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Abstract

Deep learning has revolutionized many computer vision
fields in the last few years, including learning-based image
compression. In this paper, we propose a deep semantic
segmentation-based layered image compression (DSSLIC)
framework in which the semantic segmentation map of the
input image is obtained and encoded as the base layer of the
bit-stream. A compact representation of the input image is
also generated and encoded as the first enhancement layer.
The segmentation map and the compact version of the im-
age are then employed to obtain a coarse reconstruction of
the image. The residual between the input and the coarse
reconstruction is additionally encoded as another enhance-
ment layer. Experimental results show that the proposed
framework outperforms the H.265/HEVC-based BPG and
other codecs in both PSNR and MS-SSIM metrics across a
wide range of bit rates in RGB domain. Besides, since se-
mantic segmentation map is included in the bit-stream, the
proposed scheme can facilitate many other tasks such as im-
age search and object-based adaptive image compression1.

1. Introduction

Since 2012, deep learning has revolutionized many com-
puter vision fields such as image classification, object de-
tection, and face recognition. In the last couple of years,
it has also made some impacts to the well-studied topic of
image compression, and in some cases has achieved better
performance than JPEG2000 and the H.265/HEVC-based
BPG image codec [1, 2, 3, 8, 10, 11, 15, 16, 17], making
it a very promising tool for the next-generation image com-
pression.

One advantage of deep learning is that it can extract
much more accurate semantic segmentation map from a

∗This work is supported by Google Chrome University Research
program and the Natural Sciences and Engineering Research Council
(NSERC) of Canada under grant RGPIN312262 and RGPAS478109.

1The source code of the paper: https://github.com/
makbari7/DSSLIC

given image than traditional methods [23]. Recently, it
was further shown that deep learning can even synthesize
a high-quality and high-resolution image using only a se-
mantic segmentation map as input [19], thanks to the gen-
erative adversarial networks (GAN) [6]. This suggests the
possibility of developing efficient image compression using
deep learning-based semantic segmentation and the associ-
ated image synthesis.

GAN architecture is composed of two networks named
discriminator and generator, which are trained at the same
time [6]. The generator model G(z) captures the data dis-
tribution by mapping the latent z to data space, while the
discriminator model D(x) ∈ [0, 1] estimates the probabil-
ity that x is a real training sample or a fake sample syn-
thesized by G. These two models compete in a two-player
minimax game in which the objective function is to find a
binary classifier D that discriminates the real data from the
fake (generated) ones and simultaneously encourages G to
fit the true data distribution. This goal is achieved by mini-
mizing/maximizing the binary cross entropy:

LGAN = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]
(1)

whereG tries to minimize this objective againstD that tries
to maximize it.

In this paper, we employ GAN to propose a deep
semantic segmentation-based layered image compression
(DSSLIC) framework as shown in Figure 1. In our ap-
proach, the semantic segmentation map of the input image
is extracted by a deep learning network and losslessly en-
coded as the base layer of the bit-stream. Next, the input
image and the segmentation map are used by another deep
network to obtain a low-dimensional compact representa-
tion of the input, which is encoded into the bit-stream as
the first enhancement layer. After that, the compact image
and the segmentation map are used to obtain a coarse recon-
struction of the image. The residual between the input and
the coarse reconstruction is encoded as the second enhance-
ment layer in the bit-stream. To improve the quality, the
synthesized image from the segmentation map is designed
to be a residual itself, which aims to compensate the differ-
ence between the upsampled version of the compact image
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Figure 1: The overall framework of the proposed deep semantic segmentation-based layered image compression (DSSLIC)
codec.

and the input image. Therefore the proposed scheme in-
cludes three layers of information.

Experimental results in the RGB (4:4:4) domain
show that the proposed framework outperforms the
H.265/HEVC-based BPG codec [4] in both PSNR and
multi-scale structural similarity index (MS-SSIM) [21] met-
rics across a large range of bit rates, and is much better
than JPEG, JPEG2000, and WebP [7]. For example, our
method can be 4.7 dB better in PSNR than BPG for some
Kodak testing images. Moreover, since semantic segmenta-
tion map is included in the bit-stream, the proposed scheme
can facilitate many other tasks such as image search and
object-based adaptive image compression.

