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ABSTRACT

We propose a Bayesian nonparametric method for low-pass filter-
ing that can naturally handle unevenly-sampled and noise-corrupted
observations. The proposed model is constructed as a latent-factor
model for time series, where the latent factors are Gaussian pro-
cesses with non-overlapping spectra. With this construction, the
low-pass version of the time series can be identified as the low-
frequency latent component, and therefore it can be found by means
of Bayesian inference. We show that the model admits exact training
and can be implemented with minimal numerical approximations.
Finally, the proposed model is validated against standard linear fil-
ters on synthetic and real-world time series.

Index Terms— Spectral estimation, nonunformly-sampled
data, Gaussian process, low-pass filters, Bayesian inference.

1. INTRODUCTION

Monitoring the spectral content of a time series is of critical im-
portance in real-world applications across a wide range of scientific
disciplines. This is because the concentration of energy at a specific
range of frequencies might be indicative of mechanical faults [1],
cardiac anomalies [2], astronomical discoveries [3, 4], and whale
calls from submarine audio recordings [5] to name a few.

The standard practice to isolate components within a specific
frequency range from a time-series observation, referred to as filter-
ing, is to convolve the observations with an object called linear filter.
This convolution removes all frequencies that do not correspond to
the desired frequency range, thus, filtering out unimportant frequen-
cies. The theoretical rationale behind this approach is supported by
the application of the Convolution Theorem [6] to power spectral
densities (PSD): the PSD of a filtered time series corresponds to the
PSD of the linear filter (user-designed) multiplied by the PSD of the
observed time series (not controllable). This result allows for design-
ing the linear filter so as to remove unwanted frequency components
to then perform the numerical convolution. We refer to low-pass
filtering when the range of frequencies to be removed are centred
(symmetrically) around zero.

We identify two drawbacks of this standard approach to filter-
ing. First, to perform the numerical convolution, the time series has
to be uniformly sampled, that is, no missing observations or ran-
dom acquisition times can be allowed. This is a rather stringent
assumption, since in real-world applications missing data is com-
monplace due to mechanical or electrical failures and the sampling
rate is given by the hardware. For instance, the observations of light
curves in Astronomy are only available at some time instants due to
climate conditions, orientation of the telescope and even the priority
of the experiment within the agenda of the observatory. The sec-
ond drawback of the convolution method is its implicit deterministic
assumption: by computing a low-pass version of the time series as

a moving average, we are accumulating observation noise without
properly accounting for the dispersion that this might cause.

We aim to address these two drawbacks by formulating the low-
pass filtering problem as a Bayesian inference one. We model the
observed time series as a mixture of three latent components: one of
low frequencies, one of high frequencies, and an observation noise
component. Then, we find the low-frequency component through
probabilistic inference: we place a prior distribution on each com-
ponent and then, using observations of the time series, we find the
posterior distribution over the low-frequency component. In particu-
lar, we choose Gaussian processes [7] priors over the components to
leverage the expressiveness of the GP formulation while introducing
minimal numerical approximations, therefore, the proposed method
will be referred to as Gaussian process low-pass filter (GPLP).

2. BACKGROUND: GAUSSIAN PROCESSES

2.1. Spectral representation of Gaussian processes

A Gaussian process (GP) [7] over the input set X is a real-valued
stochastic process (f(x))x∈X, such that for any finite subset of in-
puts {xi}ni=1 ⊂ X, the random variables {f(xi)}ni=1 are jointly
Gaussian. Without loss of generality we choose X = RN . In
this sense, a GP defines a distribution over real-valued functions
f : X 7→ R, x → f(x), that is uniquely determined by its mean
function m(x) = E(f(x)), typically assumed to be zero, and its
covariance kernel K(x, x′) = cov(f(x), f(x′)), x, x′ ∈ X.

The covariance kernel summarises the dynamic behaviour of the
GP and thus it is key when designing GP models. In practice, we
can rely upon the Wiener-Khinchin theorem [8], which states that
an integrable function K : RN 7→ C is the covariance function
of a weakly-stationary mean-square-continuous stochastic process
f : RN 7→ R if and only if it admits the representation

K(τ) =

∫
Rn

e2πiω
T τS(ω)dω, (1)

where S(ω) is a non-negative bounded function on Rn and i de-
notes the imaginary unit. Henceforth, given a kernel K, we will re-
fer to S as their power spectral density given by the above theorem;
where the PSD S(ω) is the Fourier transform of the covariance ker-
nelK(τ). This result allows us to encode spectral properties directly
in the covariance function by first designing the PSD to then calcu-
late the kernel as the inverse Fourier transform of the so designed
PSD function.

