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SPEECH WAVEFORM RECONSTRUCTION USING CONVOLUTIONAL NEURAL
NETWORKS WITH NOISE AND PERIODIC INPUTS

Oliver Watts, Cassia Valentini-Botinhao and Simon King

The Centre for Speech Technology Research, Edinburgh University, UK

ABSTRACT

This paper presents a method for upsampling and transforming a
compact representation of acoustics into a corresponding speech
waveform. Similar to a conventional vocoder, the proposed system
takes a pulse train derived from fundamental frequency and a noise
sequence as inputs and shapes them to be consistent with the acous-
tic features. However, the filters that are used to shape the waveform
in the proposed system are learned from data, and take the form
of layers in a convolutional neural network. Because the network
performs the transformation simultaneously for all waveform sam-
ples in a sentence, its synthesis speed is comparable with that of
conventional vocoders on CPU, and many times faster on GPU.
It is trained directly in a fast and straightforward manner, using a
combined time- and frequency-domain objective function. We use
publicly available data and provide code to allow our results to be
reproduced.

Index Terms— neural vocoder, speech reconstruction, convolu-
tional neural network

1. INTRODUCTION

Until recently, statistical parametric speech synthesis systems
worked by predicting a low-dimensional, slowly varying repre-
sentation of acoustics from text, and then passing that representation
to the synthesis part of a vocoder for conversion into a speech
waveform [1]. That is, the transformation from vocoder features to
waveform is a fixed, carefully-engineered, knowledge-based proce-
dure. In contrast, recent work has successfully replaced this fixed
transformation with one learned from data [2, 3]. The impetus for
much or all of this work has come from [4], where sequences of
waveform samples are generated directly given discrete linguistic
features, bypassing conventional acoustic features altogether. We
here focus on the acoustic feature to waveform mapping task (some-
times termed neural vocoding), because it addresses a more tractable
problem and allows the training of TTS systems to be conveniently
modularised [3, §2.1], [5, 6]; even in the systems which attempt to
map directly from discrete linguistic inputs, it is found necessary to
condition also on some continuous acoustic variables [4, §3.2].

The learned reconstruction of acceptable waveforms from
acoustic representations is still a challenging task, to the extent that
inputs are underspecified. This underspecification typically takes
the form of missing phase information, and of simplification and
compression of the magnitude spectrum [3, 7]. Here, the challenge
is for a system to learn to restore acceptable phase and magnitude
spectral detail on the basis of some training observations.

A learned waveform reconstructor has several potential advan-
tages over a conventional vocoder synthesis module. Firstly, a neural

Samples & code: http://homepages.inf.ed.ac.uk/owatts/
papers/ICASSP2019

vocoder might reconstruct more acceptable waveforms from natural
parameters on a simple copy synthesis task, as it restores the in-
formation missing from the input in a data-driven fashion and is thus
less limited by the knowledge and assumptions inherent in a vocoder.
Secondly, [3, §3.3.1] has shown that neural vocoders can compen-
sate for imperfections in their predicted acoustic inputs if trained
with inputs which have been corrupted in a consistent way. Thirdly,
a learned function can be trained to map from any reasonable repre-
sentation of speech to a waveform, even when no knowledge-based
procedure for making that transformation exists. Other representa-
tions could be desirable due to their interpretability, perceptual rel-
evance, or suitability for acoustic modelling. This is a possibility
which to our knowledge has not yet been exploited.

There are therefore good motivations for wanting to train and
deploy learned waveform reconstructors. An issue with [4] of major
practical importance, however, is the time it takes to generate speech.
The autoregression used by the model means that the most naive
implementation would involve a forward pass through a deep neural
network many thousands of times for each second of speech to be
generated. Less naive approaches to generation where computation
is reused by storing hidden activations at previous timesteps to a
buffer are still computationally impractical [8]. Other approaches
look at speeding up the synthesis-time operation in other ways, while
remaining autoregressive [9, 10].