The idea of semantic segmentation-based compression
was already studied in MPEG-4 object-based video coding
in the 1990’s [14]. However, due to the lack of high-quality
and fast segmentation methods, object-based image/video
coding has not been widely adopted. Thanks to the rapid
development of deep learning algorithms and hardware, it
is now the time to revisit this approach.

This paper is organized as follows. In Section 2, the
works related to learning-based image compression are
briefly reviewed. The architecture of the proposed frame-

work and the corresponding formulation and objective func-
tions are described in Section 3. In Section 4, the perfor-
mance of the proposed method is evaluated and compared
with the JPEG, JPEG2000, WebP, and BPG codecs.

2. Related Works

In traditional compression methods, many components
such as entropy coding are hand-crafted. Deep learning-
based approaches have the potential of automatically dis-
covering and exploiting the features of the data; thereby
achieving better compression performance.

In the last few years, various learning-based image com-
pression frameworks have been proposed. In [16, 17],
long short-term memory (LSTM)-based recurrent neural
networks (RNNs) were used to extract binary representa-
tions, which were then compressed with entropy coding.
Probability estimation in the entropy coding was also han-
dled by LSTM convolution. Johnston et al. [8] utilized
structural similarity (SSIM) loss [20] and spatially adaptive
bit allocation to further improve the performance.

In [3], a scheme that involved a generalized divisive
normalization (GDN)-based nonlinear analysis transform, a
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uniform quantizer, and a nonlinear synthesis transform were
developed. Theis et al. [15] proposed a compressive au-
toencoder (AE) where the quantization was replaced by a
smooth approximation, and a scaling approach was used to
get different rates. In [1], a soft-to-hard vector quantization
approach was introduced, and a unified formulation was de-
veloped for both the compression of deep learning models
and image compression.

GAN has been exploited in a number of learning-based
image compression schemes. In [11], a discriminator was
used to help training the decoder. A perceptual loss based
on the feature map of an ImageNet-pretrained AlexNet was
introduced although only low-resolution image coding re-
sults were reported in [11]. In [10], AE was embedded in
the GAN framework in which the feature extraction adopted
pyramid and interscale alignment. The discriminator also
extracted outputs from different layers, similar to the pyra-
mid feature generation. An adaptive training was used
where the discriminator was trained and a confusion signal
was propagated through the reconstructor, depending on the
prediction accuracy of the discriminator.

Recently, there have also been some efforts in combin-
ing some computer vision tasks and image compression in
one framework. In [9, 18], the authors tried to use the fea-
ture maps from learning-based image compression to help
other tasks such as image classification and semantic seg-
mentation although the results from other tasks were not
used to help the compression part. In [2], a segmentation
map-based image synthesis model was proposed, which tar-
geted extremely low bit rates (< 0.1 bits/pixel), and used
synthesized images for non-important regions.

3. Deep-semantic Segmentation-based Layered
Image Compression (DSSLIC)

In this section, the proposed semantic segmentation-
based layered image compression approach is described.
The architecture of the codec and the corresponding deep
networks used in the codec are first presented. The loss
functions used for training the model are then formulated
and explained.

3.1. DSSLIC Codec Framework

The overall framework of the DSSLIC codec is shown
in Fig. 1. The encoder includes three deep learning net-
works: SegNet, CompNet, and FineNet. The semantic
segmentation map s of the input image x is first obtained
using SegNet. In this paper, a pre-trained PSPNet pro-
posed in [23] is used as SegNet. The segmentation map is
encoded to serve as side information to CompNet for gen-
erating a low-dimensional version c of the original image.
In this paper, both s and c are losslessly encoded using the
FLIF codec [13], which is a state-of-the-art lossless image
codec.

Given the segmentation map s and compact image c, the
RecNet part tries to obtain a high-quality reconstruction of
the input image. Inside the RecNet, the compact image c
is first upsampled, which, together with the segmentation
map s, is fed into a FineNet. Note that although GAN-
based synthesized images from segmentation maps are vi-
sually appealing, their details can be quite different from the
original images. To minimize the distortion of the synthe-
sized images, we modify the existing segmentation-based
synthesis framework in [19] and add the upsampled version
of the compact image c as an additional input. Besides,
FineNet is trained to learn the missing fine information of
the upsampled version of c with respect to the input image.
This is easier to control the output of the GAN network. Af-
ter adding the upsampled version of c and the FineNet’s
output f , we get a better estimate of the input.

