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ABSTRACT

Cooperative communication using unmanned aerial vehicles
(UAVs) is a promising technology for infrastructureless wire-
less networks. One of the key challenges in UAV based com-
munications is the backhaul throughput. In this paper, we
propose optimization of the UAV swarm positions to achieve
a high mulitplexing gain in line-of-sight (LoS) MIMO back-
haul. We develop two distributed algorithms to position the
UAVs such that each UAV moves a minimal distance to re-
alize the highest capacity LoS MIMO channel. The first ap-
proach uses iterative gradient descent (GD) and the second
uses iterative brute force (BF). Simulations show that both al-
gorithms can achieve up to 6 times higher capacity compared
to the approach relying on random UAV placement, earlier
proposed in the literature. BF has the advantage of not re-
quiring any location information, while GD is less sensitive
to errors in motion.

Index Terms— Unmanned aerial vehicle (UAV), line-
of-sight MIMO, MIMO degrees of freedom, placement opti-
mization, distributed algorithm.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are envisioned to become
an integral component in future wireless networks as they
open a myriad of opportunities to enhance communications
[1, 2]. UAVs can be used as aerial base stations (BS) to en-
hance the performance of cellular network access [3], mobile
data aggregators to improve coverage of massive Internet-of-
Things (IoT) [4], and network reestablishers in disasters [5].
Recently, cooperative communication among UAVs has been
proposed. This technique relies on creating a virtual antenna
array using a swarm of UAVs to control interference in UAV
based cellular access [6, 7, 8]. A major challenge for the co-
operative UAVs swarm array is the high throughput require-
ment for the backhaul. One approach to boost capacity of a
backhaul is to exploit MIMO multiplexing capability of UAV
array. However, depending on UAVs’ placement, the MIMO
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channel could have a very low-rank due to line-of-sight (LoS)
propagation.

The designs of linear and planar antenna arrays that max-
imize MIMO LoS channel capacity were discussed exten-
sively in the literature [9, 10, 11, 12, 13, 14, 15, 16]. In [17],
capacity was optimized via inter-element spacing of UAVs
placed in a uniform linear array. However, using conventional
antenna array geometries for maximizing UAV based MIMO
LoS capacity has the drawback of having stringent localiza-
tion requirements and does not benefit from the freedom to
move UAVs independently. In [18] and [19], the authors pro-
pose randomly placing UAVs as a way to improve the LoS
MIMO channel degrees of freedom. The optimal average
UAV swarm radius is investigated as a function of wavelength
and backhaul link distance. The approach requires more re-
ceive antennas than transmit antennas for good performance.

In this work, we propose two distributed algorithms that
adapt UAV positions to achieve the highest degree of free-
dom LoS MIMO channel, while minimizing the distance trav-
eled. One algorithm is based on gradient descent (GD) and
the other on brute force (BF) optimization. BF does not re-
quire any location information, while GD has lower traveled
distance and robustness against motion errors. We show that
starting from a random 3D placement, both algorithms can
achieve the highest possible signal to noise and interference
ratio (SINR) and capacity, even if the number of transmit and
receive antennas is equal. Compared to using an optimal uni-
form array placement, both algorithms require less traveled
distance to achieve almost the same capacity in the presence
of localization errors.

2. SYSTEM MODEL

We consider a system where a base-station (BS) consisting of
NT antennas transmits data to a swarm of NR UAVs where
each UAV has one antenna1, and the combined antenna gain
between the BS and each UAV is G. We assume that NR ≥
NT. We denote the position of the mth transmit antenna by

1We assume that this is an antenna in the general sense and can be com-
posed of a phased array used to provide directivity to combat the high path
loss, and/or to assist in localization. Though we treat it as an idealized an-
tenna and do not discuss beam steering or localization.
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pm ∈ R3 where m ∈ {1, 2, · · · , NT}, and that of the nth
UAV by qn ∈ R3 where n ∈ {1, 2, · · · , NR}. We assume that
UAVs have been performing some sensing, data aggregation,
or receiving data for relaying prior to the backhauling stage.
As a result, the starting positions of the UAVs are assumed to
be random.

