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ABSTRACT

We propose a two-stream convolutional network for audio
recognition, that operates on time-frequency spectrogram
inputs. Following similar success in visual recognition, we
learn Slow-Fast auditory streams with separable convolutions
and multi-level lateral connections. The Slow pathway has
high channel capacity while the Fast pathway operates at a
fine-grained temporal resolution. We showcase the impor-
tance of our two-stream proposal on two diverse datasets:
VGG-Sound and EPIC-KITCHENS-100, and achieve state-
of-the-art results on both.

Index Terms— audio recognition, action recognition, fu-
sion, multi-stream networks

1. INTRODUCTION

Recognising objects, interactions and activities from audio is
distinct from prior efforts for scene audio recognition, due to
the need for recognising sound-emitting objects (e.g. alarm
clock, coffee-machine), sounds generated from interactions
with objects (e.g. put down a glass, close drawer), and activ-
ities (e.g. wash, fry). This introduces challenges related to
variable-length audio associated with these activities. Some
can be momentary (e.g. close) while others are repetitive
over a longer period (e.g. fry), and many exhibit intra-class
variations (e.g. cut onion vs cut cheese). Background or ir-
relevant sounds are often captured with these activities. We
focus on two activity-based datasets, VGG-Sound [I] and
EPIC-KITCHENS [2], captured from YouTube and egocen-
tric videos respectively, and target activity recognition solely
from the audio signal associated with these videos.

There is strong evidence in neuroscience for the existence
of two streams in the human auditory system, the ventral
stream for identifying sound-emitting objects and the dorsal
streams for locating these objects. Studies [3, 4] suggest the
ventral stream accordingly exhibits high spectral resolution
for object identification, while the dorsal stream has a high
temporal resolution and operates at a higher sampling rate.

Using this evidence as the driving force for designing our
architecture, and inspired by a similar vision-based architec-
ture [5], we propose two streams for auditory recognition: a
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Slow and a Fast stream, that realise some of the properties
of the ventral and dorsal auditory pathways respectively. Our
streams are variants of residual networks and use 2D separa-
ble convolutions that operate on frequency and time indepen-
dently. The streams are fused in multiple representation lev-
els with lateral connections from the Fast to the Slow stream,
and the final representation is obtained by concatenating the
global average pooled representations for action recognition.
The contributions of this paper are the following: i) we
propose a novel two-stream architecture for auditory recog-
nition that respects evidence in neuroscience; ii) we achieve
state-of-the-art results on both EPIC-KITCHENS and VGG-
Sound; and finally iii) we showcase the importance of fusing
our specialised streams through an ablation analysis. Our pre-
trained models and code is available at ht tps://github.
com/ekazakos/auditory-slow—-fast.

2. RELATED WORK

Single-stream architectures. A common approach in audio
recognition for both scene and activity recognition, is to use
a single-stream convolutional architecture [0, 7, 8]. Sound-
Net [8] uses 1D ConvNet trained in a teacher-student manner,
and fine-tuned for acoustic scene classification. Single-stream
2D ConvNets have been extensively used by high-ranked en-
tries of DCASE challenges [9, 10, 11, 12, 13, 14], for acous-
tic scene classification. These consider spectograms as input
and utilise 2D convolutions with square k x k filters, process-
ing frequency and time together [6, 7, 9, 10, 11, 12, 13, 14],
similarly to image ConvNets. However, symmetric filtering
in frequency and time might not be optimal as the statistics
of spectrograms are not homogeneous. One alternative is to
utilise rectangular k& x m filters as in [15, 16]. Another is sep-
arable convolutions with 1 x k and k x 1 filters, which have

recently been used in audio [17, 18].
Multi-stream architectures. Late fusion of multiple streams
for audio recognition was used in [19, 20, 21, 22, 23, 24, 25].