In our scheme, if the SegNet fails to assign any label
to an area, the FineNet will ignore the semantic input and
only reconstruct the image from c, which can still get good
results. Therefore, our scheme is applicable to all general
images. The residual r between the input and the estimate
is then obtained and encoded by a lossy codec. In order to
deal with negative values, the residual image r is rescaled
to [0, 255] with min-max normalization before encoding.
The min and max values are also sent to decoder for inverse
scaling. In this paper, the H.265/HEVC intra coding-based
BPG codec is used [4], which is state-of-the-art in lossy
coding.

As a result, in our scheme, the segmentation map s
serves as the base layer, and the compact image c and the
residual r are respectively the first and second enhancement
layers.

At the decoder side, the segmentation map and compact
representation are decoded to be used by RecNet to get an
estimate of the input image. The output of RecNet is then
added to the decoded residual image to get the final recon-
struction of the image x̃. The pseudo code of the encoding
and decoding procedures is given in Algorithm 1.

3.2. Network Architecture

The architectures of the CompNet (proposed in this
work) and FineNet (modified from [19]) networks are de-
fined as follows:

• CompNet: c64, d128, d256, d512, c3, tanh

• FineNet:
c64, d128, d256, d512, 9×r512, u256, u128, u64, c3, tanh

where

• ck: 7×7 convolution layers (with k filters and stride 1)
followed by instance normalization and ReLU.

• dk: 3×3 convolution layers (with k filters and stride 1)
followed by instance normalization and ReLU.
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Algorithm 1 DSSLIC Codec

procedure ENCODE(x)
s← SegNet(x)
. encode s (1st enhancement layer)
c← CompNet(x, s)
. encode c (base layer)
x′ ← RecNet(s, c)
r ← x− x′
min,max←Min(r),Max(r)
r ← r−min

(max−min) ∗ 255
. encode r (2nd enhancement layer)

procedure DECODE(s, c, r,min,max)
x′ ← RecNet(s, c)

r ← r∗(max−min)
255 +min

x̃← x′ + r

function RECNET(s, c)
c′ ← upsample(c)
f ← FineNet(s, c′)
x′ ← c′ + f
return x′

• rk: a residual block containing reflection padding and
two 3×3 convolution layers (with k filters) followed
by instance normalization.

• uk: 3×3 fractional-strided-convolution layers (with k
filters and stride 1

2 ) followed by instance normalization
and ReLU.

Inspired by [19], for the adversarial training of the pro-
posed model, two discriminators denoted byD1 andD2 op-
erating at two different image scales are used in this work.
D1 operates at the original scale and has a more global view
of the image. Thus, the generator can be guided to syn-
thesize fine details in the image. On the other hand, D2

operates with 2× down-sampled images, leading to coarse
information in the synthesized image. Both discriminators
have the following architecture:

• C64, C128, C256, C512

where Ck denotes 4×4 convolution layers with k fil-
ters and stride 2 followed by instance normalization and
LeakyReLU. In order to produce a 1-D output, a convolu-
tion layer with 1 filter is utilized after the last layer of the
discriminator.

3.3. Formulation and Objective Functions

Let x ∈ Rh×w×k be the original image, the correspond-
ing semantic segmentation map s ∈ Zh×w and the compact
representation c ∈ R h

α×
w
α×k are generated as follows:

s = SegNet(x), c = CompNet(s, x), (2)

Conditioned on s and the upscaled c, denoted by c′ ∈
Rh×w×k, FineNet (our GAN generator) reconstructs the
fine information image, denoted by f ∈ Rh×w×k, which is
then added to c′ to get the estimate of the input:

x′ = c′ + f, where f = FineNet(s, c′). (3)

The error between x and x′ is measured using a com-
bination of different losses including L1, LSSIM , LDIS ,
LV GG, and GAN losses. The L1-norm loss (least absolute
errors) is defined as:

L1 = 2λ‖x− x′‖1. (4)