We consider a typical LoS environment between BS and
UAVs. The MIMO channel H ∈ CNR×NT between the mth
transmitter and the nth receiver is modeled as

{H}m,n , hm,n = γm,n exp (−j(2π/λ) ‖pm − qn‖) (1)

where γm,n = λ/(4π ‖pm − qn‖) is the path loss coefficient
and λ is the wavelength. We denote the columns of H by
h1,h2, · · · ,hNT . In our system, we assume that UAVs are
placed far from the BS and move within a relatively small vol-
ume compared to the distance from the BS, such that γm,n ≈
λ/(4πR), where R is the distance between the BS and the
UAV swarm.

Assuming the high SINR regime, the maximum channel
capacity at a distance R can be achieved when the singular
values of H are equal , i.e., σ1 = σ2 = · · · = σNT [20,
p.399]. This occurs when the channel matrix H has orthogo-
nal columns. Thus for maximum capacity, the following con-
dition should be satisfied

h∗l hk = 0 ∀(l, k) ∈ K, (2)

where ()∗ is the Hermitian transpose, K is the set of (l, k) ∈
{1, · · · , NT} × {1, · · · , NT} such that l 6= k.

The inverse condition number (ICN) of H is

E(H) = 1/κ(H) = σNT/σ1 (3)

where κ(H) is the condition number of H. Note that 0 ≤
E(H) ≤ 1, since by definition we have σ1 ≥ · · · ≥ σNT ,
with E(H) = 1 iff all the singular values are equal (at the
maximum MIMO capacity condition) and E(H) = 0 when
two or more columns of H are linearly dependent. Hence, we
use the ICN as a measure for the orthogonality of H.

Our goal is to achieve a certain orthogonality requirement,
determined by the ICN of H, by optimizing the UAV place-
ment, while trying to reduce the distance traveled by each
UAV. This optimization problem can be formulated as

minimize
q1,··· ,qNR

NR∑
n=1

‖qn − qn‖2

subject to E(H) ≥ α

(4)

where qm is initial position of the mth UAV, for some con-
stant 0 ≤ α ≤ 1, which determines how strict is the require-
ment for channel orthogonality.

We assume that the transmitter does not have any channel
state information (CSI); during the positioning stage, it only
transmits channel estimation pilots, while during the commu-
nication stage, it does not perform any precoding. We use

the single stream SINR as a measure of performance, which
can be used to calculate the MIMO capacity [20, p.415]. It is
given by SINR = (|w∗h1|2)/(

∑NT

m=2 |w∗hm|2 + ‖w‖2ψ2
n),

where w is the combining vector, and ψ2
n is the noise vari-

ance. Two combining methods are considered. The first one
is spatial zero-forcing (ZF) [20, p.413] where w is orthogo-
nal to the range space of {h2, · · · ,hNT}. The second one is
naive (NV) matched filtering which uses w = h1 for combin-
ing. For reference, we calculate the single stream matched-
filtering (MF) based SINR, which corresponds to the ideal
situation of no inter-stream interference [20, p.414]. Note
that if H is orthogonal, all three approaches (ZF, NV, MF)
are equivalent.

The main challenge in our proposed UAV algorithms
arises from the uncertainties in drone localization and the
errors that accompany the movements of UAVs. We assume
that each UAV uses its inertial sensors to guide its motion
and is able to localize itself globally with the help of a bea-
con transmitted by the BS antenna array. We will consider
two types of errors in our evaluation: localization errors and
actuation errors. The localization error is due to inaccuracies
in global positioning. It occurs when the mth drone believes
it is at location qm but it is actually at location qm+nloc. As
for the actuation error, it arises from the inertial sensors and it
occurs when themth drone moves with a motion vector r, but
instead of ending up at position qm+ r, it ends up at position
qm + r+ nact. In this work, we assume that all nloc and nact
are random Gaussian variables with standard deviations σloc
and σact, respectively. We evaluate the performance of pro-
posed algorithms with respect to localization and actuation
error variances.