Most approaches utilise modality-specific streams [ 19, 20, 21,
]. In addition to late fusion, [20, 21] integrate multi-level
fusion in their architecture in the form of attention.
In [23, 24, 25], all streams digest the same input. In [23],
one stream takes as input low frequencies and the second in-
puts high frequencies. [24] applies median filtering with dif-
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Fig. 1: Proposed Slow-Fast architecture. Strided input (by «) to the Slow pathway, along with increased channels. The Fast
pathway has less channels (by ). Right: two types of residual blocks with separable convolutions (brown vs green).

ferent kernels at the input of each stream to model long dura-
tion sound events, medium, and short duration impulses sep-
arately. In [25] , 1D convolutions are used with different dila-
tion rates at each stream to model convolutional streams that
operate on different temporal resolutions. The architectures
of these multiple streams remain identical.

Similar to these works, we propose to utilise two-streams
that consider the same input. Different from these, we design
each stream with varying number of channels and temporal
resolution, in addition to convolutional separation. Further-
more, we integrate the streams through multi-level fusion.

3. NETWORK ARCHITECTURE

Next, we describe in detail the design principles of our ar-
chitecture, depicted in Figure 1. The Slow stream operates
on a low sampling rate with high channel capacity to cap-
ture frequency semantics, while the Fast stream operates on a
high sampling rate with more temporal convolutions and less
channels to capture temporal patterns.

Input. Both streams operate on the same audio length, from
which a log-mel-spectrogram is extracted. The Fast stream
takes as input the whole log-mel-spectrogram without any
striding, while the Slow stream uses a temporal stride of «
on the input log-mel-spectrogram, where a > 1.

Slow and Fast streams. The two streams are variants of
ResNet50 [26]. Each stream is comprised of an initial con-
volutional block with a pooling layer followed by 4 residual
stages, where each stage contains multiple residual blocks.
The two streams differ in their ability to capture frequency se-
mantics and temporal patterns. The details of each stream in-
cluding the number of blocks per stage and numbers of chan-
nels can be seen in Table 1.

The Slow stream has a high channel capacity, with 5 times
more channels than the Fast stream, while operating on a low
sampling rate. As the input spectrogram is strided temporally
by «, the intermediate feature maps have a lower temporal
resolution. Moreover, the Slow stream has temporal convo-
lutions only in res4 and ress (see the brown and green blocks

stage Slow pathway Fast pathway output sizes 7' X F'
spectrogram - - 400x 128
. . Slow : 100x 128
data layer stride 4, 1 stride 1, 1 Fast + 400 128
1 %7, 64 5%x7,8 Slow : 50x 64
coni stride 2, 2 stride 2, 2 Fast : 200X 64
ool 33 max 33 max Slow : 25x32
poohs stride 2,2 stride 2,2 Fast : 100x32
1x1,64 3x1,8 .
ress %364 | x3 138 |x3 ow
11,256 1%1,32 ast : :
11,128 3x1,16 .
ress 1%3,128 | x4 153,16 | x4 how X8
11,512 11,64 ast
3x 1,256 3x1,32 )
ress 1%3,256 | x6 1%3.32 | x6 ﬁ’”;vlf)%xxsg
11,1024 %1, 128 ast :
3x1,512 3x1,64 .
ress 1%3.512 | x3 13,64 |x3 low : B0
11,2048 1%1,256 ast :
global average pool, concatenate, fc # classes

Table 1: Architecture details for Fig. 1

in Fig. | right). By restricting the temporal resolution and
the temporal kernels of the Slow stream while keeping a high
channel capacity, this stream can focus on learning frequency
semantics.

The Fast stream on the other hand uses no temporal strid-
ing in the input. Therefore, the intermediate feature maps
have a higher temporal resolution, with temporal convolutions
throughout the stream. With a high temporal resolution and
more temporal kernels while having less channels, it is easier
for the Fast stream to focus on learning temporal patterns.
Separable convolutions. We use separable convolutions in
frequency and time as can be seen in the green block in Fig. |
right. We break a 3 x 3 kernel in two kernels, 3 x 1 followed
by 1 x 3. Separable convolutions have proven useful for video
recognition [27]. We utilise them with the motivation to sep-
arately attend to time and frequency of the input signal. We
contrast separable convolutions to two-dimensional filters that
convolve across both frequency and time.