The relationship between GPs and spectral representations has
acquired attention recently in the machine learning community. For
instance, covariance functions can be constructed in the spectral do-
main in parametric [9, 10] and nonparametric [11, 12] ways. Addi-
tionally, the harmonic structure of GPs has been exploited to develop
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computationally-efficient sparse GP models by using inducing vari-
ables in the spectral domain [13, 14, 15]. More recently, GPs have
also been considered to address the spectral estimation problem, in
particular, for nonuniformly-sampled data and detection of period-
icities [16, 17, 18]. An open challenge in the spectral treatment of
GPs, is that learning frequency representations is prone to local op-
tima, since one aims to approximate a periodogram; this has been
partially addressed using Bayesian optimisation with derivatives [19]
and derivative-free Monte Carlo methods [20]. In our case, however,
training simply involves a standard square exponential kernel (pre-
sented next) and therefore optimisation is straightforward.

2.2. The square exponential case

The de facto covariance kernel for GP models is the square-
exponential covariance denoted by

KSE(x, x′) = σ2 exp

(
− 1

2l2
||x− x′||2

)
, (2)

where the parameter σ2 denotes the marginal variance of the pro-
cess (i.e., the magnitude) and l denotes the lengthscale, that is, the
range of correlation between values of the process: the larger the
lengthscale the longer the range of temporal correlations.

The popularity of the SE kernel stems form its properties [7].
The paths generated by a GP with an SE kernel are (i) dense in the
space of continuous functions, (ii) infinite-times differentiable a.e.
and (iii) smooth, meaning that their power spectral density is con-
centrated around zero. In fact, due to the exponential form of the
Fourier operator, the PSD of the SE kernel is also SE and given by

SSE(ξ) = F{KSE}(ξ) = σ2
√

2πl2 exp(−2π2l2ξ2), (3)

where the lengthscale of this PSD (spectral domain) is now inversely
proportional to the lengthscale of the covariance (temporal domain);
this has key advantages when using GPs for spectral estimation [18,
14]. This can be understood intuitively: a process with long-range
correlations has low frequency energy (smooth), whereas a kernel
with short-length correlations necessarily has high frequency com-
ponents (rough).

The generative model proposed in the next section will represent
observed signals as a GP with SE covariance function composed of a
mixture of (non overlapping) low- and high-frequency components.

3. A LATENT-COMPONENT GENERATIVE MODEL FOR
BAYESIAN FILTERING

We propose the following generative model for a continuous-time
(latent) signal (f(t))t∈R as a mixture of two components of the form

f(t) = fl(t) + fh(t), (4)

where fl is a signal of low-frequency content and fh one of high-
frequency content.

3.1. Assumptions over the spectral components fl and fh

We model fl and fh as independent GPs with covariance kernels
denoted respectively by Kl and Kh, and, accordingly, power spec-
tral densities Sl and Sh. To discriminate between higher and lower
frequencies, we impose the following restrictions over Sl and Sh:

1. The support of Sl, denoted by supp(Sl), is compact and cen-
tred around the origin, meaning that fl is a process of low-
frequency content.

−b 0 b

frequency

Fig. 1: Power spectral densities of the proposed model: The region
contained inside the black line is the PSD of the process f , SSE,
whereas the regions in blue and red denote the PSDs of the low-
frequency (Sl) and high-frequency (Sh) content respectively. Fre-
quency b is the maximum frequency in the support of Sl and the
minimum in the support of Sh (positive part).

2. The supports of the PSDs of fl and fh are non overlapping,
that is, supp(Sl)∩ supp(Sh) = ∅. This implies that each fre-
quency present in the signal f came, exclusively, from either
fl or fh.

3. The sum of the component PSDs is a square-exponential ker-
nel, that is, Sl(ξ) + Sh(ξ) = SSE(ξ) for some hyperparame-
ters σ2 and l as in eq. (2).

Notice that, as a consequence of the third restriction, the marginal
distribution over the process f is a Gaussian process with an SE
kernel KSE = Kl +Kh due to the linearity of the Fourier transform
and the independence of fl and fh.

Figure 1 illustrates the PSDs of the components of high and low
frequency. We have denoted by b the interface between the zones of
low and high frequency, meaning that b is the highest frequency of
the low-frequency signal and well as the lowest frequency of the
high-frequency signal. Consequently, the bandwidth of the low-
frequency part is 2b.

