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ABSTRACT
Intent classification is a task in spoken language understand-
ing. An intent classification system is usually implemented
as a pipeline process, with a speech recognition module fol-
lowed by text processing that classifies the intents. There are
also studies of end-to-end system that take acoustic features
as input and classifies the intents directly. Such systems don’t
take advantage of relevant linguistic information, and suffer
from limited training data. In this work, we propose a novel
intent classification framework that employs acoustic features
extracted from a pretrained speech recognition system and
linguistic features learned from a pretrained language model.
We use knowledge distillation technique to map the acous-
tic embeddings towards linguistic embeddings. We perform
fusion of both acoustic and linguistic embeddings through
cross-attention approach to classify intents. With the pro-
posed method, we achieve 90.86% and 99.07% accuracy on
ATIS and Fluent speech corpus, respectively.

Index Terms— intent classification, acoustic embed-
dings, linguistic embeddings, transfer learning

1. INTRODUCTION

With the increasing adoption of voice-operated interfaces in
smart devices, one of the research topics in spoken language
understanding (SLU) is to achieve more natural, intuitive,
robust and effective interaction [1–4]. Intent classification
refers to inferring the meaning or intention of a spoken utter-
ance, which is a crucial component of SLU [2]. The voice
interfaces decide how to respond according to the perceived
intent of a particular spoken utterance from the user.

The typical SLU system architecture follows a pipeline
approach, that consists of two components, first, an automatic
speech recognition (ASR) system decodes the input speech
into text transcription, that is followed by a natural language
understanding (NLU) module to classify the intent from ASR
output text [1].

The pipeline approach has a few limitations. First,
pipeline components are optimized separately under dif-
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ferent criteria. The ASR module is optimized to minimize the
word error rate (WER), while the NLU module is typically
trained on the clean text (original transcription). The ASR
performance varies largely depending on the noisy environ-
mental conditions resulting in erroneous transcription, which
subsequently affects the performance of the NLU module.
As a result, there is an obvious mismatch between training
and testing conditions, which may limit the performance.
Second, all words are not equally important for the intent
classification task. Some words carry more weight towards
the meaning of the utterance than others that is reflected in
the linguistic prosody. Unfortunately, the pipeline approach
has not taken such prosodic information into consideration.

The end-to-end approaches represent one of the solutions
to the above issues arising from pipeline approaches [5, 6].
They are widely adopted in ASR [7–9], speech synthesis [10],
machine translation [11–13]. Inspired by their success,
Serdyuk et al. [6] introduces an end-to-end modeling ap-
proach for intent classification, where the features extracted
from the speech signal are directly mapped to intents or other
SLU task, without intermediate ASR and NLU components.

Lugosch et al. [6] study an end-to-end encoder-decoder
framework for speech-to-domain and intent classification.
Other studies reveal that along with the speech features, an
intermediate text representation is also crucial for the quality
of the predicted semantics. Haghani et al. [14] propose a joint
model that predicts both words and semantics and achieves a
good performance using a large train database.

To benefit from the phonetic recognition of speech, an-
other study [15] explores the use of an ASR model for intent
classification. In particular, a pre-trained ASR model is used
to extract acoustic features from speech signals. Similarly,
to address the issue of limited data, different neural network
architectures are introduced in [15–18]. Due to lack of large
speech databases for SLU tasks, authors of [19] propose to
use synthesized speech for training end-to-end SLU systems.

Transfer learning has been successfully applied in intent
classification tasks to align the acoustic embeddings extracted
from an ASR system to linguistic embeddings extracted from
a language model, such as bidirectional encoder representa-
tions from transformers (BERT) [20, 21]. These approaches
use linguistic representations derived from acoustic features
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using transfer learning to classify intents. We consider that
the original acoustic features or embeddings also carry sig-
nificant information for SLU tasks.

Human perception and interpretation of a spoken utter-
ance relies on both prosodic and linguistic information intact
in the speech signal. In this work, we aim to benefit from both
acoustic and linguistic representations, and leverage informa-
tion extracted from pre-trained acoustic and language models.
In particular, the use of pre-trained models helps to overcome
the issue of unavailability of a large speech database for tar-
geted SLU tasks. The transfer learning approach assists us to
derive linguistic representation from the acoustic embeddings
of speech.

Specifically, we derive the acoustic embeddings from a
pre-trained ASR model, and learn to derive linguistic embed-
dings that are close to those from a pre-trained BERT model
by applying transfer learning. We then combine both acous-
tic and linguistic embeddings into a unified representation
through a cross-attention module. With cross attention, the
attention mask for one modality is used to highlight the ex-
tracted features in another modality. The strategy of com-
bining both acoustic and linguistic embeddings makes this
work significantly different from the existing transfer learn-
ing based intent classification methods [20, 21]. We note that
the proposed framework exploits information extracted from
only speech signal and we do not use ASR output text.

