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ABSTRACT motion, blurriness due to shutter adjustment under varying

S . . .. illumination, and very high power requirements. Inspired b
Neuromorphic vision sensing (NVS) hardware is now ganiNgy, ose observations yhar?:iwgre desigqns of neuromo?phic sgn-

traction as a low-power/high-speed visual sensing technologé/OrS ak.a., silicon retinas [3, 4], have been proposed recently.
that circumvents the limitations of conventional active pixelg.. =~ """ L L e | . '
sensing (APS) cameras. While object detection and traCk§|I|con retinas mimic the photoreceptor-bipolar-ganglion cell

; 9 S ) ) . . information flow of biological retinas by producing coordi-
ing models have been investigated in conjunction with NVShates and timestamps of onfoff spikes in an asynchronous
there is currently little work on NVS for higher-level semantic

tasks, such as action recognition. Contrary to recentworktherm?anner’ .e., when the logarithm of the intensity value of
' 9 ' y a CMOS sensor grid position changes beyond a threshold

considers homogeneous transfer between flow domains (o- . ; :
due to scene luminance changes. Unlike conventional frame-

tical flow .to motion yectors), We propose .to embed an NVS‘t)ased cameras that tend to blur the image due to slow shutter
emulator into a multi-modal transfer learning framework that

. . speed, silicon retinas capture the illumination changes caused
carries out heterogeneous transfer from optical flow to NVS P P 9

: ; by fast object motion and are inherently differential in na-
The potential of our framework is showcased by the fact thatture. In practice, this means that neuromorphic vision sensing

for the first time, our NVS-based results achieve comparabla\lvs) data from hardware like the iniLabs DAVIS and the

action recognition performance to motion-vector or optlcal):,ixium Vision ATIS cameras [4, 5, 6, 7] can be rendered

i - ithi 0,
g?\?ggavsvietﬂ r:ﬁfzgfjﬁ;\;vivafﬁ L:rr]aecKl\c;g giilelltoolr \;V:g'r,:lsg fo representations comprising up to 2000 frames-per-second
P ' e(rfp:s), whilst operating with robustness to changes in lighting

camera hardware offering 3 to 6 orders of magnitude fast

. . and at low power, on the order of 10mW. Conversely, a typ-
frame generation (respectively) compared to standard Bro|>(<:al APS video camera only captures (up to) 60 fps at more
optical flow. Beyond this significant advantage, our CNN y cap P P

L han 20 times th tivi wer consumption and with shutter-
processing is found to have the lowest total GFLOP coun} an 20 €s Ihe active power consumption & d. Shutte
induced blurriness artifacts when rapid illumination changes

aga_inst all competing met_hods .(UP to 7.7 times complexit){ake place. The combination of these advantages makes
saving compared to 13D with optical flow). NVS-based sensing particularly appealing within Internet-
Index Terms— neuromorphic vision sensing, transfer of-Things (IoT) and robotics contexts [8], where NVS data
learning, knowledge distillation would be gathered at very low power and streamed to cloud
computing servers for back-end analysis with deep convolu-
tional neural networks (CNNs).
Despite these practical advantages, it has been widely rec-

Machine learning with visual data has been described adnized|[2, 3, 4] that:

the means to translate “pixels to concepts” [1], €.9., classify 1 pyogress in neuromorphic-based action recognition al-
active pixel sensor (APS) video according to its illustrated gorithms is severely hampered by the lack of NVS data

human activity (“tennis match”, “cooking”, “people march- for both training and inference.

ing”,...). However, APS-based video representations are

known to be cumbersome for machine learning systems, due 2. There are currently no NVS-based recognition frame-
to [2]: limited frame rate, too much redundancy between suc- works for large-scale multi-class human action recogni-
cessive frames, calibration problems under irregatamera tion problems corresponding to datasets like UCF-101
and HMDB [9, 10].

1. INTRODUCTION
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dentship of A. Chadha, cosponsored by BAFTA). NVS emulator, we are able to provide an abundance of data



on which to train a CNN in the NVS domain. For the ac- 3. TEACHER-STUDENT FRAMEWORK

