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ABSTRACT

The problem of Bayesian filtering and smoothing in nonlin-

ear models with additive noise is an active area of research.

Classical Taylor series as well as more recent sigma-point

based methods are two well-known strategies to deal with

these problems. However, these methods are inherently se-

quential and do not in their standard formulation allow for

parallelization in the time domain. In this paper, we present

a set of parallel formulas that replace the existing sequen-

tial ones in order to achieve lower time (span) complexity.

Our experimental results done with a graphics processing unit

(GPU) illustrate the efficiency of the proposed methods over

their sequential counterparts.

Index Terms— parallel computing, nonlinear estimation,

iterated extended Kalman smoother, sigma-point smoother

1. INTRODUCTION

In recent years, the rapid advancements in hardware technolo-

gies such as graphics processing units (GPUs) and tensor pro-

cessing units (TPUs) allow compute-intensive workloads to

be offloaded from the central processing units (CPUs) by in-

troducing parallelism [1–3]. There is a wide variety of areas

that can benefit from parallelization [4], one of which is state

estimation.

State estimation is a common task that arises in various

areas of science and engineering [5–7]. It aims at combining

the noisy measurements and the model to estimate the hard-

to-measure states. A frequent and classical method for solv-

ing this problem is based on Bayesian filtering and smooth-

ing [5] which inherently provides a sequential solution with

linear complexity in the number of time steps.

In order to tackle the computational burden of Kalman

type of filters and smoothers, [8,9] provide sub-linear compu-

tational methods by taking advantage of the sparse structures

of the matrices appearing in the batch forms of the problems.

In other works, using an ensemble formulation of Kalman fil-

ter has been used to speed up the matrix computations through

parallelization [10,11]. The primary focus of these works was

the efficient computation of the covariance matrices either

by introducing sparse or sample covariance matrices rather

than considering the temporal state-space structure per se.

The authors would like to thank Academy of Finland for funding.

While in the aforementioned works, parallelization of the sub-

problems in the area of Bayesian filtering and smoothing were

considered, [12] presented a general parallelizable formula-

tions specifically designed for parallelizing state-estimation

problems in the temporal direction. Moreover, for the special

case of linear Gaussian model, parallel equations for comput-

ing Kalman filter and Raugh–Tung–Striebel smoother solu-

tions were derived.

Overcoming the computational burden in the case of

nonlinear dynamical systems with additive Gaussian noise

is also of paramount importance. In these types of models,

various linearization approaches can be used. Taylor series

expansion based iterated extended Kalman smoother (IEKS)

methods [13–15] and sigma-point based methods [5] are

well-established techniques in literature. Iterated sigma-point

methods have been proposed, for example, in [16, 17]. De-

spite the capabilities of the aforementioned methods in state

estimation in nonlinear Gaussian models, they lack a frame-

work which enables the computations in a more efficient way

when using parallelization.

The contribution of this paper is to present a set of par-

allelizable formulas for filtering and smoothing in nonlinear

Gaussian systems, in particular, IEKS and sigma-point based

methods using a scan algorithm [12,18]. The proposed meth-

ods reduce the linear span complexity of the state estimation

methods to logarithmic with respect to the number of mea-

surements.

This paper is organized as follows: Section 2 briefly re-

views the generic parallel framework for Bayesian filters and

smoothers. Sections 3 and 4 are concerned with presenting

the formulation of the problem and proposing our method.

Section 5 analyzes the efficiency and the computational com-

plexity of the proposed method through one numerical exam-

ple, and Section 6 concludes the paper.

2. GENERAL PARALLEL FRAMEWORK FOR

BAYESIAN FILTERS AND SMOOTHERS

It is shown in [12] that the computation of sequential Bayesian

filtering and smoothing can be converted to general parallel

formulas in terms of associative operations. This allows for

the use of the parallel scan method [18] which is a common

algorithm used to speed-up sequential computations, for ex-

ample, on GPU-based computing systems. In the rest of this
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section, we review the general parallel algorithms provided

in [12] which we then extend to nonlinear Gaussian models.

Given a state space model of the following form:

xk ∼ p(xk | xk−1), yk ∼ p(yk | xk), (1)

the goal of the filtering problem is to find the posterior dis-

tributions p(xk | y1:k) for k = 1, . . . , n. This distribution

is a probabilistic representation of the available statistical in-

formation on the state xk ∈ R
nx given the measurements

y1:k = {y1, . . . , yk} with yk ∈ R
ny . Having acquired the

filtering results for k = 1, . . . , n, and using all the n mea-

surements, the Bayesian smoother can be used to compute the

posterior distributions p(xk | y1:n). The following strategies

are used in [12] so as to particularize ak and the binary as-

sociative operator ⊗ which provide a parallel framework for

solving the aforementioned sequential filtering and smooth-

ing problem.