3. DISTRIBUTED UAV POSITION OPTIMIZATION

The problem formulation defined in (4) aims to find the op-
timal positions of all NR nodes. Trying to solve the prob-
lem centrally at once and sending the chosen positions to the
UAVs is not practical. It would require perfect knowledge of
the positions of UAVs and the ability to accurately position
them anywhere in space. However, in practice, the inher-
ent accuracy limit for any localization system and the vari-
ability in the actuation of the drones make positioning them
exactly in a certain location difficult. Any practical deploy-
ment would need to account and adapt to these disturbances in
real-time. Solving optimization centrally on one UAV would
be too complex, while off-loading it to the BS would incur a
large communication overhead.

Due to these limitations, we recast the problem into a dis-
tributed formulation which is more practical. We consider the
case where each UAV with some information from the rest of
the UAVs tries to optimize its position. By performing several
iterations over all the UAVs, the distributed algorithm solves
the global problem.



3.1. Problem Formulation
From the perspective of the mth UAV at the ith iteration, the
problem can be formulated as follows

minimize
r
(i)
m

f(q(i)
m + r(i)m ) (5)

where q
(i)
m is the position of the mth UAV at the ith iteration,

rm is a vector representing the motion of the UAV in space,
such that q(i+1)

m = q
(i)
m + r

(i)
m and the objective function is

f(qm) =
∑

(l,k)∈K

|h∗l (qm)hk(qm)|2 (6)

This is equivalent to finding the step which orthogonalizes the
channel. The ultimate goal is to have the objective of the dis-
tributed optimization problem defined in (5) to be close to 0.
But, since the change of location of one UAV affects an entire
row of the channel matrix according to (1), a single UAV can
not orthogonalize the columns of the matrix on its own. All
UAVs have to move to accomplish this goal. Additionally, the
motion of one UAV affects all the others, thus the algorithm
needs to iterates over all UAVs several times. We propose
two algorithms to solve the global problem given in (4) by
iteratively addressing the distributed problem in (5).

3.2. Gradient descent (GD) location optimization

We use gradient descent to find a practical solution to the dis-
tributed problem. We calculate the gradient of the objective
function with respect to qm given by

∇f(qm) =
∑

(l,k)∈K

4π

λ
(<
{
h∗−m,lh−m,k

}
× sin(a)

−=
{
h∗−m,lh−m,k

}
×cos(a))×(u(pl − qm)− u(pk − qm))

where a = 2π
λ (‖pl − qm‖ − ‖pk − qm‖), u(v) is a unit

vector in direction of v, and h−m,l is column l except ele-
ment m. The value of rm is then calculated using r

(i)
m =

−b(i)GD∇f(q
(i)
m ) where b(i)GD is the step size which is a param-

eter of the algorithm and b(i+1)
GD = d b

(i)
GD, where d < 1 is a

decay factor which reduces the step size every iteration.
In our proposed approach, each UAV decides on its

motion alone, while one master UAV coordinates between
them. The proposed GD algorithm proceeds as follows.

1: estimateBroadcastCSIAll() {Master, Drones}
2: for i = 1 to #Iterations {Master} do
3: estimatePositionAll() {Master, Drones}
4: for all d in Drones {Master} do
5: calcGradientAndMoveDrone(d) {Drone d}
6: estimateBroadcastCSIDrone(d) {Drone d}
7: end for
8: c=evalChannelOrthogonality() {Master}

9: if meetsCriterion(c) {Master} then
10: exitStartCommunicationStage() {Master}
11: end if
12: end for
Note that this algorithm requires position estimation, which
adds overhead to the system.

3.3. Brute force (BF) location optimization

The brute force algorithm relies only on channel information
to guide UAVs and does not need any position information.
The idea behind it is simple. Each drone tries a set of positions
and determines the one that minimizes the objective function.
It can be formally described as moving r

(i)
m = b

(i)
BF ẑ

(i), where
ẑ = argmin

z∈Z
f(qm+r

(i)
m z) is calculated by evaluating the func-

tion f(qm + r
(i)
m z) for all z ∈ Z and choosing the minimum.

Here Z = {0,±e1,±e2,±e3}, ei ∈ R3 and has one at po-
sition i and zero elsewhere. The proposed BF algorithm pro-
ceeds as follows.