tion recognition task, we show how any such emulator can be

embedded into a larger multi-modal teacher-student framdn order to validate NVS inputs as a low-cost activity-based
work, where we capitalize on the availability of optical flow alternative to optical flow that is traditionally used for ac-
labelled data by employing a pre-trained optical flow streantion recognition, we propose to embed the PIX2NVS emu-
as a teacher network to transfer knowledge to the emulatddtor [12] into a teacher-student framework based on knowl-
NVS student network. Our experimental results show thatgdge distillation [14], where we essentially transfer knowl-
for the first time, NVS-based CNNs can approach the accuedge from a pre-trained optical flow teacher network to the
racy of complex methods based on optical flow extractioNVS student network by drawing pairwise correspondences
from APS video, thus making NVS inputs a very competitiveand minimizing the cross entropy between the output distri-
alternative to APS-based cameras and optical flow extractiobutions. The overall framework is illustrated in Figure 1 for
for low-power 10T and robotics applications requiring actionthe training and inference stages. After training the student
recognition. model, the emulator component of the framework can poten-
tially be replaced by an NVS camera during inference, to per-
form action recognition on either real or emulated events di-

2. RELATED WORK rectly on the student, without the use of optical flow.

Recent work [3, 8], has advocated possibilities for ingesting _
NVS data into frame-based deep CNN architectures deployedi1l. Frame generation

with state-of-the-artlibraries !'ke TensorFIovv_, in order to 921, vie use the PIX2NVS framework to extract the emulated NVS
from the lower power and high frame-rate inherently avail- . . . . .
. . . . events from RGB video frames, which provides us with train-
able with an NVS camera. Research in this area is now be- ;
o . - ing data correspondences for the NVS domain. The emula-
ginning to consider deep CNNs. However, most activities re-
) . .—tor generates a set of event tuplBs = {(z¢, ye,te, Pe)}
late to low-cost on-board processing for robotics and guid- . :
) ' . over the video sequence, where the event poldfity= +1
ance systems and do not consider higher-level tasks like hy- .
. .. . : i.e., representing ON or OFF). Let us denote the complete
man action recognition or semantic scene analysis. In add}-
. . ) et of event and non-event tuplesBs= {< z,y,t, P > |(<
tion, all existing work is hampered by the lack of annotate i .
o L . ,u,t, P >¢ E.) — P = 0}; we can aggregate the polari-
NVS training data [3]. To mitigate the latter issue, severa ies into emulated NVS frameg, by summing the value®
proposals recorded annotated APS video datasets under can- e 0Y 9

trolled conditions [2, 11], i.e., video frames displayed in a2t every spatial pos_|t|on (.)f Fhe video frarf_re, v) € RH_XW

. . for spike events falling within the same video frame interval
monitor under controlled frame-rate and brightness/contra where|7| — (frameratg~:
conditions and recorded with an NVS device like iniLabs dy-"’ '
namic vision sensor (DVS). Such experimental approaches
are very valuable as they provided the first available anno- felw,y) = ZP<x’y) @)
tated video spike recordings for human action recognition. tel
However, their scale-up to larger datasets is hampered by nat- This enables spatio-temporal correspondence with the
ural variations in recordings from environmental and moni-video frames. We refer to the summed polarities per position
tor conditions (e.g., lighting, monitor flicker, vibrations, etc.) as Ps;. While this frame grouping is artificial, it allows for
or variations in NVS camera hardware. In addition, highly-the introduction of quantization in time [6, 7] and the use of
accurate synchronization is required between the played-o@NNs for the recognition task [8].
video frames and the corresponding NVS because of drift be-
tween the playout device timing and the DVS camera time
tamping (especially as the dataset grows in size).

With regards to the lack of training data, the recently pro-We leverage on the recently introduced large-scale Kinetics
posed PIX2NVS framework [12] and work by Furbetral.  [16] action recognition dataset. Our choice of architecture
[13] provide for parametric software-based solutions for conis a variant of the Inception-3D (13D) [16] CNN, which is
verting pixel domain video frames directly to neuromorphicessentially Inception-VI with inflated spatio-temporal filters
spike events. However, such emulation frameworks requirdlotably, we replace the final pooling layer with a spatio-
complex tuning of their parameters in order to match the betemporal global average pooling in order to minimize com-
haviour of NVS hardware. In this paper, we hypothesize thaplexity further. Our implementation first involves initializing
can potentially be resolved by embedding such an emulatdhe optical flow 13D with the Kinetics trained weights and
into a teacher-student framework based on knowledge distithen fine-tuning on the target action recognition dataset, such
lation [14, 15]. Our proposal considers heterogeneous trangs UCF-101. Next, we initialize the student NVS CNN with
fer from optical flow to NVS, showcasing that this can bridgethe teacher weights. It is worth noting that our NVS inputs
the performance gap between APS and NVS-based CNNSs. are only single-channel, whereas flow is dual-channel for the

S3.2. Cost Function and Training



Training minimize the temporal footprint during inference. This point
n* is localized by using the emulated NVS frames as an activ-
”""‘:\ ity sensor and finding the*th frame with the maximum sum

