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ABSTRACT

In Virtual Reality (VR) applications, understanding how users ex-

plore the visual content is important in order to optimize content

creation and distribution, develop user-centric services, or even to

detect disorders in medical applications. In this paper, we propose a

graph-based method to identify clusters of users who are attending

the same portion of spherical content, within one frame or a series

of frames. With respect to other clustering methods, the proposed

solution takes into account the spherical geometry of the content and

correctly identifies clusters that group viewers who actually display

the same portion of spherical content. Results, carried out by using

a set of publicly available VR user navigation patterns, show that the

proposed method identifies more meaningful clusters, i.e., clusters

of users who are consistently attending the same portion of spherical

content, with respect to other methods.

Index Terms— Virtual Reality, 360◦ video, user behaviour anal-

ysis, data clustering

1. INTRODUCTION

Virtual Reality (VR) systems are expected to become wide spread

in a near future, with applications in a variety of fields, ranging

from entertainment to e-healthcare. These systems involve omni-

directional (i.e., 360◦) videos, which are visual signals defined on a

virtual sphere, depicting the 360◦ surrounding scene. The viewer,

virtually positioned at the centre of the sphere, can navigate the

scene with three Degrees-Of-Freedoms (3-DOF), i.e., yaw, pitch and

roll, by rotating his head and changing his viewing direction. This

interactive navigation is typically enabled by a head-mounted dis-

play (HMD), which renders at each instant in time only the portion

of the spherical content attended by the user, i.e., the viewport.

Understanding how users explore the VR content is important in

order to optimize content creation [1] and distribution [2–6], develop

user-centric services [7,8], and even for medical applications that use

VR to study psychiatric disorders [9]. In the last few years, many

studies have appeared collecting and analysing the navigation pat-

terns of users watching VR content [6, 8, 10–16]. Most studies build

content-dependent saliency maps as main outcome of their analysis,

which compute the most probable region of the sphere attended by

the viewers, based on their head or eye movements [6, 10, 17–19].

Some studies also provide additional quantitative analysis based on

metrics, such as the average angular velocity, frequency of fixa-

tion, and mean exploration angles [8, 13]. Models to predict future

saliency maps have also been proposed [20–22]. Nevertheless, none

of these studies performs clustering of the navigation patterns, i.e.,

none provides quantitative data indicating how many groups of users

consistently share the same behaviour over time, by attending a sig-

nificantly overlapping portion of the 360◦ content. This information

can be useful in order to improve the accuracy and robustness of

algorithms predicting users navigation patterns. A proper cluster-

ing could also be useful to refine user-centric distribution strategies,

where for example different groups of users might be served with

high quality content in the different portions of the sphere that will

be more likely attended by the viewers.

To the best of our knowledge, studies identifying clusters for

omnidirectional content delivery have appeared only recently [23,

24]. User clustering is employed to identify the number of Region

of Interests (RoIs) over time and to perform long-term prediction,

associating to each user the future trajectory of the cluster that user

belong to. In [23], the viewport center, i.e., the viewing direction

of each user at each instant in time, is considered as a point on the

equirectangular planar representation of the spherical content. These

points on the plane are then clustered based on their Euclidean dis-

tance, which unfortunately ignores the actual spherical geometry of

the navigation domain. Conversely, in [24] each user navigation

pattern is modelled as independent trajectories in roll, pitch, and

yaw angles, and spectral clustering is then applied. While it is ef-

ficient in discovering general trends of users’ navigation, this clus-

tering methodology might fail to identify clusters that are consistent

in terms of actual overlap between viewports displayed by differ-

ent users. It means that users in the same cluster do not necessarily

consume the same portion of content. At the same time, this consis-

tency needs to be guaranteed for clustering methods to be used for

prediction purposes or for implementing accurate user-based deliv-

ery strategies.

The goal of this paper is to propose a novel clustering strategy

able to detect meaningful clusters in the spherical domain. We con-

sider as meaningful cluster a set of users attending the same portion

of spherical content at a given time instant or over a series of frames.