It has been shown that combining pixel-wise losses such
as L1 with SSIM loss can significantly improve the percep-
tual quality of the reconstructed images [22]. As a result,
we also utilize the SSIM loss in our work, which is defined
as

LSSIM = −I(x, x′).C(x, x′).S(x, x′), (5)

where the three comparison functions luminance I , contrast
C, and structure S are computed as:

I(x, x′) =
2µxµx′ + C1

µ2
x + µ2

x′ + C1
, C(x, x′) =

2σxσx′ + C2

σ2
x + σ2

x′ + C2
,

S(x, x′) =
σxx′ + C3

σxσx′ + C3
, (6)

where µx and µx′ are the means of x and x′, σx and σx′ are
the standard deviations, and σxx′ is the correlation coeffi-
cient. C1, C2, and C3 are the constants used for numerical
stability.

To stabilize the training of the generator and produce nat-
ural statistics, two perceptual feature-matching losses based
on the discriminator and VGG networks [12] are employed.
The discriminator-based loss is calculated as:

LDIS = λ
∑
d=1,2

n∑
i=1

1

Ni
‖D(i)

d (s, c′, x)−D(i)
d (s, c′, x′)‖

1
,

(6)
where D(i)

d denotes the features extracted from the i-th in-
termediate layer of the discriminator network Dd (with n
layers and Ni number of elements in each layer). Similar to
[11], a pre-trained VGG network withm layers andMj ele-
ments in each layer is used to construct the VGG perceptual
loss as in below:

LV GG = λ

m∑
j=1

1

Mj
‖V (j)(x)− V (j)(x′)‖1, (7)

where Vj represents the features extracted from the j-th
layer of VGG.
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In order to distinguish the real training image x from the
reconstructed image x′, given s and c′, the following objec-
tive function is minimized by the discriminator Dd:

LD = −
∑
d=1,2

(logDd(s, c
′, x) + log(1−Dd(s, c

′, x′))),

(8)
while the generator (FineNet in this work) tries to foolDd

by minimizing −
∑

d=1,2 logDd(s, c
′, x′). The final gen-

erator loss including all the reconstruction and perceptual
losses is then defined as:

LG = −
∑
d=1,2

logDd(s, c
′, x′)+L1+LSSIM+LDIS+LV GG.

(9)
Finally, our goal is to minimize the following hybrid loss

function:
L = LD + LG. (10)

3.4. Training

The Cityscapes (with 30 semantic labels) [5] and
ADE20K (with 150 semantic labels) [24] datasets are used
for training the proposed model. For Cityscapes, all the
2974 RGB images (street scenes) in the dataset are used.
All images are then rescaled to 512×1024 (i.e., h = 512,
w = 1024, and k = 3 for RGB channels). For ADE20K,
the images with at least 512 pixels in height or width are
used (9272 images in total). All images are rescaled to
h = 256 and w = 256 to have a fixed size for training.
Note that no resizing is needed for the test images since the
model can work with any size at the testing time. We set
the downsampling factor α = 8 to get the compact repre-
sentation of size 64×128×3 for Cityscapes and 32×32×3
for ADE20K. We also consider the weight λ = 10 for L1,
LDIS , and LV GG.

All models were jointly trained for 150 epochs with
mini-batch stochastic gradient descent (SGD) and a mini-
batch sizes of 2 and 8 for Cityscapes and ADE20K, respec-
tively. The Adam solver with learning rate of 0.0002 was
used, which is fixed for the first 100 epochs, but gradually
decreases to zero for the next 50 epochs. Perceptual feature-
matching losses usually guide the generator towards more
synthesized textures in the predicted images, which causes
a slightly higher pixel-wise reconstruction error, especially
in the last epochs. To handle this issue, we did not con-
sider the perceptual LD and LV GG losses in the generator
loss for the last 50 epochs. All the SegNet, CompNet,
FineNet, and the discriminator networks proposed in this
work are trained in the RGB domain.