Filtering. Given two positive functions g′i(y), g
′
j(y) and

two conditional densities f ′
i(x | y), f ′

j(x | y), the authors

of [12] proved that the binary operation (f ′
i , g

′
i) ⊗ (f ′

j , g
′
j) =

(f ′
ij , g

′
ij) defined by

f ′
ij(x|z) =

∫

g′i(y)f
′
j(x | y)f ′

i(y | z)dy
∫

g′j(y)f
′
i(y | z)dy

,

g′ij(z) = g′i(z)

∫

g′j(y)f
′
i(y | z)dy,

(2)

is associative and by selecting ak = (f ′
k, g

′
k) as follows:

f ′
k(xk | xk−1) = p(xk | yk, xk−1),

g′k(xk−1) = p(yk | xk−1),
(3)

where p(x1 | y1, x0) = p(x1 | y1) and p(y1 | x0) = p(y1),

the Bayesian map
(

p(xk|y1:k)
p(y1:k)

)

can be rewritten as the k-th pre-

fix sum, a1 ⊗ · · · ⊗ ak.

Smoothing. Similarly [12], for any conditional densi-

ties f ′
i(x | y) and f ′

j(x | y) the binary operation f ′
i ⊗

f ′
j :=

∫

f ′
i(x|y)f

′
j(y|z)dy is associative and by select-

ing ak = p(xk | y1:k, xk+1) with an = p(xn | y1:n),
the Bayesian smoothing solution can then be calculated as

p(xk | y1:n) = ak ⊗ ak+1 ⊗ · · · ⊗ an.

Having considered the aforementioned general formula-

tions, in this paper, we aim to extend the element ak and

the binary associative operator ⊗ to linear approximations

of non-linear Gaussian systems, specifically, to the extended

Kalman filter and smoother, and sigma-points methods.

3. PROBLEM FORMULATION

We consider the following model:

xk = fk−1(xk−1) + qk−1,

yk = hk(xk) + rk,
(4)

where fk−1(.) and hk(.) are nonlinear functions. The qk and

rk are the process and measurement noises, which are as-

sumed to be zero-mean, independent Gaussian noises with

known covariance matrices, Qk and Rk, respectively. Fur-

thermore, the initial state is Gaussian x0 ∼ N(m0, P0) with

known mean m0 and covariance P0. This paper is concerned

with the computing approximate posterior distributions of the

states x0:n = {x0, x1, . . . , xn} given all the measurements

y1:n = {y1, x1, . . . , yn} in parallel form, or more precisely,

the corresponding filtering and smoothing distributions.

Since the filtering and smoothing problems are not solv-

able in closed-form in the general non-linear case, one needs

to resort to approximations. Here we follow the Gaussian fil-

tering and smoothing frameworks [5] and form linear approx-

imations of the system (4) in the following form:

fk−1(xk−1) ≈ Fk−1xk−1 + ck−1 + ek−1,

hk(xk) ≈ Hkxk + dk + vk,
(5)

where Fk ∈ R
nx×nx , ck ∈ R

nx , Hk ∈ R
ny×nx , dk ∈ R

ny ,

ek ∈ R
nx and vk ∈ R

ny are zero mean Gaussian noises with

covariance matrices Λk and Ωk, respectively.

There are different strategies to effectively select the

parameters of (5). In this paper, we will consider two

such strategies widely-used in the Gaussian filtering liter-

ature, namely iterated sigma-point and extended Kalman

smoothers [14–16]. In these approaches, the linearized-filter-

smoother method is repeated M times, with the linearization

parameters leveraging the results of the previous smoothing

pass instead of the previous step. We can therefore see our

successive linear approximations as being parametrized by

the following vectors and matrices:

F
(i)
0:n−1, c

(i)
0:n−1,Λ

(i)
0:n−1, H

(i)
0:n−1, d

(i)
1:n,Ω

(i)
1:n. (6)

In the rest of this section, we will discuss how to acquire the

linearized parameters of (6) using these methods. Also, for

the sake of notational simplicity, we drop the index i from

these parameters.