3.2. Likelihood and model fitting

Assuming an independent sequence of Gaussian observation noise,
the observations (y(t))t∈R are then defined as

y(t) = f(t) + η(t), η(t) ∼ N (0, σ2
η), (5)

Combining the observation model defined in eq. (5) with the GP-
prior assumed for the spectral components, the marginal likelihood
of the proposed model is Gaussian and therefore its hyperparam-
eters can be obtained through minimisation of the negative log-
likelihood (NLL). Notice that despite the elaborate frequency-wise
construction of the latent process f through the non-overlapping
spectra of the components fl and fh, the covariance kernel of f is
square-exponential, thus allowing for straightforward model learn-
ing. Specifically, the NLL of the model is given by

NLL(y|t) = log(2π|Σy|) +
1

2
y>Σ−1

y y, (6)

where y = [y1, . . . , yN ] are the (noise corrupted and possibly miss-
ing) observations acquired at time instants t = [t1, t2, . . . , tN ], and
Σy is the covariance matrix of y defined by

Σy = KSE(t, t) + σ2
ηI, (7)

therefore, the hyperparameters are those of the KSE kernel and the
noise variance σ2

η .
Finally, observe that the strict non-overlapping property of the

components fl and fh is not problematic for training, in fact, the
cutoff frequency b does not even appear for model training.



4. FILTERING AS POSTERIOR INFERENCE

Denote by b the required cut-off frequency of the low-pass filtering
problem. Using the proposed model, we can assume that this cutoff
frequency b is equal to the limit between the low- and high-frequency
components. In this context, low-pass filtering problem is equivalent
to performing inference over the low-frequency component fl con-
ditional to observations of the time series. Due to the assumptions
made on the signal we refer to this approach as GP low-pass filter
(GPLP).

Denoting the observations by y ∈ Rn, GPLP addresses low-
pass filtering by computing the posterior distribution p(fl|y). Due to
the self-conjugacy of the Gaussian distribution and its closure under
additivity, this posterior is also a GP, with mean and covariance given
by

mfl|y = Σfl,yΣ−1
y y (8)

Kfl|y = Kfl − Σfl,yΣ−1
y Σ>fl,y, (9)

where we have assumed zero mean for fl and fh (and therefore of
y), Σy is the covariance of the observations defined in eq. (7), Σfl,y
denotes the covariance between fl and y, and Kl is the kernel of fl.

Let us also note that the cross covariance Σfl,y and the kernel
Kl share the same expression. Denoting the covariance between the
low-frequency process fl at time t and the observation y at time t′

by Σfl,y(t, t′), we obtain

Σfl,y(t, t′) = E[fl(t)(fl(t
′) + fh(t′) + η(t′))]

= E[fl(t)fl(t
′)]

= Kl(t, t
′),

since the processes fl, fh and η are independent Gaussian processes.
Therefore, the only critical quantity required to compute eqs. (8)-

(9) is kernel Kl. Following the model proposed in eq. (4) and its
assumptions, the PSD of fl, denoted by Sl, can be obtained by
multiplying the PSD of f with a rectangular function of width 2b,
that is,

Sl(ξ) = SSE(ξ)rect
(
ξ

2b

)
, (10)

where we used the convention that rect(ξ) is equal to one for |ξ| <
1/2 and 0 elsewhere. As a consequence, the kernel Kl can be calcu-
lated using the convolution theorem: (? is the convolution operator)

Kl(t) = F−1(Sl(ξ)) (11)

= F−1

(
SSE(ξ)rect

(
ξ

2b

))
= F−1 (SSE(ξ)) ? F−1

(
rect

(
ξ

2b

))
= KSE(t) ? sinc (2bt) · 2b

= 2b ·
∫
σ2 exp

(
− 1

2l2
(t− τ)2

)
sin(2πbτ)

2πbτ
dτ

= σ2e
− 1

2l2
t2<

(
erf
(√

2blπ − i t√
2l

))
,

where erf(t) denotes the error function given by

erf(t) =
1√
π

∫ t

−t
e−x

2

dx, (12)

Using Taylor expansions, the error function can be calculated up to
an arbitrary degree of accuracy [21].
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Fig. 2: The latent signal (blue) consists of 6 cosines as shown in
eq. (13) and the observations are shown in yellow.

5. SIMULATIONS

The proposed model for Bayesian low-pass filtering using GPs,
termed GPLP, is next validated using synthetic and real-world data.
Our experimental validation aims to show that GPLP (i) successfully
recovers low-frequency data from missing and noisy observation, (ii)
provides accurate point-estimates with respect to the benchmarks,
and (iii) places meaningful error bars. Our benchmarks include
ground-truth signals and the Butterworth filter.

5.1. A synthetic time series with line spectra

We considered the line-spectra time series given by

f(t) =
∑

ωi∈Flow

cos(2πωit) +
∑

ωj∈Fhigh

cos(2πωjt) (13)

were the sets Flow and Fhigh are such that ∀ωi ∈ Flow, ∀ωj ∈ Fhigh :
ωi < ωj . Simply put, Flow is a set of low frequencies and Fhigh a set
of high frequencies—all these frequencies are in Hertz (Hz). Signals
constructed in this way have sparse PSDs meaning that only a finite
number of frequencies convey all the signal energy or information.