4. Experiments
In this section, we compare the performance of the pro-

posed DSSLIC scheme with JPEG, JPEG2000, WebP, and

the H.265/HEVC intra coding-based BPG codec [4], which
is state-of-the-art in lossy image compression. Since the
networks are trained for RGB images, we encode all im-
ages using RGB (4:4:4) format in different codecs for fair
comparison. We use both PSNR and MS-SSIM [21] as the
evaluation metric in this experiment. In this experiment, we
encode the RGB components of the residual image r using
lossy BPG codec with different quantization values.

The results of the ADE20K and Cityscapes test sets are
given in Figures 2 and 3. The results are averaged over
50 random test images not included in the training set. As
shown in the figures, our method gives better PSNR and
MS-SSIM than BPG, especially when the bit rate is less
than ≈ 0.9 bits/pixel/channel (bpp for short) on ADE20K
and less than ≈ 0.5 bpp on Cityscapes. In particular, the
average PSNR gain is more than 2dB for the ADE20k test
set when the bit rate is between 0.4-0.7 bpp.

To demonstrate the generalization capability of the
scheme, the ADE20K-trained model is also applied to the
classical Kodak dataset (including 24 test images). The av-
erage results of the Kodak dataset are illustrated in Figure
4. For this experiment, the model trained on the ADE20K
dataset is used. It is shown that when the bit rate is less
than about 1.4 bpp, our scheme achieves better results than
other codecs in both PSNR and MS-SSIM. For example,
the average gain is about 2 dB between 0.4-0.8 bpp. This
is quite promising since the proposed scheme can still be
improved in many ways. This also shows that our method
generalizes very well when the training and testing images
are from different datasets. The average RecNet decod-
ing time for Kodak images on CPU and GPU are ≈44s and
≈0.013s, respectively.

Some visual examples from ADE20K, Cityscapes, and
Kodak test sets are given in Figures 6-12. In order to have a
more clear visualization, only some cropped parts of the re-
constructed images are shown in these examples. As seen in
all examples, JPEG has poor performance due to the block-
ing artifacts. Some artifacts are also seen on JPEG2000 re-
sults. Although WebP provides higher quality results than
JPEG2000, the images are blurred in some areas. The im-
ages encoded using BPG are smoother, but the fine struc-
tures are also missing in some areas.

Figure 5 and Table 1 report some ablation studies of
different configurations, all are obtained without using the
BPG-based residual coding, including: upComp: the re-
sults are obtained without considering the FineNet net-
work in the pipeline, i.e., x′ = c′ (the upsampled com-
pact image only); noSeg: the segmentation maps are not
considered in neither CompNet nor FineNet networks,
i.e., x′ = c′ + f where c′ is the upsampled version of
c = CompNet(x), and f = FineNet(c′); withSeg: all
the DSSLIC components shown in Figure 1 are used in this
configuration (except BPG-based residual coding); synth:,
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Figure 2: Comparison results on ADE20K test set in terms of PSNR (left) and MS-SSIM (right) vs. bpp (bits/pixel/channel).
The results are averaged over RGB channels.

Figure 3: Comparison results on Cityscapes test set.

Figure 4: Comparison results on Kodak image set.
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(a) Original
PSNR, MS-SSIM

(b) upComp
18.01 dB, 0.73

(c) synth
23.68 dB, 0.84

(d) noSeg
22.18 dB, 0.86

(e) withSeg
25.09 dB, 0.88

Figure 5: Visual comparison of different scenarios at 0.08 BPP.

Table 1: Results of different scenarios (without BPG-based residual coding).

ADE20K Kodak
upComp synth noSeg withSeg upComp synth noSeg withSeg

BPP 0.095 0.092 0.08 0.095 0.087 0.088 0.080 0.087
PSNR 17.50 21.91 22.24 23.11 17.77 20.97 21.46 21.91
MS-SSIM 0.759 0.887 0.905 0.914 0.738 0.858 0.887 0.891

the settings in this configuration is the same as withSeg ex-
cept that the perceptual losses LV GG and LDIS are consid-
ered in all training epochs. The poor performance of us-
ing only the upsampled compact images in upComp shows
the importance of FN in predicting the missing fine infor-
mation, which is also visually obvious in Figure 5. Con-
sidering perceptual losses in all training epochs (synth)
leads to sharper and perceptually more natural images, but
the PSNR is much lower. The results with segmentation
maps (withSeg) provide slightly better PSNR than noSeg
although the visual gain is more pronounced, e.g., the dark
wall in Figure 5.

