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ABSTRACT

In this paper we proposed a novel Adversarial Training (AT)
approach for end-to-end speech recognition using a Criticiz-
ing Language Model (CLM). In this way the CLM and the
automatic speech recognition (ASR) model can challenge and
learn from each other iteratively to improve the performance.
Since the CLM only takes the text as input, huge quantities
of unpaired text data can be utilized in this approach within
end-to-end training. Moreover, AT can be applied to any
end-to-end ASR model using any deep-learning-based lan-
guage modeling frameworks, and compatible with any exist-
ing end-to-end decoding method. Initial results with an exam-
ple experimental setup demonstrated the proposed approach
is able to gain consistent improvements efficiently from aux-
iliary text data under different scenarios.

Index Terms— automatic speech recognition, end-to-
end, adversarial training, criticizing language model

1. INTRODUCTION

With the fast advances of deep learning technologies, con-
verting the well matured multi-module speech recognition
processes [1] into a single speech-to-text model [2] becomes
highly attractive. Such end-to-end speech recognition ap-
proaches are primarily based on two distinct models: connec-
tionist temporal classification (CTC) [3, 4, 5] and sequence-
to-sequence (Seq2seq) [6, 7, 8] models. By introducing an
additional blank symbol and a specially defined loss function
aggregating many allowed paths within a graph, CTC model
can be optimized to generate the correct character sequences
from the speech signals regardless of the blank symbols in-
terspersed among. The seq2seq models, on the other hand,
simply maximized the likelihood of observing the decoded
sequence given the ground truth at every time step. With
many recent results [9, 10, 11, 12, 13] approaching the state-
of-the-art, end-to-end deep learning has definitely been a very
important direction for speech recognition.

Most end-to-end speech recognition approaches require a
considerable amount of paired audio-text data, which is costly
and time-consuming. Semi-supervised approaches [14, 15,

Fig. 1. Overview of the Adversarial Training (AT) approach for
end-to-end speech recognition. The two steps here are conducted it-
eratively: (a) a Criticizing Language Model (CLM) is trained to eval-
uate the quality score given a text sequence, and (b) and ASR model
is trained to minimize the sequence loss calculated with ground truth
while maximizing the scores given by CLM.

16, 17] have been developed to address such problem by
involving unpaired text data (which are relatively easy to
obtain) in the training progress. One approach is to utilize
unpaired text data to produce a separately trained language
model (LM) to rescore the output of the end-to-end ap-
proach [18, 13, 19, 20], but at the price of extra computation
during testing. Also, in this way the unpaired text data and
paired audio-text data were used separately, and the machines
could not learn from them jointly. Another approach is to
back-translate (synthesize) speech signals or encoder state
sequences [17, 21, 22] from the unpaired text data, so they
can be jointly learned in training. However, the improvements
achievable with such approaches were limited by the quality
of the synthesized data, which is usually far from real.

The Generative Adversarial Networks (GANs) [23] have
been shown to be very successful in diversified application
areas. Instead of learning from a set of ground truth taken
as the upper bound for learning, a generator model and a
discriminator model are trained iteratively to challenge and
learn from each other step by step. In this paper, inspired
by GANs, we propose a novel approach to embed the ad-
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vantages of adversarial training (AT) into end-to-end speech
recognition. With the proposed approach, huge quantities of
unpaired text data can be utilized without a separately trained
model, extra computation during testing and the shortcomings
of back-translation style data augmentation.

2. PROPOSED APPROACH

2.1. Overview
In our Adversarial Training approach to end-to-end speech
recognition, the ASR model is considered as a generator
conditioned on the input speech signal whose output is the
corresponding transcription. A Criticizing Language Model
(CLM) is used as a discriminator to distinguish real text from
ASR transcriptions. The ASR model and CLM are trained
iteratively, so they learn from each other step by step. Fig. 1
gives an overview of the proposed approach.

In Fig. 1(a) for CLM training step, the CLM learns to as-
sign higher scores to real text and lower scores to ASR tran-
scriptions. The real text here does not have to be paired with
audio, which is how the unpaired text can be involved in the
training processes. This CLM is to evaluate the quality of
each given text sequence by offering a score for adversarial
purposes, with details given in Sec. 2.2.