A different approach to speeding up generation with these mod-
els can be found in [11]. There, the synthesis model is an inverse-
autoregressive flow which generates all waveform samples in par-
allel without incurring the expense of having to make predictions
autoregressively. Inputs consist of linguistic features and a noise se-
quence which is gradually shaped into an appropriate distribution
over waveforms during a forward pass through the network. Train-
ing is complicated by the fact that the synthesis model is not trained
directly. Instead, a wavenet [4] model is first trained and then used
as a teacher for the feedforward synthesis model.

This paper presents and evaluates a synthesis model which also
works in a purely feedforward fashion, without needing to operate
autoregressively at generation time. Our aim is to determine the sim-
plest architectures which can reconstruct reasonable quality wave-
forms in this way. Our model therefore consists of relatively standard
residual convolutional network layers, and is trained directly, with-
out the need for a teacher model. It is trained with a mean squared
error criterion to output a point prediction of a speech waveform,
rather than a distribution over waveform values.

2. PROPOSED SYSTEM

2.1. Network inputs

As shown in Figure 1, input to the proposed system consists of mel-
spectral features upsampled to the desired output waveform sample
rate, concatenated with a pulse train encoding the desired fundamen-



tal frequency (F0) and a sequence of Gaussian noise. The use of
a pulse train at the input is a key feature of the proposed system
which sets it apart from other neural vocoders. It disambiguates
the positioning of glottal closure and so makes the network’s task
more tractable. The pulse train we use in the experiments described
here can be thought of as normalised position forwards through cur-
rent glottal cycle (analogously with positional linguistic features in
TTS) or equivalently as an initial saw-toothed attempt at a wave-
form, which is then shaped by a number of learned convolutions into
one which better matches the given acoustic features. The glottal
closure instances used to generate the pulse train are provided by a
pitch-tracker at training time, and synthesised from an F0 track at
synthesis time.1 The Gaussian noise sequence is provided for the
network to produce stochastic effects in its output.

2.2. Network structure

The inputs described are then fed through several r residual blocks
[12, 13]. Each block computes a transformation of the input data
which – when added to that input – better satisfies the optimisation
criterion used in training. For each block the following values are
configured:

l: number of conv. layers to compute residual representation
c: number of channels input/output by the residual block
w: width and d: dilation of convolutions used in the block
a: activation applied after each convolutional layer in the block.

In the implementation used for the experiments reported here,
the last 4 values are constant within each residual block. In cases
where the number of channels c for a block is different to that of
the input to the block, a time-distributed linear transform (width-1
linear convolution) is applied at the start of the block to impose the
required dimensionality. As we used a uniform c value for all blocks
in systems built for the experiments reported here, this only applies
between the input and the first block. At the end of each residual
block, batch normalisation [14] is applied.

Finally, a monaural audio waveform is produced by reducing
the final block’s output to a 1-dimensional signal with a final trained
time-distributed linear transform (width-1 linear convolution). This
is the speech waveform predicted by the network. In principle a non-
linearity can be applied to the output to enforce the proper range
of waveform amplitudes, but in practice this was not found to be
necessary.

2.3. Network training

A combination of two losses is used for training the system. The first
loss requires mean squared error (MSE) between the output time
domain (TD) signal and the reference waveform to be minimised.
This will never give good results in general, as minimising squared
errors in this way for portions of speech dominated by stochastic
effects (e.g. fricatives, such as [s]) will only predict the mean of the
training samples, resulting in a silent signal. It is informative to note,
however, that reasonably natural and intelligible voiced speech can
be generated using only this loss on its own (that is: intelligible,
taking into account the fact that many consonants are missing from
the prediction).

1Note that we therefore supplement the mel-spectrogram features with ex-
plicit F0 information. The spectral features implicitly contain information
about F0 in the form of harmonics, and so supplementing them with this
pulse train adds redundancy: ongoing work seeks to find less redundant rep-
resentations which are suitable for use as network inputs.