Iterated sigma-point method. In this approach, we se-

lect the parameters (Fk−1, ck−1,Λk−1) and (Hk, dk,Ωk)
using sigma-point-based statistical linear regression (SLR)

method [16] as follows. First, we select m sigma points

X
(i)
1,k, . . . ,X

(i)
m,k and their associated weights w

(i)
1,k, . . . , w

(i)
m,k

according to the posterior moments x̄
(i−1)
k and P̄

(i−1)
k of

the previous iteration, which are the best available estimates

for the means and covariances of the smoothing distribution.

Then, in order to find the parameters (Fk−1, ck−1,Λk−1),

transformed sigma-points are obtained as Zj = fk−1(X
(i)
j,k−1)

for j = 1, . . . ,m, and the linearization parameters are then

2



given by:

Fk−1 = Ψ⊤P̄−1
k−1,

ck−1 = z̄ − Fk−1x̄k−1,

Λk−1 = Φ− Fk−1P̄k−1F
⊤
k−1.

(7)

If we now write x̄ = x̄k−1 and wj = w
(i)
j,k−1, the required

moment approximations for Equation (7) are [19]:

z̄ ≈
m
∑

j=1

wjZj ,

Ψ ≈
m
∑

j=1

wj(Xj − x̄)(Zj − z̄)⊤,

Φ ≈

m
∑

j=1

wj(Zj − z̄)(Zj − z̄)⊤.

(8)

Similarly, reusing Equations (8) with x̄ = x̄k, wj = w
(i)
j,k,

and Zj = hk(X
(i)
j,k ) the parameters (Hk, dk,Ωk) can be cal-

culated as follows:

Hk = Ψ⊤P̄−1
k ,

dk = z̄ −Hkx̄k,

Ωk = Φ−HkP̄kH
⊤
k .

(9)

The iterated posterior linearization smoother (IPLS) [16] now

consists in iterating Equations (7) and (9) with updated ap-

proximate means and covariances of the posterior distribution

at each iteration.

Iterated extended Kalman smoother. In this case, Ω and

Λ are selected as zeros, and (Fk−1, ck−1) and (Hk, dk) are

obtained by analytical linearization at the previous posterior

(smoother) mean estimate of x0:N . This approach is recog-

nized as Gauss–Newton method when computing the MAP

estimates [14] and it can also be extended to correspond to

Levenberg–Marquardt method [15]. Here, we aim to obtain

the linearized parameters according to this method which will

be used in the next section to get parallel formulas.

By expanding fk−1(xk−1) and hk(xk) in the first-order

Taylor series utilizing the previous posterior means x̄k , the

parameters of (6) are:

Fk−1 = ∇f(x̄k−1),

ck = f(x̄k−1)− Fk−1x̄k−1,

Hk = ∇h(x̄k),

dk = h(x̄k)−Hkx̄k,

(10)

where ∇f and ∇h are the Jacobians of f and h, respectively.

Please note that in this paper computation of parameters in

(7) and (9), and (10) is performed offline, which means that

we have all measurements as well as the results of previous

trajectory, that is, x̄1:n and P̄1:n for all n data points.

Having obtained the linearized parameters, the remaining

task is to find the parallel formulas which will be discussed in

the next section.

4. THE PROPOSED METHOD

Probability densities for the model of form (4) with lineariza-

tion parameters of form (6) can be formulated as follows:

p(xk | xk−1) ≈ N(xk;Fk−1xk−1 + ck−1, Q
′
k−1),

p(yk | xk) ≈ N(yk;Hkxk + dk, R
′
k),

(11)

where Q′
k−1 = Qk−1 + Λk−1 and R′

k = Rk + Ωk. The

goal here is to obtain the parallel nonlinear Gaussian filter

and smoother for the model (11). To meet this goal, similar

to the method used in [12], we define ak and binary operator

⊗ for our new linearized model.

Nonlinear Gaussian filtering. Aiming to specify the el-

ement ak for obtaining parallel filtering equations accord-

ing to (3), we apply Kalman filter update step to the density

p(xk | xk−1) with measurement yk. The results of the match-

ing terms are as follows:

f ′
k(xk | xk−1) = p(xk | yk, xk−1)

= N(xk;Akxk−1 + bk, Ck),
(12)

where:

Ak = (Inx
−KkHk)Fk−1,

bk = ck−1 +Kk(yk −Hkck−1 − dk−1),

Ck = (Inx
−KkHk)Q

′
k−1,

Kk = Q′
k−1Hk

⊤S−1
k ,

Sk = HkQ
′
k−1H

⊤
k +R′

k.

(13)

It is worth noticing that in order to find parameters of (13) at

k = 1 and given m0 and P0, conventional formulations of

the Kalman filter method with the linearized parameters are

applied directly for prediction and update steps.