Multi-level fusion. Following the approach in [5], we fuse
the information from the Fast to the Slow stream with lateral
connections, at multiple levels. We first apply a 2D temporal
convolution with a kernel 7 x 1 and a stride of « to the output
of the Fast stream to match the Slow stream sampling rate,



and then we concatenate the downsampled feature map with
the Slow stream feature map. Fusion is applied after pool,
and each residual stage.

The final representation fed to the classifier is obtained

by applying time-frequency global average pooling after the
last convolutional layer of both Slow and Fast streams and
concantenating the pooled representations. We set o« = 4 and
£ = 8 in all our experiments.
Differences compared to visual Slow-Fast [5]. Our two-
stream architecture is inspired by its visual counterpart [5]
which produces state of the art results for visual action recog-
nition. However, key differences are introduced: Our input
is 2D rather than 3D, as we operate on time-frequency while
the visual Slow-Fast operates on time-space. Hence, we use
2D separable convolutions decomposed as 3 x 1 and 1 x 3
filters, whereas [5] uses 3D separable convolutions decom-
posed as 3 x 1 x 1 and 1 x 3 x 3 filters. Additionally, the
sampling rate for audio is naturally significantly higher than
that of video, e.g. 24kHz vs 50fps in EPIC-KITCHENS-100,
and the dimensionality in video is significantly higher. Ac-
cordingly, the approach in [5] only considers a few temporal
samples (8 and 32 frames in the Slow and Fast streams respec-
tively). In contrast, our audio spectogram (see Sec 4.2) con-
tains 100 and 400 temporal dimensions in the Slow and Fast
streams respectively. To compensate for the high sampling
rate of audio, we temporally downsample the representations
of both streams by a factor of 4, using a temporal stride=2 in
conv; and pool, of both streams. The remaining stages do not
perform any temporal downsampling'.

4. EXPERIMENTS

4.1. Datasets

VGG-Sound. VGG-Sound [1] is a large-scale audio dataset
obtained from YouTube. It contains over 200k clips of 10s
for 309 classes capturing human actions, sound-emitting ob-
jects as well as interactions. These are visually-grounded
where sound emitting objects are visible in the corresponding
video clip, utilising image classifiers to find correspondence
between sound and image labels. Audio is sampled at 16kHz.
EPIC-KITCHENS-100. EPIC-KITCHENS-100 [2] is the
largest egocentric audio-visual dataset, containing unscripted
daily activities in kitchen environments. The data are recorded
in 45 different kitchens. It contains 100 hours of data, split
across 700 untrimmed videos, and 90K trimmed action clips.
These capture hand-object interactions as well as activities,
formed as the combination of a verb and a noun (e.g. “cut
onion” and “wash plate”), where there are 97 verb classes,
300 noun classes, and 4025 action classes (many verbs and
nouns do not co-occur). The classes are highly unbalanced.

'In preliminary experiments, we tried different downsampling schemes,
such as strided convolutions throughout the whole network but they resulted
in inferior performance.

Actions are mainly short-term (average action length is 2.6s
with minimum length 0.25s). Audio is sampled at 24kHz.

