, and assuming that the density functions in A3 have
bounded derivatives up to the order q ≥ 0, we have

E
[
ωij |E≤1ij

]
=

dPXY
dPXPY

(x, y) + µ(ε, γ, q,C′XY ) +O

(
1√
N

)
, (48)

where µ(ε, γ, q,C′XY ) is defined in (47).

Proof. Define νij = Nij/N , and recall the definitions ωij = NijN/NiNj , ωi = Ni/N , and ω′j = Nj/N . Using Lemma 7.5
we have

E
[
ωij |E≤1ij

]
=

E
[
νij |E≤1ij

]
E
[
ωi|E≤1ij

]
E
[
ω′j |E

≤1
ij

] +O

(
1√
N

)
(49)

Assume that H(x) = i. Let X have dC and dD continuous and discrete components, respectively. Also let Y have d′C and
d′D continuous and discrete components, respectively. Then we can write

E
[
ωi|E≤1ij

]
=

1

N
E
[
Ni|E≤1ij

]
= P (X ∈ S(x, ε))

= P (XD = xD)εdC (f(xC |xD) + µ(ε, γ, q,CX)) , (50)



where in the third line we have used Lemma 7.7. Similarly we can write

E
[
ω′j |E

≤1
ij

]
= P (YD = yD)εd

′
C (f(yC |yD) + µ(ε, γ, q,CX)) ,

E
[
νij |E≤1ij

]
= P (XD = xD, YD = yD)ε(dC+d′C)(f(xC , yC |xD, yD) + µ(ε, γ, q,CXY )) . (51)

Using (50) and (51) in (49) results in

E
[
ωij |E≤1ij

]
=
P (XD = xD)P (YD = yD)f(xC |xD)f(yC |yD)

P (XD = xD, YD = yD)f(xC , yC |xD, yD)
+ µ(ε, γ, q,C′XY ) +O

(
1√
N

)
, (52)

where C′XY depends only on PXY . Now note that using Lemma 7.7, dPXY

dPXPY
(x, y) can be simplified as

dPXY
dPXPY

(x, y) =
dPXY,r

dr (x, y)
dPX,rPY,r

dr (x, y)
=
P (XD = xD)P (YD = yD)f(xC |xD)f(yC |yD)

P (XD = xD, YD = yD)f(xC , yC |xD, yD)
+ µ(ε, γ, q,C′′XY ). (53)

Finally, using (53) in (52) gives

E
[
ωij |E≤1ij

]
=

dPXY
dPXPY

(x, y) + µ(ε, γ, q, C̃XY ) +O

(
1√
N

)
, (54)

where H(x) = i,H(y) = j.

Proof of Lemma 7.4. Lemma 7.4 is a simple consequence of Lemma 7.8. We have

E [ωij ] = P
(
E≤1ij

)
E
[
ωij |E≤1ij

]
+ P

(
E>1
ij

)
E
[
ωij |E>1

ij

]
. (55)

Recall the definitions X̃ :=
(
X̃1, X̃2, ..., X̃LX

)
and Ỹ :=

(
Ỹ1, Ỹ2, ..., ỸLY

)
as the mapped X and Y points through H1.

Let Z̃ := X̃ ∪ Ỹ and LZ := |Z̃|. We first find P
(
E≤1ij

)
as follows. For a fixed set Z̃ we have

P
(
E≤1ij

)
= P

(
E=0
vi ∩ E

=0
uj

)
+ P

(
E=0
vi ∩ E

=1
uj

)
+ P

(
E=1
vi ∩ E

=0
uj

)
+ P

(
E=1
vi ∩ E

=1
uj

)
=

(F − 2)LZ

FLZ
+
LY (F − 2)LZ−1

FLZ
+
LX(F − 2)LZ−1

FLZ
+
LY LX(F − 2)LZ−2

FLZ

= 1−O
(
LZ
F

)
≤ 1−O

(
LX + LY

F

)
= 1−O

(
1

εdN

)
. (56)

Now note that the second term in (55) is the bias due to collision of H2, and similar to (35) it is upper bounded by O
(

1
εdN

)
.

Thus, (56) and (55) give rise to

E [ωij ] =
dPXY
dPXPY

(x, y) + µ(ε, γ, q, C̃XY ) +O

(
1√
N

)
+O

(
1

εdN

)
. (57)

which completes the proof.

In the following lemma we make a relation between the bias of an estimator and the bias of a function of that estimator.



Lemma 7.9. Assume that g(x) : X → R is infinitely differentiable. If Ẑ is a random variable estimating a constant Z with the
bias B[Ẑ] and the variance V[Ẑ], then the bias of g(Ẑ) can be written as

E
[
g(Ẑ)− g(Z)

]
=

∞∑
i=1

ξi

(
B
[
Ẑ
])i

+O

(√
V
[
Ẑ
])

, (58)

where ξi are real constants.