This implies that the overlap between the viewports of all users in a

cluster must be substantial. With this goal in mind, first we define

a metric to quantify the geometric overlap between two viewports

on the sphere (Section II). Then, we use this metric to build a graph

whose nodes are the centers of the viewports associated to differ-

ent users. Two nodes are connected only if the two corresponding

viewports have a significant overlap (Section III). Finally, we pro-

pose a clustering method based on the Bron-Kerbosch (BK) algo-

rithm [25] to identify clusters that are cliques, i.e., sub-graphs of

inter-connected nodes (Section III). Results demonstrate the con-
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sistency of the proposed clustering method in identifying clusters

where the overlap between the portions of the spherical surface cor-

responding to different viewports is higher than in state-of-the-art

clustering (Section IV). In summary, the main contribution of this

paper is to propose a clustering algorithm that i) considers the spher-

ical geometry of the data, ii) identifies clusters in which there is a

consistent and significant geometric overlap between the portions of

spherical surface corresponding to viewports attended by different

users (by imposing that clusters are cliques), iii) can be applied to

a single frame or to a series of frames. This is a useful new tool to

improve the accuracy of user’s navigation prediction algorithms and

user-dependent VR content delivery strategies, such as those pro-

posed in [23, 24].

2. GEODESIC DISTANCE AS PROXY OF VIEWPORT

OVERLAP

Our goal is to identify clusters of users who are displaying the same

portion of spherical content within a frame or over a series of con-

secutive frames. We derive a similarity metric that reliably quantifies

how similar the portions attended by two users are. More specifi-

cally, each user attends a portion of the spherical surface. This is the

projection on the spherical surface of a plane tangent to the sphere

(i.e., viewport) in the point that identifies the user’s viewing direc-

tion (center of the viewport)1. The overlap between the viewports

attended by two users at an instant in time is a clear indicator of how

similar users are with respect to their displayed viewports. For ex-

ample, an overlap equal to the area of the viewport corresponds to

two users attending exactly the same portion of visual content. The

geometric overlap could be analytically computed, knowing the ro-

tation associated to each user head’s position (i.e., roll, pitch, and

yaw) and the horizontal and vertical fields of view that define the

viewport. However, this is non trivial. Thus, we propose the simple

and straightforward solution of using the geodesic distance between

two viewport centres as a proxy for the viewport overlap.

By geodesic distance we denote the length of the shortest arc

connecting the viewport centers on the sphere. Such distance is

clearly an approximation of the actual area overlap: it does not ac-

count for the three degrees of freedom of the user’s head rotation,

which define the exact viewport. As a result, viewports whose cen-

ters have the same geodesic distance could correspond to a different

viewport overlap (example in Figure 1). Nevertheless, the smaller

the distance between viewport centers, the smaller the approxima-

tion error with geodesic distance. As an example, Figure 2 shows

the pairwise geodesic distance (in blue) and the pairwise area over-

lap (in red) between the viewport attended by one user and those

of 58 other users, for a frame of a video sequence, extracted from

the public dataset proposed in [13]. The correlation between the

two metrics is evident: if the overlap is high, the geodesic distance

between the two viewport centres is low. Particularly, a viewport

area overlap larger than 75% of the viewport area corresponds to a

geodesic distance smaller than 3π/4. We are therefore interested in

identifying a threshold value below which the geodesic distance is a

robust proxy of the viewports overlap.

To empirically define this threshold, we built the Receiver Op-

erating Characteristic (ROC) curve as follows. We assume that two

users are attending the same portion of content if their viewports

overlap by at least Oth of the total viewport area. We then define

a threshold value for the geodesic distance Gth such that users are

1Without loss of generalization, we consider a scenario in which the view-
ports of all users have the same horizontal and vertical field of view.

