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ABSTRACT

The cloud-based speech recognition/API provides developers
or enterprises an easy way to create speech-enabled features
in their applications. However, sending audios about personal
or company internal information to the cloud, raises concerns
about the privacy and security issues. The recognition results
generated in cloud may also reveal some sensitive informa-
tion. This paper proposes a deep polynomial network (DPN)
that can be applied to the encrypted speech as an acoustic
model. It allows clients to send their data in an encrypted form
to the cloud to ensure that their data remains confidential, at
mean while the DPN can still make frame-level predictions
over the encrypted speech and return them in encrypted form.
One good property of the DPN is that it can be trained on
unencrypted speech features in the traditional way. To keep
the cloud away from the raw audio and recognition results, a
cloud-local joint decoding framework is also proposed. We
demonstrate the effectiveness of model and framework on the
Switchboard and Cortana voice assistant tasks with small per-
formance degradation and latency increased comparing with
the traditional cloud-based DNNs.

Index Terms— speech recognition, privacy preserving,
encryption, DNN, quantization

1. INTRODUCTION

Modern speech recognition services are running on cloud [1].
These cloud-based speech-to-text API provides developers or
enterprises an easy way to create powerful speech-enabled
features in their own applications like voice-based command
control, user dialog using natural speech conversation, and
speech transcription and dictation. However, in the scenarios
that involve medical, financial, or enterprise sensitive data,
applying cloud-based speech recognition might be prohibited
due to the privacy and legal requirements regarding the confi-
dentiality of the information [2, 3, 4, 5, 6].

In this work we present a practical framework to allow
third parties to use speech recognition services without sac-
rificing their privacy. In the proposed framework, the audio
provider first encrypts the features extracted from the audio in

local, then sends the features in encrypted form to the acous-
tic model on the cloud. We proposed a special form of DNNs,
deep polynomial networks (DPN), as acoustic models, which
can make predictions over the encrypted input features and
yields the posteriors also in the encrypted form. Note that
the server does not have the private key, so it is impossible
for the server to decrypt the frame-level scores (posteriors)
[6, 7]. Also to keep the cloud server away from the final
recognition results, a cloud-local joint decoding framework is
proposed. In this framework the encrypted frame-level scores
from cloud will be sent back to the local owner who has the
secret key for decryption. The decoding is done in local after
the decryption. During the entire process no information is
exposed to the cloud. It just performed a frame-level predic-
tion on behalf of audio providers and learn nothing about the
customer’s data or the recognition results.

The main contributions of this work include: 1) a cloud-
local joint decoding framework that enables practical privacy
preserving speech recognition. 2) a deep polynomial network
that can be trained on unencrypted data and make predictions
over the encrypted inputs in real time. The remainder of the
paper is organized as follows. In Section 2 we introduce the
homomorphic encryption and the challenges of applying it to
speech recognition. In Section 3 we describe the structures of
polynomial networks for efficient homomorphic encryption.
The experimental results will be discussed in Section 4.

2. ENCRYPTED SPEECH RECOGNITION

2.1. Homomorphic Encryption

One way to preserve the privacy of data is to use encryption.
Traditional encryption lock data down in a way that makes it
impossible to use, or compute on, unless we decrypt it. The
homomorphic encryption (HE) allows people to use data in
computations even while that data are still encrypted [8, 9] as
illustrated in Figure 1. The encryption is called “homomor-
phic” because the transformation has the same effect on both
the unencrypted and encrypted data. For example, suppose an
encryption algorithm requires multiplying input numbers by
10 and the decryption requires dividing them by 10. This en-
cryption is homomorphic for simple addition because “1 + 2”
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Fig. 1. The illustration of homomorphic encryption. The full
homomorphic encryption is applicable to any arbitrary func-
tion f(·). For speech recognition, the x can be the input fea-
tures and f(·) can be the acoustic models. The main challenge
is how to run everything efficiently.

would be encrypted to “10 + 20”, and decrypting the result
by dividing it by 10 which would get to “3”, as expected. A
standard encryption algorithm, though, might turn the “1” and
“2” into a smiley face and a semicolon. Adding such symbols
is nonsensical, making computation impossible.