64

8080

16384

upsample

16384
1

1

concatenation

16384

time-distributed 
linear transform

82

64

convolution, ReLU

64

convolution, ReLU

+

convolution, ReLU

batch normalisation

time-distributed 
linear transform

16384
1

predicted waveform

mel spectral 

features

sawtoothed pulse train

Gaussian noise

16384
1

reference waveform

STFT, mel

STFT, mel

64

80 predicted 
mel spectral  
features

64

80

reference 
mel spectral  
features

time-domain  
loss

frequency-domain  
loss

Fig. 1. Proposed system.
In order to force the network to make perceptually acceptable

predictions for the stochastic parts of speech, the TD loss is there-
fore combined with one computed in the frequency domain (FD).
The network is extended at training time with extra convolutional
layers with fixed weights implementing short-time Fourier trans-
form (STFT), mel warping and compression, so that a forward pass
through the network produces two outputs: the TD prediction as al-
ready described and the corresponding mel spectrogram of that sig-
nal. The TD loss is then combined with a mel-FD loss consisting
of the MSE between the spectrogram output of the network and an
identically computed spectrogram of the reference signal. This error
signal from the FD supervision is backpropagated through the STFT
module to tune the weights of the rest of the network in the normal
way. Note that the extra layers of the network are needed only in
training: these are removed from the network used at runtime which
outputs only the TD prediction.

The two parts of the combined loss are weighted by a time loss
weight (λt) and frequency loss weight (λf ), where 0 < λt < 1 and
λf = 1− λt. These two weights can be tuned as hyperparameters.

2.4. System refinements

One refinement which generally improved the quality of output
speech and was used for the experiments described here was to
non-linearly transform the TD prediction and reference before com-
puting the TD part of the loss. The non-linearity used in mulaw
quantisation was used for this purpose, although it is important to



Table 1. Experimental conditions.
System Description

NAT Natural speech
WO Speech vocoded with WORLD [16]
MA Speech vocoded with MagPhase [17]
WA Speech resynthesised by wavenet vocoder
P0 Proposed system
P1 Proposed system & postprocessing for noise reduction
GL Speech resynthesised from mel-warped & compressed

magnitude spectrogram using Griffin-Lim [18]

note that we did not actually quantise the values transformed in this
way. We were seeking only to transform the continuous waveform
values in a perceptually-relevant way before computing the loss,
analogous to computing the FD part of the loss over a mel-warped
spectrogram rather than the underlying linear one. As with the FD
loss, this involves extensions to the network which are discarded
from the run time system.

The predictions of our models are intelligible and of fairly high
quality, but often they are marred by an artifact which gives the im-
pression of additive background hiss-noise, constant across time. We
therefore found it advantageous to use the noise suppression frame-
work described in [15] in a postprocessing step. We note that other
neural vocoders suffer the same problem, which has been addressed
in similar ways [10].

3. EXPERIMENTS

3.1. Database, proposed system and baselines

The conditions summarised in Table 1 were compared side by side in
a perceptual experiment. Its purpose is to benchmark the proposed
system against other popular methods for waveform reconstruction
in a simple copy synthesis task. All systems compared are freely
available; they consist of two conventional vocoders (WORLD [16]
and MagPhase [17]), a multi-speaker wavenet vocoder, and an im-
plementation of the Griffin-Lim algorithm for phase recovery [18].

Although the end goal of this work is to provide a trainable
stand-in for the waveform generation module of an statistical para-
metric speech synthesis system, we leave the integration of our
waveform generator into a complete TTS system for future work.

3.1.1. Data
The speech data of seven speakers from the CMU Arctic 16 kHz
speech database were used for the experiment [19]. Use of the same
data and same train–test split as the existing wavenet vocoder sys-
tem allowed proper comparison with that system. Following the data
partitioning used for the wavenet vocoder system, the same 350 sen-
tences selected at random from across the pooled sentences of the
seven Arctic speakers (awb, bdl, clb, jmk, ksp, rms, slt) were held
out for testing. The split used for the wavenet vocoder system makes
no effort to set aside the same number of test sentences for each
speaker, or to ensure that the same texts are used for the test set data
of each speaker. For the experiment reported here, we decided to test
systems on the held-out data of one male and one female speaker,
and the first speaker alphabetically of each sex was chosen: awb and
clb. Thus the training data consisted of the Arctic data with 350 sen-
tences held out, giving 6.47 hours of training data pooled across all
speakers, and test sets of 46 and 61 sentences were used for awb and
clb respectively.