2. ACOUSTIC-LINGUISTIC NETWORK WITH
TRANSFER LEARNING

In Figure 1, we provide an overview of the proposed acoustic-
linguistic network (ALN) with transfer learning. We lever-
age on the information extracted from two pretrained mod-
els, which are the ASR model and BERT model. Initially,
we extract the acoustic embeddings from the pretrained ASR
model as described in [15]. The latent space of these acous-
tic embeddings is transformed to NLU output space for the
downstream task using the transfer learning layer. We refer to
the derived embeddings as ALN linguistic embeddings. The
acoustic embeddings extracted from ASR and ALN linguistic
embeddings are effectively fused together for intent classifi-
cation. The framework is optimized using two loss functions,
which are transfer learning loss and intent loss. Each of these
components are described in detail below.

2.1. Pre-trained ASR Model

We follow the same strategy to use a pre-trained ASR model
as described in [15]1. This model is a deep neural network
consisting of a stack of modules. The first module takes as
input the audio signal and outputs a sequence of hidden rep-
resentations to represent the phonetic content of input speech.
The second module takes the hidden phonetic representations
as input and outputs 256-dimensional hidden word represen-
tation, which are used as acoustic embeddings (eacoust) in

1https://github.com/lorenlugosch/end-to-end-SLU
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Fig. 1. Block diagram of proposed acoustic-linguistic network
(ALN) with transfer learning for intent classification, where the dot-
ted block highlights our contribution.

this work. Further details of the pre-trained ASR model can
be found in [15]. We freeze this pre-trained ASR model, and
use it as it is for downstream intent classification task.

2.2. Fine-tuned BERT Model

BERT achieves state-of-the-art performance in sentence clas-
sification and other natural language processing tasks [22,23].
In order to incorporate domain-specific linguistic informa-
tion, there is need to finetune the original BERT model. We
fine-tune a pre-trained bert-base-uncased model [22]
for intent classification task. Inspired by [20], we perform
two-stage finetuning approach, first we fine-tune the BERT
weights for masked language model (MLM) task with lan-
guage model heads. We follow the masking procedure as
recommended in [22]. Next, using these weights, we further
fine-tune BERT model with intent classification label as tar-
get. The experimental details are given in Section 3.2.

We apply the fine-tuned BERT model to capture linguis-
tic information for intent classification. From sequence output
of BERT (elang), we use mean pooling and obtain the BERT
embeddings Elang, where Elang = MeanPool(elang). We
further use this finetuned model as the teacher model in trans-
fer learning stage.

2.3. Transfer Learning Layer

Using the transfer learning layer, we aim to derive linguistic
representation from the acoustic embeddings of speech that
closely resemble the BERT embeddings. This is a linear layer
that transforms the 256-dimensional acoustic embeddings to
768-dimensional linguistic embeddings. We follow teacher-
student learning method as described in [24, 25] to learn the
transfer learning layer acting as a student model. The BERT
model as discussed in Section 2.2 is considered as teacher
model. We learn the transfer learning layer to produce em-
beddings that are closer to the BERT embeddings. We ob-
tain ALN linguistic embeddings (êlang) as the output of the
transfer learning layer, which is used in the next modules for
intent classification. We note that the ALN linguistic embed-



dings are frame-aligned with the acoustic embeddings. Both
sequences have the same length.

We use mean square error (MSE) loss for backpropaga-
tion of this layer, which is defined as,

LossTL = MSE(Elang, Êlang), (1)
where, Êlang is the ALN linguistic embeddings after mean
pooling over êlang, i.e. Êlang =MeanPool(êlang).

2.4. Cross-attention Layer

We design the transfer learning layer to map the acoustic em-
beddings to linguistic embeddings as it is optimized with re-
spect to the BERT embeddings. We employ a cross-attention
method as in [26], [27] to generate the alignment between the
two streams of embedding vectors, namely, acoustic embed-
dings, and ALN linguistic embeddings. In traditional atten-
tion network, a decoder learns to attend some parts of encoder
output [12,28]. Here, we leverage the attention mechanism to
learn the alignment weights between the two embeddings.

Before applying the cross-attention, we use a mapping
layer to match the dimension (256-dimensional) of both the
embedding sequences. The output of the cross-attention layer
can be expressed as

z = softmax
(
fq(Xq)(fk(Xk))

T

√
dk

)
fv(Xv), (2)

where, fq , fk and fv represent the linear layers for query Xq ,
key Xk and value Xv components, respectively, dk is the em-
bedding dimension (256), and z is the output from the cross
attention layer, which we refer to as ALN embeddings. We
use eacoust as query component, while êlang is considered as
key and value components.

2.5. Intent Layer

The intent layer aims to classify intents from the ALN em-
beddings. The first part of this module is a recurrent neural
network, which is gated recurrent unit (GRU), followed by
maxpooling and linear layer for intent classification. The in-
tent classification loss is refered to as Lossintent.