There are different degrees of homomorphic encryption,
sometimes referred to as fully homomorphic compared with
partly. In the previous paragraph, the example is only partly
homomorphic because it works only for additions. The well
known RSA algorithm [10] is also partly homomorphic. The
fully homomorphic encryption allows for any arbitrary func-
tion f(·) to be performed on the encrypted data [11],

Enc−1k [f(Enck(x))] ≡ f(x) (1)

where Enck and Enc−1k are homomorphic encryption and de-
cryption respectively. The subscript k denotes the secret key.
In theory, we could treat the acoustic models such as DNNs
as the arbitrary function f(·) and apply the homomorphic
encryption. In practice, high degree polynomial function f(·)
requires the use of large parameters, which results in larger
encrypted messages and slower computation [12]. Therefore,
for efficiency, it is desired to restrict the acoustic model to
degree-bounded polynomials, which only includes additions
and multiplications. Thus, to make DNNs compatible with
homomorphic encryption some modifications are needed.
Details are discussed in Section 3.

Another limitation of homomorphic encryption is that it
does not support floating-point numbers in practice. We have
to use fixed-point real numbers and convert them to integers
using the encoding approach in [6] for efficiency. We use 4-8
bits of precision on the weights of the network and inputs. To
compensate the performance loss caused by low-bit quantiza-
tion, a special training algorithm is proposed in Section 3.

The detailed description of encryption scheme, including
the key generation algorithm, encryption and decryption algo-
rithms, are beyond the scope of this paper and can be found in
[7]. In the experiments, we use the implementation of Simple
Encrypted Arithmetic Library (SEAL) [13] by Microsoft.1

1The SEAL library is available at http://sealcrypto.org/.

Fig. 2. The framework of encrypted speech recognition. The
deep polynomial network is trained on unencrypted data with
8-bit quantization. During decoding the network is operated
on encrypted space without knowing secret key.

2.2. Decoding Framework

In this section we propose a practical framework that enables
clients and server to collaboratively decode the speech while
satisfying their privacy constraints. During the entire process,
the client has no access to the server model and the server
has no idea about the input speech and recognition results as
illustrated in Figure 2. First, the clients extract features from
the audio in local. Second, the features are encrypted and sent
to the cloud. Third, the acoustic models on the cloud evaluate
the encrypted features and return the frame-level posteriors
in encrypted form. Since the server does not have the secret
key, it can not decrypt the posteriors nor decode the utterance.
Finally, the client decrypt the frame-level scores and using
(personal) language model to decode the utterance in local.
These procedures are summarized in Table 1.

2.2.1. Why not run everything on local
In theory we could keep everything on local to maintain the
privacy. In practice, the state-of-art acoustic models in pro-
duction could be very large (for example up to 1 GB) and the
computation can be very intensive. Some models even require
specific hardware in order to decode speech in real time. It is
impossible to run these models on local devices in real time.
In addition, the acoustic models in production usually got up-
dated fairly often. It is much easier to deploy the new model
if it is run on cloud. Most importantly, running everything on
local may divulge the model and decoder to potential hackers.

2.2.2. Why not run everything on cloud
For efficiency we would like to move the decoder and lan-
guage model to the cloud as well, so that the client only need
to do the decryption to get the recognition results. Some re-
cent work shown that it is possible to apply the Viterbi search
operation over homomorphic encrypted data [2, 14], how-
ever, all these papers assume that no pruning is applied while
searching in encrypted domain. In practice, speech recogni-
tion is never preformed in this manner. On the other hand,
pruning may restrict the hypothesis set and reveal informa-
tion about the recognition output. How to prune in encrypted
domain and hide this information is still an open problem.

http://sealcrypto.org/


Table 1. The decoding protocol for encrypted speech recog-
nition. (pk, sk) denotes for a public/secret key pair, ek is the
evaluation key, and p is the frame-level posteriors.

3. DEEP POLYNOMIAL NETWORKS

In this section we propose a special form of DNNs as acoustic
models to make predictions over the encrypted input features.
In Section 2.1 we conclude that certain polynomial functions
can be computed over encrypted data given that their degree is
not too large. However, some operations in neural networks
are not polynomials, such as sigmoids and ReLU activation
functions [15] and max pooling [16]. Here we listed some
of common operations in DNNs (including CNNs) and their
approximations in polynomials.