3.1.2. Proposed system
As mentioned in Section 2.4, we have found it beneficial to apply
some denoising to the output of our system [20]. To assess the im-
pact of this postprocessing, we evaluate two versions of the proposed

system: P0 where the network output is used directly, and P1 where
the denoising is applied to P0. Both systems are therefore based
on the same neural network, which has the architecture described
in Section 2. Inputs to the network consist of 80-dimensional mel-
warped spectra extracted from 1024-point windows with a 256-point
frame shift, as well as an excitation sawtoothed pulse train and Gaus-
sian noise at the desired sample rate (16 kHz). The pulse train’s max-
ima correspond to glottal closure instances detected by REAPER
[21] in training, and are arbitrarily placed although consistent with a
REAPER-extracted F0 track at test time. The evenly-spaced pitch-
marks which the tool places in unvoiced speech are ignored when
constructing the pulse train, which is set to zero in these regions.

The number of residual blocks r used for the evaluated system
was 8. Number of convolutional layers l, number of channels c,
width of convolution w, and dilation rate d were 3, 64, 9, and 1,
respectively for all blocks, except for the first block, where it was
found useful to have a dilated convolution (with rate 20). Rectified
linear activations were used after each convolutional layer, and batch
normalisation was applied after each residual block.

All audio presented to the system is scaled to the range [−1, 1]
and the system’s outputs consistently lie in the same range without
any further normalisation. Training data is split into fragments of
approximately one second each and shuffled into batches of eight
for training. Training is done with Adam using suggested default
settings [22], for two epochs, optimising a combination of two mean
squared error losses: the warped TD loss (λt) and the mel FD loss
(λf ) described in Section 2. These losses were weighted 0.2 and 0.8,
respectively. The trained system has fewer than one million learned
parameters in total.

Most of these settings were chosen as reasonable during initial
development on the basis of a different database containing approx-
imately 2 hours of speech from a single male speaker. Only the loss
weights and the stopping point (2 epochs) were chosen by informal
listening to some held out data from the set used for the current ex-
periment.

The proposed system was implemented using Keras [23] and
Tensorflow [24]; the Kapre library [25] was used for mel spectro-
gram extraction and optimisation.
3.1.3. Benchmark systems
The WORLD vocoder [16] baseline was created using the version
of the vocoder distributed with [26]. It was used to extract 60 mel
cepstral coefficients and 5 band aperiodicities. We extracted F0 us-
ing REAPER [21]. Speech was then reconstructed from these three
streams of acoustic features using the WORLD synthesis routines.

The MagPhase vocoder baseline was created using the publicly
available implementation described in [17]. It was used to extract
60 magnitude, 45 imaginary and 45 real features. As in the case
of WORLD, REAPER [21] was used to extract F0. MagPhase was
used to reconstruct speech from these four acoustic feature streams.

The Griffin-Lim baseline was created using the freely avail-
able implementation at https://github.com/bkvogel/
griffin_lim. This code was used to extract mel-warped and
compressed spectrograms from the 107 test sentences, and then
estimate consistent phase through 300 iterations of the Griffin-Lim
procedure, starting with randomly-initialised phase. Feature ex-
traction settings were comparable with those used for the proposed
system.

The wavenet vocoder baseline was created using the open source
implementation at https://github.com/r9y9/wavenet_
vocoder, and also the pretrained Arctic multispeaker model linked
to from there. Inputs comparable to those of systems P0 and GL
were fed to the pretrained wavenet model, which consists of 4



Table 2. Real time factors for synthesis.
System WO MA WA P0 (CPU) P1 GL
Factor 0.32 0.39 352.05 0.03 (0.36) 0.12 2.44

stacks of 6 residual blocks each, each residual block containing
approximately 0.5 million weights. This is a mixture density net-
work, outputting at each timestep the parameters for a mixture of 10
logistic distributions.

3.2. Training and synthesis efficiency

The figures for real time factor (RTF) given in Table 2 show synthesis
time as a fraction of the duration of the speech being generated. The
figures exclude time for loading models and feature extraction, and
were computed over the 5.75 minute combined test set for speak-
ers awb and clb. WA, P0 and P1 used the same hardware (GeForce
GTX TITAN GPU); all other systems ran on CPUs (and addition-
ally postprocessing for P1 took place on CPU – combined GPU and
CPU time was used to compute RTF). Additionally, synthesis run
time for P0 on CPU was measured and RTF shown in parentheses.
It can be seen that all systems run faster than real time except the
wavenet vocoder WA and Griffin-Lim GL. WA took over 12 hours
to produce this small test set. GL could probably be run with fewer
iterations without much loss in quality, but this has not been tried
systematically. The proposed system is considerably faster than con-
ventional CPU-based vocoders when making use of GPU, and com-
parable with them when running on CPU.