In Fig. 1(b) for ASR model learning step, the parameters
of CLM are fixed and we train the ASR model by minimizing
the sequence loss (e.g. seq2seq loss and/or CTC loss) eval-
uated with the ground truth just as typical end-to-end train-
ing. At the same time, with CLM acting as a discriminator
evaluating the quality score for the output of ASR model, the
ASR model also has to learn to generate transcriptions obtain-
ing higher quality scores from CLM. The details of the ASR
model is in Sec. 2.3.

Note that the ASR model and the CLM are learned iter-
atively both from scratch. No pre-training is needed. Each
of them improves itself based on the challenges offered by
the other in each iteration. Once the training ends, the ASR
model is expected to implicitly leverage the linguistic knowl-
edge learned from CLM, and the latter is no longer used dur-
ing testing. This approach can be used with any existing
end-to-end speech recognition frameworks and any language
modeling framework. Below we take one example set of the
proposed approach to explain the details.

2.2. Criticizing Language Model (CLM)

Network Architecture. CLM takes either real text or ASR
transcriptions as input and outputs a scalar s as the quality
score. The real text is represented as a sequence of one-hot
vectors y = y1, y2, ..., yL, while for ASR transcriptions this
is a sequence of vectors for distributions ỹ = ỹ1, ỹ2, ỹ3, ... .
Fig. 2 illustrates an example architecture of CLM used in this
work. The input vector sequence y (or ỹ) is first projected to
a lower dimensional space through a single layer neural net.
Next, two layers of one-dimensional convolution neural net-

Fig. 2. Network architecture of the CLM.

work extracts features for each time index. Finally, average
pooling over the time axis is applied to get a single repre-
sentative feature, which is then transformed to a scalar s (the
quality score) with linear projection.

The reason a convolution-based network instead of a re-
current network is used in Fig 2 is twofold. Convolution with
small window size captures local relation features, which can
then be averaged over time. Also, CNN based network is rel-
atively more computationally efficient, which is important in
adversarial training. But other network architectures such as
RNN-LM [13] can also be used here.
Loss Function. A major problem here is that soft distribution
vectors produced by the ASR model is very different from
one-hot vectors for real text data, making the task of CLM
trivial, and the ASR model almost always fail to compete
against it. Thanks to Wasserstein GAN (WGAN) [24] which
addressed the above problem to some good extent. Based
on the concept of WGAN, CLM is designed to estimate
the Earth-Mover (Wasserstein-1) [25] distance between se-
quences from real data and ASR output. The loss function of
CLM is the weighted sum of a loss LD and a gradient penalty
gp as follows,

LCLM = λCLMLD + λgp gp, (1)

in which λCLM ,λgp are wieghts and LD and gp are respec-
tively in Eq (2) and Eq (3) below.

LD = E
ỹ∼Pa

[
CLM(ỹ)

]
− E
y∼Pd

[
CLM(y)

]
, (2)

where CLM(y) is the quality score for y given by CLM, Pa
the distribution of ASR output ỹ and Pd the distribution of
real text y. The 1-Lipschtiz restriction is imposed for CLM
by applying the gradient penalty [26] as below,

gp = E
ŷ∼Pŷ

[
(‖∇ŷCLM(ŷ)‖ − 1)2

]
, (3)

where ŷ are samples generated by randomly interpolating be-
tween ỹ and y, and Pŷ is the distribution of ŷ.



Fig. 3. Network architecture of the ASR model.

2.3. ASR Model

Network Architecture. Any network architecture for end-to-
end speech recognition can be used here, while Fig. 3 gives
the one used in this work, following the previous work [13]
of integrating attentioned Seq2seq with CTC. The model
takes a sequence of speech features O = o1, o2, ..., oN with
length N as the input. O is encoded into sequence of hid-
den state H = h1, h2, ..., hT by the encoder (consists of a
VGG extractor performing input downsampling followed by
several BLSTM layers) with T being the output sequence
length. The decoder is a single layer LSTM maintaining its
own hidden state q. For each time index t, location-aware
attention mechanism [7] Attention is used to integrate H
with the previous decoder state qt−1 to generate the context
vector ct. The decoder then decodes ct together with the
ground truth one-hot vector of the previous time step yt−1 to
qt. Finally, a fully connected layer with softmax activation
CharDistribution takes qt and predicts the distribution vec-
tor ỹt. ht is also projected to y̌t with linear layer Transform
as output to help in learning of the encoder as shown in pre-
vious work [12]. The ASR model outputs two character
sequences, ỹ = ỹ1, ỹ2, ..., ỹT and y̌ = y̌1, y̌2, ..., y̌T , respec-
tively supervised by Seq2seq loss and CTC loss. CLM only
takes ỹ as input. During testing, ỹ and y̌ are integrated into a
single output sequence just as done in the previous work [13].
Seq2seq Loss. The Seq2seq ASR model is to estimate the
posterior probability,