Also, using the information form of Kalman filter [20], the

distribution g′k(xk−1) = p(yk | xk−1) ∝ NI(xk−1; ηk, Jk)
can be obtained as follows:

Jk = (HkFk−1)
⊤S−1

k HkFk−1

ηk = (HkFk−1)
⊤S−1

k Hk(yk −Hkck−1 − dk).
(14)

Equations (13) and (14) provide the parameters of element

ak = (Ak, bk, Ck, ηk, Jk) in the filtering step, and they can

be computed in parallel. Also, given ai and aj with the men-

tioned parameters, the binary associative operator ai ⊗ aj =

3



aij can then be calculated with the following parameteriza-

tion [12, lemma 8]:

Aij = Aj(Inx
+ CiJj)

−1Ai,

bij = Aj(Inx
+ CiJj)

−1(bi + Ciηj) + bj ,

Cij = Aj(Inx
+ CiJj)

−1CiA
⊤
j + Cj ,

ηij = A⊤
i (Inx

+ JjCi)
−1(ηj − Jjbi) + ηi,

Jij = A⊤
i (Inx

+ JjCi)
−1JjAi + Ji.

(15)

The proof for Equations (15) can be found in [12].

Nonlinear Gaussian smoothing. Assume that the filtering

means x∗
k and covariance matrices P ∗

k for the model (11) have

been acquired as described above. We now get the following

parameters for the smoothing step:

p(xk | y1:k, xk+1) = N(xk;Ekxk+1 + gk, Lk) (16)

for k < n:

Ek = PkF
⊤
k (FkP

∗
kF

⊤
k +Q′

k−1)
−1,

gk = x∗
k − Ek(Fkx

∗
k + ck),

Lk = P ∗
k − EkFkP

∗
k ,

(17)

and for k = n:

En = 0,

gn = x∗
n,

Ln = P ∗
n .

(18)

In the smoothing step, the parameters ak = (Ek, gk, Lk) can

be calculated in parallel. Now, given two elements ai and aj ,

the binary associative operator defined by ai ⊗ aj = aij can

be parametrized as follows [12, lemma 10]:

Eij = EiEj ,

gij = Eigj + gi,

Lij = EiLjE
⊤
i + Li.

(19)

5. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

methods on a simulated coordinated turn model with a bear-

ings only measurement model [21] which was also used in

[15]. To this end, we compare the effective average run time

of the parallel versions of the extended (IEKS) and cubature

integration [5] based sigma-point iterated smoothers (IPLS)

with M = 10 iterations, as described in Section 4, with their

sequential counterparts both on a CPU (Intel® Xeon® running

at 2.30GHz) and on a GPU (Nvidia® Tesla® P100 PCIe 16 GB

with 3584 cores). For our experiments we leverage the JAX

framework [22] which implements the Blelloch parallel-scan

algorithm [18] natively1.

1The code to reproduce the experiments can be found at the following

address.

In Figures 1a and 1b we observe that while the total com-

putational cost of the parallel implementation of the iterated

smoothers is higher than that of their sequential counterparts

(Figure 1a), the parallelization properties of our proposed al-

gorithms prove beneficial on a distributed environment such

as a GPU (Figure 1b). Moreover, as outlined by the medal-

lion in Figure 1b, our experiments indeed exhibit the theoret-

ical logarithmic span complexity - derived in [12] for a linear

Gaussian state space model - up to the parallelization capabil-

ities of our GPU (3584 cores).
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(a) CPU run time
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Fig. 1: Run time comparison of the parallel and sequential

versions of the IEKS and IPLS on CPU (a) and GPU (b)

6. CONCLUSION

In this paper, parallel formulations for two kinds of nonlinear

smoothers, namely, iterated sigma-point-based smoothers and

iterated extended Kalman smoothers, have been presented.

The proposed algorithms have the capability of diminishing

the span-complexity from linear to logarithmic. Furthermore,

the experimental results, which were conducted on a GPU,

showed the benefits of the proposed methods over classical

sequential methods.
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[1] T. Rauber and G. Rünger, Parallel Programming: For

multicore and cluster systems, Springer, 2013.

[2] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.

Stone, and J. C. Phillips, “GPU computing,” Proceed-

ings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[3] N. P. Jouppi, C. Young, N. Patil, D. Patterson,

G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,

A. Borchers, et al., “In-datacenter performance analy-

sis of a tensor processing unit,” in Proceedings of the

44th Annual International Symposium on Computer Ar-

chitecture, 2017, pp. 1–12.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and S. Clif-

ford, Introduction to Algorithms, MIT Press, 2009.
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