(a) 87% overlap (b) 58% overlap

Fig. 1. Viewports (in green and blue) with π/10 centre distance. (a)

viewports are aligned with an overlap of 87%, (b) one viewport is

rotated by π/2 resulting an overlap of 58%.
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Fig. 2. Comparison between pairwise geodesic distance and view-

port overlap in one frame of video Rollercoaster from [13].

neighbours if their geodesic distance is below threshold. Anytime

users are neighbors but their overlap is less than Oth, we experience

a false positive. Conversely, a true positive is experienced if users

that are neighbors also experience an overlap equal or higher than

Oth. Equipped with these definitions, we can compute the ROC by

considering all the videos and user’ navigation patterns included in

the dataset described in [13]. Figure 3 shows the curve obtained in

our scenario with Oth = 80%. On the x axis of the ROC curve there

is the False Positive Rate (FPR) i.e., probability to have a wrong

classification over the number of actual negative events. This rate

should be as small as possible. On the contrary, the True Positive

Rate (TPR) on the y axis represents the probability to correctly clas-

sify an event. The best value of geodesic distance is π/10 since

it corresponds to a TPR value equal to 1, which in our application

means a sure identification of viewports with an overlap of at least

80% based on the geodesic distance between their centers. There-

fore, in the following we assume Gth = π/10 as a suitable thresh-

old to robustly approximate the area overlap between two viewports

by means of the geodesic distance between their centers.

3. CLIQUE-BASED CLUSTERING ALGORITHM

We now describe the proposed clustering algorithm, aimed at iden-

tifying clusters of users having a common viewport overlap. We

model the evolution of users’ viewports over a time-window T , i.e.,

a series of consecutive frames, as a set of graphs {Gt}
T

t=1. Each

unweighted and undirected graph Gt = {V, Et,Wt} represents the

set of users2 viewports at a particular instant t, where V and Et de-

2Without loss of generality, we assume that the set of users does not
change over time. This covers also cases in which users’ devices are not
synchronized in the acquisition time, as users’ positions are usually interpo-
lated to create a synchronized dataset.
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Fig. 3. ROC curve to evaluate optimal Gth considering all video in

database [13] and Oth = 80% .

note the node and edge sets of Gt. Each node in V corresponds to

a user interacting with the 360◦ content. Each edge in Et connects

neighbouring nodes, where two nodes are neighbours if the geodesic

distance between the viewport centers associated to the users repre-

sented by the nodes is lower than Gt, as defined in Section II. The

binary matrix Wt is the adjacency matrix of Gt, with wt(i, j) = 1
if the geodesic distance between the two viewport centres of users i
and j at time t is below a threshold. More formally:

wt(i, j) =

{

0, if g(i, j) ≤ Gth

1, otherwise
(1)

where g(i, j) is the geodesic distance between the viewport centres

of users i and j and Gth is thresholding value, discussed in Section

II. Note that the clique-based clustering algorithm that we present in

the following gets in input binary adjacency matrices. Hence, Wt is

binary.

Looking at the graphs over time {Gt}
T

t=1, we are interested in

clustering users based on their trajectories within a time window T .

Similarly to other clusters of trajectories [26], we derive an affinity

matrix A that will be the input to our clustering algorithm, with

a(i, j) = ID

(

T
∑

t=1

wt(i, j)

)

(2)

where ID(x) = 1 if x ≥ τ and 0 otherwise. This means that in the

final graph two nodes, representing two users, are neighbours, i.e.,

connected by an edge, only if the corresponding viewports have a

significant overlap in D instants over T . In the case of τ = T , we

obtain a(i, j) = IT
(
∑

t
wt(i, j)

)

=
∏

t
Wt, and users’ viewport

centers need to be always at a distance below threshold Gt. This

condition is however too constraining, therefore we introduce the

threshold value τ .

The goal of our clustering algorithm is to identify groups of

users that are consistently attending the same portion of the spheri-

cal surface. To ensure that all users belonging to a cluster are attend-

ing the same area, they all need to be neighbors (i.e., a(i, j) = 1
for all pairs of users i and j in the cluster). Therefore, we propose

a clique-based clustering. In graph theory, a set of nodes all con-

nected to each other is called a clique. A clique perfectly matches

with the definition of cluster needed in our application, which iden-

tifies a set of users all having significant pairwise viewport overlaps,

thus attending a common portion of video. We consider the Bron-

Kerbosch (BK) algorithm [25] to find all maximal cliques present

in our graph (i.e., the most populated sub-graphs forming cliques).

However, maximal cliques identified by the BK algorithm can inter-

sect, i.e., one user can belong to more than one clique. Conversely,

Fig. 4. Graphical example of the proposed clique clustering.