Proof.

E
[
g
(
Ẑ
)
− g(Z)

]
= g
(
E
[
Ẑ
])
− g(Z) + E

[
g
(
Ẑ
)
− g
(
E
[
Ẑ
])]

=

∞∑
i=1

(
E
[
Ẑ
]
− Z

)i g(i)(Z)

i!
+O

(
E
[∣∣∣g(Ẑ)− g(E [Ẑ])∣∣∣])

=

∞∑
i=1

ξi

(
B
[
Ẑ
])i

+O

(√
V
[
Ẑ
])

. (59)

In the second line we have used Taylor expansion for the first term, and triangle inequality for the second term. In the third
line we have used the definition ξi := g(i)(Z)/i!, and the Cauchy-Schwarz inequality for the second term.

In the following we compute the expectation of the first term in (17) and prove Theorem 3.1.

Proof of Theorem 3.1. Recall that N ′i and M ′j respectively are defined as the number of the input points X and Y mapped
to the buckets X̃i and Ỹj using H1. Similarly, N ′ij is defined as the number of input pairs(X,Y) mapped to the bucket pair(
X̃i, Ỹj

)
using H1. Define the notations r(i) := H−12 (i) for i ∈ F and s(x) := H1(x) for x ∈ X ∪ Y . Then from (52) since

there is no collision of mapping with H2 into vi and uj we have

E

[
N ′s(x)s(y)N

N ′s(x)N
′
s(y)

]
=

dPXY
dPXPY

(x, y) + µ(ε, γ, q, C̃XY ) +O

(
1√
N

)
, (60)

By using (56) and defining h̃(x) = g̃(x)/x we can simplify the first term of (17) as



∑
i,j∈F

P
(
E≤1ij

)
E
[
1Eij

ωiω
′
j g̃(ωij)

∣∣∣E≤1ij ] =

(
1−O

(
1

εdN

)) ∑
i,j∈F

E
[
1Eij

ωiω
′
j g̃(ωij)

∣∣∣E≤1ij ]
=
∑
i,j∈F

E
[
1Eij

NiMj

N2
g̃

(
NijN

NiMj

)∣∣∣∣E≤1ij ]+O

(
1

εdN

)

=
∑
i,j∈F

E

[
1Eij

N ′r(i)M
′
r(j)

N2
g̃

(
N ′r(i)r(j)N

N ′r(i)M
′
r(j)

)]
+O

(
1

εdN

)

=
∑
i,j∈F

E

[
1Eij

N ′r(i)r(j)

N
h̃

(
N ′r(i)r(j)N

N ′r(i)M
′
r(j)

)]
+O

(
1

εdN

)

=
1

N

∑
i,j∈F

E

[
N ′r(i)r(j)h̃

(
N ′r(i)r(j)N

N ′r(i)M
′
r(j)

)]
+O

(
1

εdN

)
(61)

=
1

N
E

∑
i,j∈F

N ′r(i)r(j)h̃

(
N ′r(i)r(j)N

N ′r(i)M
′
r(j)

)+O

(
1

εdN

)

=
1

N
E

[
N∑
i=1

h̃

(
N ′s(X)s(Y )N

N ′s(X)M
′
s(Y )

)]
+O

(
1

εdN

)

=
1

N

N∑
i=1

E

[
h̃

(
N ′s(X)s(Y )N

N ′s(X)M
′
s(Y )

)]
+O

(
1

εdN

)

= E(X,Y )∼PXY

[
E

[
h̃

(
N ′s(X)s(Y )N

N ′s(X)M
′
s(Y )

)∣∣∣∣∣X = x, Y = y

]]
+O

(
1

εdN

)
= E(X,Y )∼PXY

[
dPXY
dPXPY

]
+ µ(ε, γ, q,CXY ) +O

(
1√
N

)
+O

(
1

εdN

)
. (62)

(63)

(61) is due to the fact that N ′r(i)r(j) = 0 if there is no edge between vi and uj . Also, (62) is due to (60).
From (62) and (17) we obtain

E
[
Ĩ(X,Y )

]
= E

 ∑
eij∈EG

ωiω
′
j g̃(ωij)

 = E(X,Y )∼PXY

[
dPXY
dPXPY

]
+ µ(ε, γ, q,CXY ) +O

(
1√
N

)
+O

(
1

εdN

)
. (64)

Finally using Lemma 7.9 results in (11).

B. Variance Proof
In this section we first prove bounds on the variances of the edge and vertex weights and then we provide the proof of Theorem
3.2.

Lemma 7.10. Under the assumptions A1-A4, the following variance bounds hold true.