Ps2s(ỹ|O) =

T∏
l=1

Ps2s(ỹl|ỹ1:l−1, O). (4)

The loss function of the Seq2seq model model can be then
computed as below,

Ls2s ≡ − logPs2s(y|O) = −
T∑
t=1

logPs2s(yt|y1:t−1, O),

(5)

except here y = y1, y2, ..., yT is the ground truth of O with
length T .

CTC Loss. CTC [3] objective function is also used in
this work for multi-task learning. CTC computes the posterior
probability as below,

P (y|O) = −
∑
π∈y′

P (π|O), (6)

where y′ is the set of all possible sequences π obtained by
arbitrarily repeating symbols of y and inserting blank symbols
into y. The probability P (π|O) can be approximated by y̌,

P (π|O) ≈
T∏
t=1

Pctc(y̌t|O). (7)

The loss function of CTC is defined as:

Lctc ≡ − logP (y|O). (8)

Total Loss. The ASR model is trained by minimizing the loss
function constructed with Eq (5) and (8) minus the quality
score from CLM,

LASR = λs2s Ls2s+(1−λs2s) Lctc−λCLM CLM(ỹ) (9)

where λs2s controls the weights for the multi-task learning
between Seq2seq and CTC. The last term in Eq (9) is the ad-
versarial loss from CLM, pushing the ASR model to maxi-
mize the quality score from CLM.

3. EXPERIMENT

3.1. Experimental Setup
The experiments were performed on the LibriSpeech [27].
100 hours of clean speech data and their transcriptions are
used as the paired data. We took the text of other 360 hours
of clean speech and 500 hours of noisy speech and utilized
them as the unpaired data (text-only). The clean develop-
ment set and clean test set were used for evaluation. We used
the end-to-end speech processing toolkit ESPnet [28] for data
preprocessing and customized it for our adversarial training
processes. We followed the previous work [13, 21] to use
80-dimensional log Mel-filter bank and 3-dimensional pitch
features as the acoustic features. Text data are represented
by sequences of 5000 subword units one-hot vectors. For the
CLM model, the dimension of the output of all layers were
set to 128 except the last. The first convolution had a window
size of 2 and stride of 1, and the second had window size 3 and
stride 1. Batch normalization is applied between layers. For
the ASR model, the encoder included a 6-layer VGG extractor
with downsampling used in the previous work [13] and a 5-
layer BLSTM with 320 units per direction. 300-dimensional
location-aware attention [7] was used in the attention layer.
The decoder was a single layer LSTM with 320 units. λgp
was set to 10 and λs2s is set to 0.5. λCLM is set to 10−4 since
CLM output value was usually much higher than other loss
values. Also, the update frequency of CLM is set to 5 times
less than the ASR model to stabilize AT process.



Table 1. Speech recognition performance. ”+LM” refers to shal-
low fusion decoding jointly with RNN-LM [13], ”+AT” refers to the
adversarial training proposed here, ”+Both” indicates training with
AT and joint decoding with RNN-LM, and BT is the prior work of
back-translation [21].

Data Method
CER/WER (%) WER ∆†

Dev Test Test
(A)
w/o

unpair
text

(a) Baseline 10.5 / 21.6 10.5 / 21.7 -
(b) +LM 10.9 / 20.0 11.1 / 20.3 6.5%
(c) +AT 9.5 / 19.9 9.6 / 20.1 7.4%
(d) +Both 9.4 / 17.9 9.7 / 18.3 15.7%

(B)
w/

360hrs
text

(e) +LM 10.5 / 19.6 10.6 / 19.6 9.7%
(f) +AT 9.1 / 19.1 9.5 / 19.2 11.5%
(g) +Both 9.0 / 17.1 9.1 / 17.3 20.3%
(h) BT‡ 10.3 / 23.5 10.3 / 23.6 6.3%
(i) BT+LM‡ 9.8 / 21.6 10.0 / 22.0 12.7%

(C) w/
860hrs

text

(j) +LM 9.9 / 18.6 10.2 / 18.8 13.4%
(k) +AT 8.6 / 18.5 8.8 / 18.7 13.8%
(l) +Both 7.9 / 15.3 8.2 / 15.8 27.2%

† Relative improvement with respect to the baseline.
‡ Prior work [21], baseline WER 25.2% on test set reported.