Dense Layer This is just linear multiplication and addition.
It can be directly implemented for homomorphic encryption
without approximation. Note the weights W in dense layer
are fixed and not encrypted during decoding. Given encrypted
inputs Enc(x), a naive way to compute dense layers is to first
encrypt the weights and then perform the multiplication in
encrypted domain Enc(W)TEnc(x), so that after decryption
we can get the exact value of WTx. However, this process is
computationally intensive and not necessary. Instead, we use
a more efficient plain operation WTEnc(x). Because of this,
during decryption, we need to keep in mind that the random
noise bias in encryption scheme has been scaled by W.

Batch Norm This is also multiplications and additions [17]
BN(x) = γ x−µ

σ + β, which can be directly implemented for
homomorphic encryption without approximation. Note since
µ,σ,γ and β are fixed during decoding, there is no need to
encrypt these parameters or to compute batch norm explicitly.
Instead, we merge these parameters to the preceding dense
layer, which results to new weights Wnew = diag( γ

σ )W and
bias bnew = b+ WTβ −WT µ.γ

σ for the preceding layer.

ReLU This activation function z 7→ max(0, z) can be ap-
proximated with p(z) := z2. Note there is a theoretical study
of the problem of learning neural networks with polynomial
activation functions in [18], where the above square function
was also used to replace ReLU.

Algorithm 1: Quantized training for DPN
Data: unencrypted training data.
Result: quantized deep polynomial network.

1 convert pretrained DNN to DPN: WDPN ←WDNN

2 for each minibatch do
update WDPN in floating point

3 for each layer [l] do
optimize codebook: c[l]1:256 ← distribution(W

[l]
DPN)

quantization: W̃
[l]

DPN ← Quant(W
[l]
DPN, c

[l]
1:256)

4 for each minibatch do
update W̃DPN with on-the-fly quantization based on c

Sigmoid This activation function z 7→ 1
1+e−z can be approx-

imated with low-degree polynomials p(z) := 1
2 + 1

4z−
1
48z

3.

Convolution The operation is essentially a dot product of the
weight vector (kernel) and the vector of feeding layer outputs.
Therefore it is compatible with homomorphic encryption.

Max Pooling This operation cannot be computed directly as
it is non-polynomial. However, it can be approximated using
max(z1, . . . , zn) = limd→∞(

∑n
i=1 z

d
i )1/d. For efficiency,

we use d = 1 which leads to a scaled mean pooling.

Using the above approximations all the layers and opera-
tions in the traditional DNNs and CNNs becomes polynomial.
We named the resulting models as deep polynomial networks.

3.1. Training with Quantization
In Section 2.1 we discussed that the homomorphic encryption
in practice only supports fixed-precision real numbers or inte-
gers.2 However the state-of-the-art DNNs/CNNs are typically
trained on GPUs with 32-bit floating point. Applying low-bit
fixed-point quantization directly to the model parameters dur-
ing decoding could cause substantial performance drop. Here
a quantized retraining algorithm is proposed. In Section 4 We
show that the DNNs, CNNs and DPNs can all be trained using
8-bit quantization with almost no WER increase.

Unlike floating point has an universal standard, the fixed-
point numbers are domain specific. Each task has to design its
own scheme for fixed-point quantization [19, 20]. Our quanti-
zation scheme has three features. 1) 0.f is always kept as one
of 256 (8-bit) quantized values. This is because 0 has a special
significance in CNNs such as zero padding. 2) By analyzing
the histogram of parameters, we found most values are con-
centrated in a small range. This implies instead of using uni-
form quantization, we should put more codebooks for these
concentrated region. The Lloyd-max quantization Quant(·)
is adopt to find the optimal codebooks {c1, . . . , c256} and bin-
boundaries {l1, . . . , l257} [21]. 3) When training deep neural
networks, the parameters, activations and gradients have very

2The SEAL library can encode the fixed-precision real numbers into inte-
gers for efficient encryption during decoding [7].
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Fig. 3. Quantization scheme in training over raw data.

different ranges. For example gradient’s ranges slowly dimin-
ish during the training. Therefore, we draw the distributions
and compute the codebook for each layer’s weights, bias, acti-
vations and respective gradients separately. The training pro-
cess is illustrated in Algorithm 1 and Figure 3.