1: estimateBroadcastCSIAll() {Master, Drones}
2: for i = 1 to #Iterations {Master} do
3: for all d in Drones {Master} do
4: for all z ∈ Z {Drone d} do
5: moveDrone(d,z) {Drone d}
6: estimateCSIandEvalObjectiveDrone(d) {Drn d}
7: moveDrone(d,−z) {Drone d}
8: end for
9: ẑ = findMinObj() ; moveDrone(d,ẑ) {Drone d}

10: broadcastCSIDrone(d) {Drone d}
11: end for
12: c=evalChannelOrthogonality() {Master}
13: if meetsCriterion(c) {Master} then
14: exitStartCommunicationStage() {Master}
15: end if
16: end for

4. EVALUATION

The setup used for evaluation is as follows. The BS transmit-
ter consists of 16 antennas arranged in a 4×4 uniform square
array, with separation between elements of 25 cm. There are
16 UAVs acting as receivers. At the beginning, UAVs are
randomly distributed in a cube of side 50m, whose center is
placed 1km away from the BS. The frequency of operation
is assumed to be 60 GHz, though the proposed algorithms
are valid for any other frequency. The SNR is assumed to be
equal to 10 dB after considering the antenna gains. BF was
tested with a step size of bBF = 0.3 while GD used a step size
of bGD = 0.05, both with decays of d = 0.999.

We start by showing the ability of the algorithms to con-
verge to an orthogonal channel. Figure 1a shows the ICN
obtained by each of the proposed algorithms as a function
of number of iterations. Both algorithms ran until achieving
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an inverse condition number of 0.95. Figure 1b, shows the
NV SINR, ZF SINR, and MF in solid, dashed, and dash-dot
respectively. We observe that the ZF SINR converges faster
and approaches the maximum SINR starting from ICN=0.5.
However, when both ZF and NV algorithms converge to ICN
larger than 0.95, they have almost identical performance,
which advocates for NV combining being a simpler option.

In addition to the proposed algorithms, we evaluated a
baseline algorithm which consists of directing UAVs to form
an optimal uniform rectangular array (URA) [14]. Each UAV
is directed to a position in the URA that minimizes the to-
tal distance traveled by all UAVs. This algorithm achieves
an orthogonal H at the first iteration if there are no exter-
nal disturbances, otherwise the UAVs keep attempting to get
to the assigned positions in subsequent iterations. All these
methods were tested for different standard deviations of lo-
calization and actuation errors. The curves correspond to the
average of 500 random starting position.

Figure 2 shows the performance of the proposed methods
against the standard deviation of localization errors. First, we
notice that the BF has the advantage of not requiring any lo-
cation information, hence its curves remain constant. The av-
erage distance traveled until ICN 0.5 and 0.95 are reached is
shown in solid and dotted lines respectively in Figure 2a. We
see that GD requires less distance traveled than URA and BF
to achieve an ICN of 0.5. The URA method has the advan-
tage of starting with a higher ICN, since it directs the UAVs to
a set of positions which orthogonalize the channel. But due
to its complete reliance on localization information, as the
standard deviation of localization error increases, it starts re-
quiring more distance to achieve a high ICN than both meth-
ods. In Figure 2b, we show the SINR obtained at the end
of each of algorithm. We see that any location optimization
gives at least 15 dB improvement in SINR over random place-
ment even when localization errors are considered. We also
notice that both BF and GD give results comparable to URA
positioning at a less distance traveled under high localization
errors.

The effect of actuation error on the obtained SINR is
shown in Figure 3. We can see that the BF algorithm is the
most affected by the actuation error. This due to the fact it
relies on performing 6 back and forth motions given by Z for
each UAV per each iteration step.

5. CONCLUSION

We proposed two distributed algorithms that adaptively op-
timize the positions of UAVs in order to improve the LoS
MIMO channel capacity. The gradient descent based algo-
rithm is able to converge faster than brute force based algo-
rithm but it requires position information. On the other hand,
the brute force algorithm uses only channel information to
find an optimized set of positions. Both algorithms are more
resilient to localization errors compared to placing the UAVs
in a URA as indicated by the required traveled distance. Gra-
dient descent was shown to be insensitive to actuation errors
in contrast to brute force bases algorithm. They were also
shown to achieve up to 20 dB SINR improvement compared
to the approach of relying on the random placement of the
UAVs for a 16× 16 LoS MIMO channel.
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