3.2. Experimental Results

In the experiments, the ASR model was trained on the 100
hours speech data but combined with different amount of
unpaired text utilized in different ways. The results are
listed in Table 1, where ”Baseline” refers to the plain end-to-
end speech recognition framework as described in Sec. 2.3,
”+LM” refers to the shallow fusion decoding with a sepa-
rately trained RNN language model (RNN-LM) [13, 20] and
”+AT” refers to the adversarial training proposed here. AT
is actually compatible with any existing end-to-end speech
recognition decoding approach, so ”+Both” refers to training
with AT while jointly decoding with RNN-LM. We ran all ex-
periments three times with random initialization and reported
the averaged error rate with decoding beam size set to 20.

Part (A) lists the results without extra text data. It is worth
mentioning that even without extra text data, AT offered im-
provements over the baseline (rows(c) vs (a)), and the perfor-
mance was further improved when integrated with RNN-LM
(rows(d) vs (c)). Parts (B) and (C) are for results respectively
with 360 hours and 860 hours of unpaired text data. We see
AT lowers recognition error rate as the RNN language model
do (rows(f) vs (e), (k) vs (j)) and the improvements can be
accumulated (rows(g) vs (f), (l) vs (k)). The previous work
of back-translation (BT) style data augmentation [21], which
aimed to utilize unpaired text data as AT do, was also listed
in rows (h),(i). We see AT did better than BT under the same
setting (rows (f) vs (h) and (g) vs (i)).

Fig 4 demonstrates the performance gap between differ-
ent models (rows (a), (e), (f) and (g) of Table 1) with varying
the beam size from 1 to 30. The points for beam size 20 are
those in Table 1. We see that the proposed AT consistently
improved the performance regardless of the beam size during

Fig. 4. Testing set WER for varying beam size. Index of curve
shared with the corresponding row in Table 1.

decoding. It is clear that for all beam sizes considered AT out-
performed RNN-LM in terms of utilizing the extra text data
(curves (f) vs (e)), and AT is compatible to and able to of-
fer additional improvements on top of the separately trained
RNN-LM (curves (g) vs (f)). All these verified AT proposed
here is able to integrate more linguistic knowledge from un-
paired text data into the ASR model.

Table 2 provides some transcriptions obtained with the
four models shown in rows (a)(e)(f)(g) of Table 1 on the same
input utterances from the testing set. All models were trained
with 100 hours of paired data, while the lower three with ad-
ditional text of 360 hours, all with beam size 20. We see that
AT seemed to make the output more grammatical. In the first
example, AT is able to predict the correct words. In the sec-
ond example, although all the models misrecognized the word
“Alexander”, the transcriptions provided by models with AT
(rows (f)(g)) are more grammatical.

Table 2. Transcription examples, with ASR errors in uppercase and
the differences made by AT underlined. Index shared with Table 1.

Model Transcription
Truth nonsense of course i can’t really ...
(a) Baseline NON SENSE of course i CAN’TVERLY ...
(e) +LM NON SENSE of course i can’t FREELY ...
(f) +AT nonsense of course i can’t really ...
(g) +Both nonsense of course i can’t really ...
Truth alexander did not sit down
(a) Baseline OUTSIDEED IT not SET down
(e) +LM WHY did not sit down
(f) +AT ALICE did not sit down
(g) +Both ALICE did not sit down

4. CONCLUSION

In this paper we proposed a novel framework for adversar-
ial training end-to-end speech recognition using a criticizing
language model. This offers a direction for better utilizing ad-
ditional text data without the need for a separately trained lan-
guage model. This framework can be used with any end-to-
end speech recognition and language modeling frameworks.
Experiments on one example set of the proposed framework
showed consistent improvement over different settings.
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[18] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ,
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