5. Conclusion

In this paper, we proposed a deep semantic
segmentation-based layered image compression (DSSLIC)
framework in which the semantic segmentation map of
the input image was used to synthesize the image, and
the residual was encoded as an enhancement layer in the
bit-stream.

Experimental results showed that the proposed frame-
work outperforms the H.265/HEVC-based BPG and the
other standard codecs in both PSNR and MS-SSIM metrics
in RGB (4:4:4) domain. In addition, since semantic seg-
mentation map is included in the bit-stream, the proposed
scheme can facilitate many other tasks such as image search
and object-based adaptive image compression.

The proposed scheme opens up many future topics, for
example, improving its high-rate performance, modifying
the scheme for YUV-coded images, and applying the frame-

work for other tasks.
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(a) Original (with segmentation map) (b) DSSLIC (ours) (0.59 bpp, 31.38 dB, 0.988) (c) BPG (0.59 bpp, 27.31 dB, 0.984)

(d) WebP (0.60 bpp, 25.43 dB, 0.979) (e) JPEG2000 (0.60 bpp, 25.12 dB, 0.972) (f) JPEG (0.61 bpp, 23.63 dB, 0.973)

Figure 6: ADE20K visual example 1. (bits/pixel/channel, PSNR, MS-SSIM)

(a) Original (with segmentation map) (b) DSSLIC (ours) (0.18 bpp, 30.87 dB, 0.973) (c) BPG (0.18 bpp, 29.93 dB, 0.965)

(d) WebP (0.21 bpp, 27.48 dB, 0.956) (e) JPEG2000 (0.21 bpp, 27.13 dB, 0.946) (f) JPEG (0.23 bpp, 24.61 dB, 0.907)

Figure 7: ADE20K visual example 2. (bits/pixel/channel, PSNR, MS-SSIM)
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(a) Original (with segmentation map) (b) DSSLIC (ours) (0.12 bpp, 34.72 dB, 0.987) (c) BPG (0.12 bpp, 33.49 dB, 0.976)

(d) WebP (0.12 bpp, 29.89 dB, 0.954) (e) JPEG2000 (0.12 bpp, 30.26 dB, 0.953) (f) JPEG (0.14 bpp, 24.81 dB, 0.852)

Figure 8: Cityscapes visual example 1. (bits/pixel/channel, PSNR, MS-SSIM)

(a) Original (with segmentation map) (b) DSSLIC (ours) (0.21 bpp, 37.30 dB, 0.994) (c) BPG (0.21 bpp, 36.32 dB, 0.992)

(d) WebP (0.21 bpp, 33.06 dB, 0.986) (e) JPEG2000 (0.21 bpp, 32.26 dB, 0.980) (f) JPEG (0.21 bpp, 28.10 dB, 0.947)

Figure 9: Cityscapes visual example 2. (bits/pixel/channel, PSNR, MS-SSIM)
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(a) Original (with segmentation map) (b) DSSLIC (ours) (0.48 bpp, 33.26 dB, 0.984) (c) BPG (0.49 bpp, 29.56 dB, 0.971)

(d) WebP (0.50 bpp, 27.91 dB, 0.961) (e) JPEG2000 (0.49 bpp, 27.82 dB, 0.953) (f) JPEG (0.50 bpp, 26.34 dB, 953)

Figure 10: Kodak visual example 1. (bits/pixel/channel, PSNR, MS-SSIM)

(a) Original (with segmentation map) (b) DSSLIC (ours) (0.69 bpp, 32.54 dB, 0.982) (c) BPG (0.71 bpp, 27.86 dB, 0.957)

(d) WebP (0.71 bpp, 26.01 dB, 0.952) (e) JPEG2000 (0.71 bpp, 26.71 dB, 0.942) (f) JPEG (0.72 bpp, 24.77 dB, 0.958)

Figure 11: Kodak visual example 2. (bits/pixel/channel, PSNR, MS-SSIM)
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(a) Original (with segmentation map) (b) DSSLIC (ours) (0.40 bpp, 30.68 dB, 0.978) (c) BPG (0.40 bpp, 28.72 dB, 0.969)
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