Algorithm 1 Clique-Based Clustering

Input: {Gt}
T

t=1, D

Output: K,QQQ = [Q1, ..., QK ]

Init: i = 1, A(1) = ID(
∑

t
Wt),QQQ = [{∅}, . . . , {∅}]

repeat

CCC = [C1, ..., CL]← KB(A(i))
l⋆ = arg maxl |Cl|
Qi = Cl⋆
A(i+1) = A(i)(CCC \ Cl⋆)
i← i+ 1

until A(i) is not empty;

K = i− 1

we are interested in identifying disjoint sets3.Hence, our clustering

method consists of iterations of BK instances, as depicted in Fig-

ure 4. We initialize the clustering method by evaluating the affinity

matrix from Eq. (2). Then, we perform the following steps (Algo-

rithm 1):

1. Maximal cliques in the graph are detected by the BK algo-

rithm.

2. Among the resulting cliques, only the most populated one

(i.e., the one with the highest cardinality) is kept as a clus-

ter.

3. A new affinity matrix is built, eliminating the entries corre-

sponding to the elements of the cluster identified in Step 2.

These three steps are repeated until all nodes are assigned to clusters.

It is worth mentioning that this iterative selection does not guaran-

tee optimal clusters (i.e., clusters with maximal joint overlap among

the viewports of users belonging to a cluster). However, i) it im-

poses viewport overlap among users within a cluster, ii) it identifies

highly populated clusters, which can be translated in reliable trajec-

tories/behaviours shared among users.

4. EXPERIMENTAL RESULTS

The proposed clustering algorithm is compared to state-of-the-art so-

lutions, namely the Louvain method [27], the K-means clustering

[28] and the clustering of VR trajectories proposed in [24] (labelled

“SC”). We use the geodesic distance between viewport centers as

distance metric in all algorithms. Moreover, in the K-means cluster-

ing, the number of clusters K is imposed as the value achieved by

the Louvain method (labelled “K-means 1”), as well as the K value

obtained from our proposed clustering (labelled “K-means 2”). The

proposed implementations have been made publicly available 4. We

3Clusters should be disjoint for most content-delivery applications. For
example, if clusters are used for prediction, each user must belong only to
one cluster.

4https://github.com/LASP-UCL/spherical-clustering-in-VR-content.



ROLLERCOASTER TIMELAPSE

Louvain method Clique Clustering K-Means 1 K-Means 2 Louvain Clique Clustering K-Means 1 K-Means 2

F
r.

~
3
0
s K 10 15 10 15 13 24 13 24

Mean Overlap Cl.(% user >3) 38.90 % (84.75 %) 62.50 % (76.30 %) 53.95 % (93.20 %) 48.10 % (94.90 %) 46 % (89.70%) 72.35% (56.90%) 45.90% (96.50 %) 51.50% (50%)

Main cl. overlap (% users) 26.70% (44.10%) 58.60% (30.50%) 48.30% (19% ) 0% (20.70% ) 32.90% (20.70%) 69% (12.10% ) 15% (19% ) 23.50% (13.80%)

F
r.

~
4
0
s K 8 15 8 15 18 27 18 27

Mean Overlap Cl.(% users >3) 35.60% (89.83%) 65.75% (76.30%) 44.38% (100%) 47.65% (84.75%) 47.65 % (75.90%) 72.95 % (77.60%) 60.27% (96.55%) 65.90% (84.50%)

Main cl. overlap (% users) 24.20% (45.80%) 58.33% (35.60%) 0% (30.50%) 0% (15.25%) 51.80% (20.70%) 63.70% (17.24%) 47.50% (20.70%) 33.60% (8.60%)

F
r.