As well as the benefits shown by the synthesis-time figures in
Table 2, the proposed system is also fast to train, taking 29 minutes
per epoch on a GeForce GTX TITAN GPU. The evaluated system
was therefore trained in under an hour. Although we did not train
system WA, its training will have taken much longer. It was trained
for 740, 000 steps, and we are informed that training a model of the
same size and architecture and same database for 10, 000 steps takes
2 hours on an Nvidia P100 GPU, suggesting that it would take over
6 days to retrain system WA.

3.3. Listening experiment design

The experiment was run as a MUSHRA-style test [27] with 21
screens. On each screen, participants could listen to the audio pro-
duced for the same sentence by all systems; they were able to listen
repeatedly at will. They were asked to rate the quality of each of the
samples on a scale from 0 (bad) to 100 (excellent). The first screen
was used only for training purposes, and responses collected from
it are discarded. The first 10 screens contained sentences from the
male speaker (awb), and the last 10 from the female speaker (clb);
each screen contains a sentence with a unique text. 40 different
sentences were spread across each four participants. As system
NAT consists of natural speech, participants have a quality reference
and it is possible to check whether participants score it as 100 as
instructed, and consequently whether they perform their evaluation
with sufficient care and attention. Twenty native English speakers
took part in the experiment. Two participants were excluded as they
rated NAT less than 100% in more than 20% of screens for both
voices. We excluded around 12% of the remaining screens when
listeners did not give NAT the highest score.

3.4. Results

Fig. 2 shows a boxplot summarising participants’ responses to the
stimuli. Solid and dashed lines mark the median and mean rating
for each condition. A Mann-Whitney U test was used to determine
which differences were significant at α = 0.05, Holm–Bonferroni
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Fig. 2. Boxplot of listening test scores.

corrected for number of pairwise comparisons. There is no signifi-
cant difference under this test between systems P0 and P1 for both
speakers, between MA and WA for speaker awb, or between MA,
WA and WO for speaker clb. All other systems were perceived to be
significantly different from each other and from these groups.

All participants reliably rated natural speech at 100, and the
Griffin-Lim system constitutes a clear bottom-line system, signifi-
cantly worse than other systems for both speakers. Nowhere does the
wavenet vocoder outperform a conventional vocoder; this contrasts
with the findings of [5], although both the vocoder and wavenet im-
plementations in that work are different from ours. Results differ
by speaker: for the male speaker awb the WORLD vocoder is pre-
ferred to the wavenet and MagPhase vocoder. This also contrasts
with previous findings, where MagPhase is generally preferred over
WORLD [28], although a lower sample rate is used for the current
experiment. The experimental systems close a significant part of the
gap between the baseline GL and the next best performing system:
approximately half of that gap for speaker awb, and a little less for
clb. The postprocessing for noise removal improves the mean rating
slightly for both speakers, although in neither case significantly.

4. CONCLUSIONS

We have presented a system for waveform reconstruction which can
operate faster than all evaluated competitors, and can be trained
many times faster than the other trainable system evaluated. Scores
for quality do not yet approach those for conventional vocoders, but
ongoing work in the form of more thorough hyperparameter tuning
is expected to lessen the gap further. Furthermore, the current work
only looks at the model in the context of speech analysis-synthesis,
where the guide parameters for the waveform to be synthesised are
the result of speech analysis. This forms a foundation for ongoing
work in which we aim to map from predicted acoustic features to
a waveform. Matched training in this case is expected to give both
trainable systems evaluated a boost in quality relative to the con-
ventional vocoders, as trained systems can learn to compensate for
imperfections in their predicted input.

Aside from basic quality improvements, ongoing work is look-
ing at reconstructing waveforms sampled at higher sampling rates,
and considering different input representations.
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