We chose Flow = {0.31, 0.38, 0.48} and Fhigh = {0.51,
0.64, 0.75} and simulated a path of f(t), as defined in eq. (13)
for 5000 evenly-spaced time indices in t ∈ [−100, 100]. The ob-
servation time-series y consisted only in a 25% of the signal (again,
evenly spaced) all of which were corrupted by Gaussian noise of
std. dev. ση = 1.0. Fig. 2 shows the latent signal and the observation
considered for this experiment.

We implemented the proposed GPLP to recover the low-
frequency content of the original (latent) signal f only using the
observations y. We first trained the generative model as explained
in Sec. 3.2 to find the hyper parameters l, σ2 and σ2

η . We then
chose the cutoff frequency to be b = 0.495Hz. We then computed
the low-frequency covariance function to calculate the moments of
the posterior distribution p(fh|y). Fig. 3 shows the learnt kernels
and their corresponding PSDs. Notice how, just as illustrated in
Fig. 1, the spectral densities of the latent low-frequency component
is band-limited, supported only on [−b, b] and tightly bounded by
the (unfiltered) time series.

Fig. 4 shows the GPLP estimate compared against the ground
truth and a low-pass version of the data using a Butterworth low-
pass filter of order 10, with the same cutoff frequency; this filter is
a standard in linear filtering. GPLP obtained a mean-squared error
of 0.16 while the Butterworth low-pass filter gave a mean-squared
error of 0.26, in addition to this marginal difference in performance,
notice that GPLP provided accurate 95% error bars.

To further validate the ability of the proposed GPLP to filter out
low-frequency spectral content, Fig. 5 shows the Fast Fourier Trans-
form (FFT) of the low-pass versions of GPLP, Buttwerworth and the
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Fig. 3: Left: Learnt Gaussian kernel shown in green and the low-
frequency kernel in red. Right: Learnt Gaussian PSD shown in green
and low-frequency PSD in red.
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Fig. 4: Inference over the low-frequency component: posterior mean
of the proposed GPLP (red), Butterworth low-pass filter (purple) and
ground truth signal (green).

original signal. Notice from that GPLP successfully recovered the
first three spectral components and rejected the higher ones.

5.2. Low-pass filtering of unevenly-sampled observations

A critical downside of the standard filtering techniques is that most
of them require the data to be evenly spaced. Here is where the
proposed model excels: as our method is based on an infinite-
dimensional prior over continuous-time signals, missing observa-
tions are naturally handled by integrating out missing values.

We replicated the exact same setting as in Sec. 5.1 but consid-
ered randomly-chosen observations (Again, just 25% of the total
number of points). Fig. 6 shows the posterior mean over the low-
frequency component together with the 95% confidence interval and
the ground truth, as well as the result in the frequency domain. The
MSE of the GPLP estimate was 0.23, thus improving over Butter-
worth using evenly spaced data.

5.3. Filtering a heart-rate time series

We considered two 1800-sample heart-rate signals1. One corre-
sponding to a healthy subject and an unhealthy subject. The anoma-
lly can be detected from the heart-rate signal by looking at the
energy contained below 0.05 (Hz): if most of the energy is below
this threshold, the subject is likely to suffer from congestive heart
failure [22].

The aim of this experiment was to use GPLP to quantify the
portion of energy below 0.05, as this reveals whether the signal cor-
responds to a healthy or unhealthy subject. We implemented GPLP

1http://ecg.mit.edu/time-series/
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Fig. 5: FFT for full signal (green) and low-pass estimates: proposed
GPLP (red) and Butterworth (purple). The cutoff frequency is shown
in by a vertical dashed line.

0 5 10 15 20 25 30
5

0

5
GPLP
Ground Truth

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0
Ground truth 
GPLP
Cutoff frequency

Fig. 6: Above:Low-pass filtering of unevenly-sampled observations.
Proposed GPLP shown in red (mean and 95% error bars). Below:
Same result, but shown in the frequency domain.

on both signals with a cutoff frequency of 0.05(Hz) and we found
that the healthy signal has a 77% of its energy below 0.05(Hz) and
that the unhealthy signal has a 97% of its energy below 0.05(Hz).
Therefore, the GPLP method can discriminate between healthy and
unhealthy subjects from the heart-rate signals.

6. DISCUSSION

We have proposed a Bayesian approach to low-pass filtering. The
method is based on a latent-component generative model for time
series, where the components are Gaussian processes with non-
overlapping spectra. With this model, finding the low-pass version
of a signal can be addressed from a Bayesian inference point of
view. The main contribution over existing low-pass filters in the
linear filter literature is that the proposed model offers an account
of its own uncertainty and can naturally handle missing or noisy
observations.

The proposed method has been validated empirically using syn-
thetic and real-world data, where we have shown its ability to re-
cover unbiased estimates of the true low-frequency signals (both in
the evenly- and unevenly-sampled cases) and performed accurately
with respect to its classical counterpart: the Butterworth filter.
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