~
5
0
s K 8 12 8 12 18 29 18 29

Mean Overlap Cl.(% users >3) 48.20% (89.80%) 65.70% (86.45%) 43.50% (98.30%) 55.30% (96.60%) 49.12 % (77.60%) 71.40% (51.70%) 48.36 % (87.90%) 55.90 % (55.17%)

Main cl. overlap (% users) 46.40%(30.50 %) 59.90% (57.70%) 0% (22.40%) 0% (15.25%) 30.60 (22.40%)% 70.80% (25.90%) 37% (24.15%) 62.71% (17.24%)

Table 1. Clustering analysis of users in three selected frames from Rollercoaster (first half) and Timelapse (second half). In brackets, the

percentage of covered population.

test these algorithms on two 1-minute long video sequences (Roller-

coaster and Timelapse), which have been watched by 59 users whose

navigation paths are publicly available [13]. Rollercoaster has one

main RoI (i.e., the rail) while in Timelapse, there are many fast mov-

ing objects (e.g., buildings, people) along the equator line.

Frame-based Clustering. First, we consider frame-based clus-

tering, in which users are identified by their viewport centers at one

given frame. Table 1 reports results in terms of number of clusters

(K), mean viewport overlap computed within each cluster composed

by at least three users, and viewport overlap within the most pop-

ulated cluster, that we refer to as the main cluster. The viewport

overlap within a cluster is the joint overlap across all users’ view-

ports in the cluster. The mean overlap is computed by averaging the

viewport overlap of all clusters with at least three users identified at a

given frame. In Table 1, we also provide the percentage of users cov-

ered by clusters. The proposed algorithm always ensures the highest

viewport overlap (on average always over 50%) with respect to the

other methods. This is due to the implicit constraint that is imposed

by the clique-based detection of the clusters. This constraint leads

to the identification of clusters that are populated and yet meaning-

ful (i.e., with large viewport overlap among users). For example, in

Rollercoaster at frame 40s, our algorithm identifies a main cluster

grouping 35% of the population with a viewport overlap of 58.33%.

This is much higher than the overlap of 24.20% (0%) in the main

cluster identified by the Louvain (K-means) method. Beyond the

accuracy, another important parameter is the percentage of the pop-

ulation that is covered by clusters with a significant number of users.

These clusters are the most useful ones to allow predictions. For

instance in Timelapse at frame 50s, our method identifies a large

number of clusters (29), which also includes single users clusters.

Nevertheless, half of the population (51.70%) belongs to clusters

with more than 3 users with high value of joint overlap (71.40%).

Trajectory-based clustering. Second, we test the proposed

algorithm over a time-window with T = 3s and τ = 1.8s. In this

case we compare the proposed solution with algorithm SC [24]. The

algorithm SC is applied to trajectories spanning the entire video, as

in [24], as well as consecutive time windows of 3s. We also con-

sider the case of SC in which the number of clusters K is not eval-

uated from their affinity matrixbut it is imposed as the K obtained

from our solution. We label this clustering (“SC - K given”). Fig-

ure 5 shows results in terms of overlap among viewports clustered

together in both Rollercoster (a) and Timelapse (b). In more details,

all users are clustered over consecutive time-windows of T seconds

each. Then, for each frame the viewport overlap among all users

within one cluster is evaluated and averaged across clusters. The

mean overlap (solid line) and the variance (shaded area) is finally

depicted in the figure. Moreover, the mean value of joint overlap in

clusters with more than three users across the entire video is showed

in the legend. Our solution outperforms SC in terms of mean over-

lap but also in terms of variance. The latter shows the stability of
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(a) Rollercoaster video - T = 3 s.
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Fig. 5. Mean and variance of the joint overlap across clusters over

time. In the legend, the mean value of joint viewport overlap of clus-

ters with more than three users performed across the entire video.

our clustering method ensuring for each cluster a consistent overlap

over time. Finally, the performance gain is significant also in terms

of overlap in the most populated clusters (value provided in the leg-

end).

5. CONCLUSIONS

In this paper, we proposed a novel graph-based clustering strategy

able to detect meaningful clusters, i.e., group of users consuming the

same portion of a virtual reality spherical content. First, we derived

a geodesic distance threshold value to reflect the similarity among

users and then we built a clique-based clustering based on this met-

ric. Results on a set of publicly available VR user navigation patterns

show that the proposed method identifies more meaningful clusters

with respect to other state-of-the-art clustering methods. The as-

sociated code has been made publicly available for future compar-

isons. Future works will focus on the application of our method in

the framework of adaptive streaming of VR videos and for the pre-

diction of user navigation patterns.
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