4.2. Experimental protocol

Feature extraction. We extract log-mel-spectrograms with
128 Mel bands using the Librosa library. For VGG-Sound,
we use 5.12s of audio with a window of 20ms and a hop of
10ms, resulting in spectrograms of size 512 x 128. For EPIC-
KITCHENS-100, we use 2s of audio with a 10ms window
and a Sms hop, resulting in spectrograms of size 400 x 128.
For clips < 2s in EPIC-KITCHENS-100, we duplicate the last
time-frame of the log-mel-spectrogram.
Train / Val details. All models are trained using SGD with
momentum set to 0.9 and cross-entropy loss. We train on
EPIC-KITCHENS-100 as a multitask learning problem, as
in [2], using two prediction heads, one for verbs and one for
nouns. We train on VGG-Sound from random initialisation
for 50 epochs and fine-tune on EPIC-KITCHENS-100 using
the VGG-Sound pretrained models for 30 epochs. We drop
the learning rate by 0.1 at epochs 30 and 40 for VGG-Sound,
and at epochs 20 and 25 for EPIC-KITCHENS-100. For fine-
tuning, we freeze Batch-Normalisation layers except the first
one, as done in [28]. For regularisation, we use dropout on
the concatenation of Slow and Fast streams with probability
0.5, plus weight decay in all trainable layers using the value
of 10~%. For data augmentation during training, we use the
implementation of SpecAugment [29] from [30] and set its
parameters as follows: 2 frequency masks with F=27, 2 time
masks with T=25, and time warp with W=5. During training
we randomly extract one audio segment from each clip. Dur-
ing testing we average the predictions of 2 equally distanced
segments for VGG-Sound, and 10 for EPIC-KITCHENS-100.
Evaluation metrics. For VGG-Sound, we follow the evalu-
ation protocol of [I, 7] and report mAP, AUC, and d-prime,
as defined in [7]. Additionally we report top-1/5% accuracy.
For EPIC-KITCHENS-100, we follow the evaluation proto-
col of [2] and report top-1 and top-5 % accuracy for the val-
idation and test sets separately, as well as for the subset of
unseen participants within val/test.
Baselines and ablation study. We compare to published
state-of-the-art results in each dataset. For VGG-Sound, we
also compare against [23] using their publicly available code,
which is the closest work to ours in motivation, as it uses two
audio streams separating input into low/high frequencies.

We also perform an ablation study investigating the im-
portance of the two streams as follows:

* Slow, Fast: We compare to each single stream individually.

* Enriched Slow stream: We combine two Slow streams with
late fusion of predictions, as well as a deeper Slow stream
(ResNet101 instead of ResNet50).

* Slow-Fast without multi-level fusion: Streams are fused by
averaging their predictions, without lateral connections.



Overall

Unseen Participants

Top-1 Accuracy (%)

Top-5 Accuracy (%)

Top-1 Accuracy (%)

Split  Model Verb Noun Action Verb Noun Action Verb Noun Action # Param.

Damen et al. [2] 42.63 22.35 14.48 75.84 44.60 28.23 3540 16.34 9.20 10.67M
Slow 41.17 18.64 11.37 77.52 42.34 2420 3493 14.65 7.79 24.89M

_ Fast 39.84 17.07 8.76 7694 41.31 22.01 3333 15.21 6.57 00.49M

&

> Two Slow Streams 4141 19.06 11.41 77.87 43.05 2473 3437 14.27 6.85 49.78M
Slow ResNet101 4224 19.35 12.12 78.14 42.83 25.30 37.37 13.90 7.61 46.11M
Slow-Fast (late fusion) 42.28 19.23 11.27 7840 44.17 25.36 34.65 15.68 7.70 25.38M
Slow-Fast (Proposed) 46.05 22.95 15.22 80.01 47.98 30.24 37.56 16.34 8.83 26.88M

*g Damen et al. [2] 42,12 21.51 1476  75.06 41.12 2586 3745 17.74 11.63 10.67"M

= Slow-Fast (Proposed) 46.47 22.77 1544 78.30 4491 28.56 42.48 20.12 12.92 26.88M

Table 2: Results on EPIC-KITCHENS-100. We provide an ablation study over the Val set, as well as report results on the Test

set showing improvement over the published state-of-the-art in audio recognition. # Parameters per model is also shown.

Model Top-1 Top-5 mAP AUC d-prime

Chen et al. [1] 51.00 7640 0.532 0.973 2.735
McDonnell & Gao [23]  39.74 71.65 0.403 0.963 2.532
Slow 4520 7253 0472 0.967 2.607
Fast 41.44 70.68 0.442 0.966 2.576
Two Slow Streams 45.80 72.78 0.482 0.969 2.633
Slow ResNet101 45.60 7227 0476 0.968 2.615
Slow-Fast (late fusion)  46.75 7390 0.498 0.971 2.671
Slow-Fast (Proposed) 5246 78.12 0.544 0.974 2.761

Table 3: Results on VGG-Sound. We compare to published
results and show ablations.