Inception over polarity magnitudes:

RGB Frames Optical Flow 3D
n* = argmax ( E |Pg(ac,y)> 3)
n

Pre-trained
Teacher Model (Xt)
!
z,Y

| f

e O
RGB Frames Emulated 3D 33 Ablation Study

NVS Frames - Gtydent Model (Xs)

Table 1 represents a basic exploration over the parameters
«, B andT in (2). We note that we only ingest inpuis €

Inference Record (Local)

i \

i I T s, REXWXDXC of 5i7@224 x 224 x 8 x 2 for both the flow and

i i“vload i__/—' o i NVS stream;, in order to spee_d up convergence. As (;onfig—
| EmiaciRed ] | - 1 ured, the optical flow CNN achieves 84.4% on a single input.

The emulated NVS CNN, when trained without the teacher
. , supervision loss and inferring on a single shot of emulated
IIZt%r.l. Teacher-student framework using the PIX2NVS emu_NVS f_rames, ac_hieves 71.0%. This ir_lc_reases substantia_lly
when incorporating the teacher supervision loss results, with
maximum accuracy attainable when the teacher logits are ad-
oz anddy components respectively; in order to apply an exactitionally softened withl” = 2. Increasindl” beyond 2 causes
copy of our teacher network as the student, we simply replia decrease in accuracy, as the output begins to converge to a
cate the NVS input channel-wise. The teacher network is nownore uniform distribution. For the remainder of the paper, we
fixed and we train the student using a two-term cross-entropfix o = 1, 5 = 1 andT = 2.
loss for a set of student NVS frame voluniés, teacher flow

volumesV, and labelsy: a B T Accuray(%)
Teacher - - - 84.4
0 1 - 71.0
K 1 0 1 73.1
L(Ve, Vi, Y) = —BE(u, yovay) 3 Liemy log(p(ve)) Student 34 3 75.9
k=1 1 1 2 77.0

— aT?E(y, 0)n(v, v.)a(vs, T) log(p(ve))  (2) . _
Table 1. Recognition accuracy on UCF-101 (split 1) for the

The first term represents the standard cross-entropy loggacher and student, when varying parameters and7" of
between the softmax output of the student netwgk.) and  (2). Accuracies are reported onsingle shotof 8 frames.
a one-hot encoded vector derived on the ground truth labefsor the student, both training and inference is performed on
y. The second term is the teacher supervision cross-entrogmulated NVS events generated by the PIX2NVS emulator.
loss between the teacher softmax outgluts, 7') andp(v.).
The temperatur@’ is the parameter that scales the logits

of the teacher network, such thatv,, T) = B30, 4 COMPARISON WITH APS-BASED METHODS
This softens the teacher distribution over classes, which can
exemplify the class inter-dependencies for the student to leafffinally, we compare the proposed framework against current
a more informative representation. We treat the parameters state-of-the-art APS-based methods. Given the combination
andg as simply binary coefficients on the loss terms, responef global average pooling and 3D convolutional layers in our
sible for enabling/disabling the label cross entropy loss angroposal, this inherently means that the number of weights
teacher supervision loss respectively. per CNN layer is not a function of the input temporal resolu-
We train both the teacher and student CNNs with momention D. Therefore, we initially train the optical flow teacher
tum and a decay rate of 0.9. Every convolutional layer is fol-CNN on a larger input temporal resolutid®°¥ = 32. We
lowed by batch normalization with a decay rate of 0.9. andhen initialize NVS student CNN with the flow pre-trained
an initial learning rate of 0.01. Our pre-processing constituteseights, but reduce the input temporal resolutiorite= 16
a per-frame normalization and extracting a distorted boundwhen training with teacher supervision and during inference,
ing box crop from the original resized frame with a randomin order to minimize the student complexity whilst transfer-
horizontal flip. Importantly, we only infer on a single shot, ring longer temporal dependencies. For our final implemen-
extracted at the point of maximum motion activity, in order totation of the trained NVS student, we therefore infer only on



a single shot of emulated frames with s2& x 224 x 16 x 2. In order to isolate the performance of each stream utilized