V[ωi] ≤ O
(

1

N

)
, V

[
ω′j
]
≤ O

(
1

N

)
, V[ωij ] ≤ O

(
1

N

)
, V[νij ] ≤ O

(
1

N

)
. (65)

Proof. Here we only provide the variance proof of ωi. The variance bounds of ω′j , ωij and νij can be proved in the same way.
The proof is based on Efron-Stein inequality. Define Zi := (Xi, Yi). For using the Efron-Stein inequality on Z := (Z1, ..., ZN ),



we consider another independent copy of Z as Z′ := (Z ′1, ..., Z
′
N ) and define Z(i) := (Z1, ..., Zi−1, Z

′
i, Zi+1, ..., ZN ). Define

ωi(Z) as the weight of vertex vi in the dependence graph constructed by the set Z. By applying Efron-Stein inequality [23] we
have

V[ωi] ≤
1

2

N∑
i=1

E
[(
ωi(Z)− ωi

(
Z(j)

))2]

=
1

2N2

N∑
i=1

E
[(
Ni(Z)−Ni

(
Z(j)

))2]
≤ 1

2N2
O(N)

≤ O
(

1

N

)
. (66)

In the third line we have used the fact that the absolute value of Ni(Z)−Ni
(
Z(j)

)
is at most 1.

Proof of Theorem 3.2 . We follow similar steps as the proof of Lemma 7.10. Define Îg(Z) as the mutual information estimation
using the set Z. By applying Efron-Stein inequality we have

V
[
Î(X,Y )

]
≤ 1

2

N∑
k=1

E
[(
Î(Z)− Î(Z(k))

)2]

≤ N

2
E


 ∑
eij∈EG

ωi(Z)ω′j(Z) g̃(ωij(Z))−
∑

eij∈EG

ωi

(
Z(k)

)
ω′j

(
Z(k)

)
g̃(ωij)

(
Z(k)

)2


=
N

2N4
E


 ∑
eij∈EG

Ni(Z)Mj(Z) g̃

(
Nij(Z)N

Ni(Z)Mj(Z)

)
−

∑
eij∈EG

Ni

(
Z(k)

)
Mj

(
Z(k)

)
g̃

(
Nij
(
Z(k)

)
N

Ni
(
Z(k)

)
Mj

(
Z(k)

))
2


(67)

≤ 1

2N3
E
[
(Σn1 + Σn2 + Σm1 + Σm1 +Dn1m1 +Dn2m2)

2
]
. (68)

Note that in equation (68), when (Xk, Yk) is resampled, at most two of Ni for i ∈ F are changed exactly by one (one
decrease and the other increase). The same statement holds true for Mj . Let these vertices be vn1

, vn2
, vm1

and vm2
. Also the

pair collision counts Nij are fixed except possibly Nn1m1
and Nn2m2

that may change by one. So, in the fourth line Σn1
and

Σn2
account for the changes in MI estimation due to the changes in Nn1

and Nn2
, and Σm1

and Σm2
account for the changes in

Mm1 and vm2 , respectively. Finally Dn1m1 and Dn2m2 account for the changes in MI estimation due to the changes in Nn1m1

and Nn2m2 . For example, Σn1 is precisely defined as follows:

Σn1 :=
∑

j:emj∈EG

NmMj g̃

(
NmjN

NmNj

)
− (Nm + 1)Mj g̃

(
NmjN

(Nm + 1)Mj

)
(69)

where we have used the notations Ni and N (k)
i instead of Ni(Z) and Ni(Z(k)) for simplicity. Now note that by assumption A4

we have

∣∣∣∣g̃(NmjNNmMj

)
− g̃
(

NmjN

(Nm + 1)Mj

)∣∣∣∣ ≤ Gg ∣∣∣∣NmjNNmMj
− NmjN

(Nm + 1)Mj

∣∣∣∣
≤ O

(
NmjN

N2
mMj

)
. (70)



Thus, using (70), Σn1 can be upper bounded as follows

Σn1 ≤
∑

j:emj∈EG

O

(
NmjN

N2
m

)
= O

(
N

Nm

)
≤ O(N). (71)

It can similarly be shown that Nn2
, Σm1

, Σm2
, Dn1m1

and Dn2m2
are upper bounded by O(N). Thus, (68) simplifies as

follows

V
[
Î(X,Y )

]
≤ 36O(N2)

2N3
= O(

1

N
). (72)

C. Optimum MSE Rates of EDGE
In this short section we prove Theorem 4.1.

Proof of Theorem 4.1. The proof simply follows by using the ensemble theorem in ( [12], Theorem 4) with the parameters
ψi(t) = ti and φi,d(N) = N−i/2d for the bias result in Theorem 3.1. Thus, the following weighted ensemble estimator (EDGE)
can achieve the optimum parametric MSE convergence rate of O(1/N) for q ≥ d.

Îw :=
∑
t∈T

w(t)Îε(t), (73)
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