4.3. Results

EPIC-KITCHENS-100 Our proposed network achieves
state-of-the-art results as can be seen in Table 2 for both
Val and Test. Our previous results [2] use a TSN with BN-
Inception architecture [28], initialised from ImageNet, while
here we utilise pre-training from VGG-Sound. Our proposed
architecture outperforms [2] by a good margin. We report
the ablation comparison using the published Val split. The
significant improvement in our proposed Slow-Fast architec-
ture when compared to Slow and Fast streams independently
shows that there is complementary information in the two
streams that benefit audio recognition. The Slow stream per-
forms better than Fast, due to the increased number of chan-
nels. When comparing to the enriched Slow architectures
(see the last column of Table 2 for number of parameters),
our proposed model still significantly outperforms these base-
lines, showcasing the need for the two different pathways. We
conclude that the synergy of Slow and Fast streams is more
important than simply increasing the number of parameters
of the stronger Slow stream. Finally, our proposed archi-
tecture consistently outperforms late fusion, indicating the
importance of multi-level fusion with lateral connections.

VGG-Sound. We report results in Table 3 comparing to state-
of-the-art from [12], which uses a single-stream ResNet50 ar-
chitecture, [23] which uses a ResNet variant with 19 layers as
backbone for their two-stream architecture with significantly
less parameters than our model at 3.2M parameters, as well
as ablations of our model. We report the best performing
model on the test set in each case. Our proposed Slow-Fast
architecture outperforms [1] and [23]. The rest of our ob-
servations on the ablations from EPIC-KITCHENS-100 hold
for VGG-Sound as well, with a key difference: the gap in
performance between single streams and our proposed two-
stream architecture is even bigger for VGG-Sound, indicating
more complementary information in the two streams. The fact
that Slow-Fast outperforms Slow by such a large accuracy gap
with an insignificant increase in parameters indicates the effi-
cient interaction between Slow and Fast streams.

5. CONCLUSION

We propose a two-stream architecture for audio recognition,
inspired by the two pathways in the human auditory system,
fusing Slow and Fast streams with multi-level lateral connec-
tions. We showcase the importance of our fusion architec-
ture through ablations on two activity-based datasets, EPIC-
KITCHENS-100 and VGG-Sound, achieving state-of-the-art
performance. For future work, we will explore learning the
stride parameter and assessing the impact of the number of
channels. We hope that this work will pave the path for effi-
cient multi-stream training in audio.
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Appendix

In this additional material, we provide further insight into
what each of the Slow and Fast streams learn, through class
analysis and visualising feature maps from each stream. We
also offer an ablation on separable convolutions. Finally, we
detail the hyperparameters used to train [23] on VGG-Sound.

A. CLASS PERFORMANCE OF TWO STREAMS

In Figure 2, we distinguish between VGG-Sound classes
that are better predicted from the Slow stream to the left,
and classes that are better predicted from the Fast stream
to the right. To obtain these, we calculated per-class accu-
racy and retrieved classes for which the accuracy difference
is above a threshold. Particularly, we used accuracyyg,,, —
accuracyp,, > 20% to retrieve classes best predicted from
Slow and accuracyp,, — accuracyg,, > 10% to retrieve
classes best predicted from Fast. We used a higher threshold
for the Slow stream as it more frequently outperforms the
Fast stream, as shown in our earlier results.

As can be seen in Figure 2, Slow predicts better animals
and scenes. This matches our intuition that Slow focuses on
learning frequency patterns as different animals make distinct
sounds at different frequencies, e.g. mosquito buzzing vs
whale calling, requiring a network with fine spectral resolu-
tion to distinguish between those. In Scenes, there are classes
such as sea waves, airplane and wind chime, that contain slow
evolving sounds.

The Fast stream, in contrast, can better predict classes
with percussive sounds like playing drum kit, tap dancing,
woodpecker pecking tree, and popping popcorn. This also
matches our design motivation that the Fast stream learns bet-
ter temporal patterns as these classes contain temporally lo-
calised sounds that require a model with fine temporal reso-
lution. Interestingly, Fast is better at human speech, laughter,
singing, and other human voices, where we speculate that it
can better capture articulation.