We note that conventional APS-based methods typicallgluring inference, we first report the accuracy of each modality
use a combination of RGB frame and highly complex opticaseparately in Table 2 and compare this to the accuracy when
flow inputs during training and inference. Conventional NVSthe streams are fused for the UCF-101 [9] and HMDB-51 [10]
cameras, such as the iniLabs DAVIS240C are equipped witAction recognition datasets. Evidently, the performance of the
an onboard RGB camera. The DAVIS240C camera has an aRGB CNN is boosted by the NVS CNN, despite complexity
ray size 0240 x 180 pixels with an APS bandwidth of 35 FPS. savings in opting for a short temporal extent for both streams
Therefore, we propose to combine the trained NVS studer&@nd only inferring on a single shot at maximum motion ac-
with an RGB stream during inference, which we restrict to in-tivity. Our final results for the NVS-RGB CNN compared to
gesting inputseRGB € RIXWXDxC of 5jze224x224x8x 3. recent external methods are reported in Table 3. We report
Our choice of architecture is 13D, pre-trained on Kinetics and-omplexity for CNN processing in terms of total GFLOPs
fine-tuned on the target action recognition dataset. During indy multiplying the GFLOPs per input to the CNN with the
ference, we infer on a single shot of RGB frames only; wenumber of inputs required during inference. Our proposed
seek the video segment with the maximum motion activityNVS-RGB CNN is able to achieve a competitive accuracy-
again by employing the NVS stream as an activity sensor [segomplexity trade-off when compared to state-of-the-art meth-
(3)]. We cross-reference the timestamp of the maximum mo@ds utilizing highly complex optical flow or motion vectors.
tion NVS frame to the RGB stream and extract a single shothe only method substantially outperforming our approach
of frames at this point for inference, which can be uploadedn terms of accuracy is 13D [16]; however, 13D requires opti-
and processed on the cloud, as with the NVS recorded evenggl flow for both training and inference (and substantial APS
In order to minimize the latency in uploading the RGB framesactivity for I3D (RGB-only)) and comprises a substantially
compared to the NVS frames, we downsample captured RGRrger input, resulting in 3.7 to 7.7 times more GFLOPs than
frames by a factor of 2, and only upsample to the originaPur NVS-RGB CNN. Additionally, the speed in generating
resolution prior to CNN processing. Subsequently, we fusgonventional Brox optical flow [24] compared to emulated
the NVS and RGB modalities by following Simonyanal.  and real NVS frames is reported in Table 4 in terms of framer-
[17] and simply average the scores per video instance, thi&e; the emulator can generate NVS frames at 357 FPS whilst

generating our prediction. the real NVS camera can output NVS frames at 2000 FPS (3
to 6 orders of magnitude faster than Brox flow). We therefore
Accuracy(%) note that any RGB-derived model can easily be fused with our
UCF-101 HMDB-51 NVS stream for performance gain with minimal computation
NVS (emulated) CNN 78.6 51.6 in input generation and processing.
RGB CNN 84.0 55.9
NVS (emulated)-RGB CNN 89.0 62.0 FrameratdFPS)
Table 2. Recognition' accuracy on U(;F-lpl and HMDB- DAVISZ4OEle\llJ\I/a;egamera [25] gggo
51 for stream modalities utilized during inference. The Brox optical flow [24] 0.314
NVS stream is trained in the teacher-student framework with
{a,5,T} ={1,1,2}. Table 4. Average framerate over 4600 video frames for Brox

optical flow and emulated (PIX2NVS) and real (DAVIS240C)
NVS frame generation.

Method > GFLOPs UCF-101 HMDB-51
inc. optical flow
Two-Stream [17] 150 88.0 59.4
3D Conv Fusion [18] 153 92.5 65.4
Action-VLAD [19] - 92.7 66.9 5. CONCLUSION
ST-ResNet [20] - 93.4 66.4
Two-Stream 13D [16 648 97.8 80.9 ' . .
e Ozir:, ﬂOW[ ] We propose the first method for NVS-based action recogni-
EMV-CNN [15] 150 86.4 - tion that performs competitively to state-of-the-art APS meth-
03\3@3?2[5]1] égg %g-é 55‘1-16 ods on standard datasets. We embed an NVS emulator into a
Res3D [23] 103 85.8 54.9 large multi-modal teacher-student framework, in order lever-
Proposed, NVS (emulated)-RGB CNN 84 89.0 620 age on the availability of labelled data for training with highly

complex optical flow. Given its promising recognition perfor-
Table 3. Accuracy and complexity versus the state-of-the-armance and low complexity, our framework could become a
(results reported where available) for UCF-101 and HMDB-viable solution within 0T and robotics contexts, where, for
51. Results are reported after averaging over the three spliesxample, NVS data would be gathered at very low power and
per dataset. We also report the theoretical GFLOPs for CNINtreamed to cloud computing servers for the back-end CNN
processing of all inputs during inference. processing.
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