3.1.1. Why not train on encrypted data
Note one important feature of this framework is that the DPN
can be trained on unencrypted data and applied to encrypted
data. In theory, it is possible to also train the DPN over en-
crypted data as its gradients are polynomials as well. How-
ever, in practice this is not scalable as it is very expensive to
encrypt the entire training corpus and compute the gradient
in encrypted domain. Quantization will also be an challenge
if training on encrypted data. Besides, the learning algorithm
does not have access to the secret key for decryption, we will
never know what these trained weights are.

4. EXPERIMENTS

In this section we present the details of network architectures,
practical considerations for training and decoding, and ex-
perimental results. All the models investigated in this work
were trained using the computational network toolkit (CNTK)
[22]. The homomorphic encryption is implemented using the
SEAL library [13]. We evaluate the effectiveness of the DPN
proposed in Section 3 on the Switchboard and Cortana voice
assistant tasks.

In Switchboard task, we use 309hr training set and NIST
2000 Hub5 as test set. The features used in this set up is 40-
dimensional LFB with utterance-level CMN. The outputs of
network are 9000 tied triphone states. We verified the poly-
nomial approximation on two models, DNN and CNN. The
DNN is a 6-layer ReLU network with batch normalization
and 2048 units on each layer. The CNN is a 17-layer VGG
network [23, 24], including 3×conv(3, 3, 96)3, max-pooling,
4×conv(3, 3, 192), max-pool, 4×conv(3, 3, 384), max-pool,
followed by two dense layer with 4096 units and softmax
layer. Both models use [t − 30, t + 10] as the input context.
The LM used in this task is from [25]. The vocabulary size
is 226k. The WERs of above DNN and CNN and the corre-
sponding DPNs are shown in Table 2. All models are trained
using CE criteria. We leave the sequence training [26, 27] for
these models as the future work.

3conv(3, 3, 96) means kernel size is (3, 3) and that layer has 96 kernels.

WER in % 16-bit 8-bit 4-bit 2-bit

DNN quantization 14.7% 14.9% 16.6% 100.4%
+ retrain – 14.7% 14.9% 30.3%

DNN→DPN (Alg. 1) 15.8% 15.8% 16.1% 30.8%

CNN quantization 12.2% 12.7% 15.4% –
+ retrain – 12.3% 12.7% –

CNN→DPN (Alg. 1) 13.5% 13.6% 14.0% –

Table 2. The results of DNN, CNN and DPN on switchboard.
Note we could not make recurrent models work for homomor-
phic encryption.

In Cortana voice assistant task, we used about 3400 hours
US-English data in training and 6 hours data (5500 utter-
ances) for testing. The features used in this setup is 87-dim
LFB (including 29-dim static, ∆ and ∆∆) with utterance-
level CMN. The networks used in this setup have the same
structure as above, but with 9404 tied triphone states. Table
3 summarizes the WER and the average latency per utterance
(including encryption, AM scoring, decryption and decoding)
on this Cortana task.

avg. latency per utterance
16-bit 4-bit encryption decryption overall

DNN 12.9% 13.4% – – 177ms

DPN 14.8% 15.5% 202ms 16ms 373ms

Table 3. The performance of DNN and DPN on Cortana task.
The overall latency of DPN includes encryption, AM scoring,
decryption and decoding based on 4-bit model.

5. CONCLUSION AND FUTURE WORK

The cloud-based SR service empowers users or third-parties
to try state-of-art speech recognition easily in their own tasks.
However, sending audios about personal or company internal
information to the cloud, raises concerns about privacy. The
main contributions of this work include: 1) a cloud-local joint
decoding framework that enables privacy preserving speech
recognition. It allows users to send their data in an encrypted
form to ensure that their data remains confidential, at mean
while the server can still do speech recognition on their behalf
without knowing the content. 2) a deep polynomial network
that can be trained efficiently on unencrypted data and make
predictions over the encrypted speech in real time. We illus-
trate the effectiveness of model and framework on the Switch-
board and Cortana voice assistant tasks with acceptable per-
formance degradation and latency increased comparing with
the traditional cloud-based DNNs. Future works will include
1) making the decoder also work on encrypted domain so that
we could move everything to the cloud. 2) investigating train-
ing on encrypted data so that multiple parties (e.g. Microsoft,
Google and Amazon) can encrypt and combine their data to-
gether to train models without sacrificing users privacy.
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