B. VISUALISING FEATURE MAPS

We show examples of feature maps from Slow and Fast
streams, when trained independently (Fig 3). In each case,
we show two samples from classes that are better predicted
from the corresponding stream. For Slow, these are sea waves
and mosquito buzzing, compared to woodpecker pecking
tree and playing vibraphone for Fast. In each case, we show
the input spectogram as well as feature maps from residual
stages 3 and 5. In each plot, the horizontal axis represents
time while the vertical axis corresponds to frequency. We
visualise a single channel from each feature map, manually
chosen.

In Figure 3, we demonstrate that Fast is capable of detect-
ing the hits of the woodpecker on the tree as well as the hits

Model Top-1 Top-5 mAP AUC d-prime

Chenetal. [1] 51.00 76.40 0.532 0973 2.735
ResNet50 5223 78.08 0.542 0974 2.747
ResNet50-separable 5238  77.81 0.544 0.975 2.777
Slow-Fast (Proposed) 52.46 78.12 0.544 0.974 2.761

Table 4: Ablation of separable convolutions on VGG-Sound.

on the vibraphone, while Slow extracts frequency patterns
that do not seem to be useful for discriminating these classes
that contain temporally localised sounds. For sea waves
and mosquito buzzing, Slow extracts frequency patterns over
time, while Fast aims to temporally localise events, which
does not assist the discrimination of these classes.

C. ABLATION OF SEPARABLE CONVOLUTIONS

We provide an ablation of separable convolutions in Table 4.
We trained the ResNet50 architecture as proposed in [26]
without separable convolutions, as well as a variant with sep-
arable convolutions. We compare this to the published results
by Chen et al. [I] that also uses a ResNet50 architecture.
Our reproduced results already outperform [!]. ResNet50-
separable has separable convolutions as used in our Slow-Fast
network (see Figure 1 and Table 1).

Results show that ResNet50-separable achieves slightly
better results than ResNet50 in all metrics except Top-5.
Although accuracy is not significantly increased in this ab-
lation, we employ separable convolutions in our proposed
architecture, following our motivation to attend differently
to frequency and time. These results also show that a single
stream ResNet50 has comparable performance to our two
stream proposal, however ours performs better in accuracy
and the two streams accommodate different characteristics of
audio classes as shown previously.

D. HYPERPARAMETER DETAILS

Training the publicly available code of McDonnell & Gao
[23] with the default hyperparameters on VGG-Sound pro-
vided poor results. We tuned the hyperparameters as fol-
lows: We set the maximum learning rate to 0.01, train the
network for 62 epochs, with alpha = 0.1 for mixup. Lastly,
we adjusted the number of FFT points to 682 for log-mel-
spectrogram extraction, to apply a window and hop length
similar to the ones in [23] (their datasets are sampled at 48kHz
and 44.1kHz, while VGG-Sound is sampled at 16kHz).



Fig. 2: Classes from VGG-Sound that are better predicted from Slow (left) versus Fast (right) streams.

frequency

time

Slow

Spec.

Res. stage 3

Res. stage 5

baltimore oriole calling
cheetah chirrup

zebra braying
dinosaurs bellowing
horse neighing

black capped chickadee calling
cat hissing

cuckoo bird calling
mosquito buzzing

bull bellowing

whale calling

volcano explosion
playing lacrosse

hair dryer drying

sea waves

playing tympani
blowtorch igniting
opening/closing electric car
windows

thunder

electric blender running
playing shofar

airplane flyby

playing trumpet

wind chime

striking bowling

Fast

sea waves

footsteps on snow

snake rattling

tap dancing

car engine knocking
woodpecker pecking tree
chopping wood

people clapping

lawn mowing

typing on typewriter
opening or closing car doors
playing tennis

railroad car

playing tympani

playing drum kit

playing vibraphone
popping pop corn

singing choir
people cheering
people crowd
child speech
baby laughter

cat purring

dog barking

race car

singing bowl

vacuum cleaner cleaning floors
toilet flushing

dog growling

splashing water

Slow

Fast

woodpecker pecking tree

Spec.

Res. stage 3

Res. stage 5

Fig. 3: Feature maps from classes that are better predicted from Slow (left) and Fast (right) streams.

mosquito buzzing

playing vibraphone
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