Lossintent = CrossEntropy(f(z), y), (3)

where, f(z) is the intent layer output and y represents intent
labels. We combine Lossintent with the transfer learning loss
(LossTL) using the weight α to derive the total loss, which is
used to backpropagate the ALN framework.

Losstotal = αLossTL + (1− α)Lossintent (4)

3. EXPERIMENTS

3.1. Database
We evaluate the systems on two databases. The ATIS corpus
is one of the most commonly used long-standing datasets for
text-based SLU research [29]. To use the ATIS database for
acoustic feature based SLU task, we have rearranged the train
and test sets so that corresponding audio files are available

from the original ATIS corpus recordings. We have filtered
the ATIS database to make sure that all utterances have orig-
inal speech recordings. The utterances in the Fluent speech
commands (FSC) dataset [15] serve as speech commands to
a virtual assistant. Each command consists of three slot val-
ues, namely, action, object and location. The combination of
three slot values represents the intent. The details of both the
databases is presented in Table 1.

Table 1: Statistics of ATIS and Fluent speech commands (FSC)
databases.

Specification
Database ATIS FSC

Train Test Train Test

#Utterances 5,253 580 23,132 3,793
Duration (min) 569.90 61.66 882.95 154.58

Avg. utterance len (sec) 6.51 6.37 2.29 2.45
#Intents 15 15 31 31

3.2. Experimental Setup

3.2.1. Baseline systems
To show the comparative performance of the proposed ALN
framework, we develop two baseline systems. First, the con-
ventional pipeline approach (Baseline-1), where we initially
pass the speech signal through an ASR system to derive
the transcription, which are further applied to the fine-tuned
BERT model for intent classification. The ASR system em-
ployed here is an in-house general purpose ASR trained
using a combination of several speech databases. We haven’t
adapted any component of the ASR system specific to the
current application. The second baseline [15] is deployed
using acoustic features extracted from the pretrained ASR
model (Baseline-2) in Section 2.1, followed by the intent
layer discussed in Section 2.5. We note that, in this case only
intent loss is used as in Equation 3 to optimize the network.

3.2.2. Proposed systems
In the proposed ALN framework, we use a pretrained ASR
model and a finetuned BERT model to extract the acous-
tic and linguistic embeddings, respectively. The pretrained
ASR model used in this work is adopted from [15], which
is frozen and not modified for downstream task. For the
finetuned BERT model, we use train set of both databases as
per Table 1. For the two stage-finetuning of BERT model as
described in Section 2.2, during MLM stage we use Adam
optimizer with learning rate 5e-5, β1 = 0.9, β2=0.999 and 3
epochs [30]. For intent classification stage of finetuning, we
use Adam optimizer with learning rate of 2e-5 and 4 epochs.

To demonstrate the effectiveness of the transfer learning
strategy and subsequent improvement with the proposed ALN
framework, we develop two systems. In the first system (ALN
linguistic), initially we pass the acoustic embeddings through
the transfer learning layer to obtain the ALN linguistic em-
beddings. Then we use only ALN linguistic embeddings in



Table 2: Intent classification accuracy of Baseline-1 (pipeline ap-
proach) using ASR output and ground truth text, and Baseline-2
(Pretrained ASR) frameworks.

Database Baseline-1 Baseline-2 [15]
Ground truth ASR output WER(%)

ATIS 93.73 89.65 11.57 85.34
FSC 100 95.33 20.43 98.80

the intent layer described in Section 2.5 for intent classifi-
cation. In the second system (ALN), we obtain the align-
ment between the ALN linguistic embeddings and acoustic
embeddings using the cross attention layer. The output of the
cross attention layer is passed through the intent layer to de-
rive the intent classification as shown in Figure 1. During
training of the ALN, the total loss as per Equation 4 is back-
propagated for transfer learning layer, cross-attention layer
and intent layer simultaneously. The ALN linguistic, ALN,
and Baseline-2 frameworks are implemented using using Py-
Torch. We use the Adam optimizer with a learning rate of
0.001, batch size 64 and 100 epochs.

3.3. Results

Table 2 lists the intent classification accuracy of the Baseline-
1 and Baseline-2 for both the databases. We also show
the pipeline approach when groundtruth text is used in-
stead of ASR output text. We note that WER for ATIS
and FSC databases are 11.57% and 20.43%, respectively.
The Baseline-2 gives better performance (98.80%) when the
WER is higher as in case of FSC dataset. Whereas, Baseline-
1 gives better performance in case of the ATIS database
(89.65%), where WER is lower. However, the performance
of the pipeline approach using groundtruth transcription is
better than Baseline-2. This indicates the involvement of
linguistic information to improve intent classification.

To illustrate the effect of transfer learning in ALN, we
visualize t-Distributed Stochastic Neighbor Embedding (t-
SNE) representation [31] of embeddings. Figure 2(a) and
Figure 2(b) show the t-SNE plots across BERT embeddings
and ALN linguistic embeddings in an initial epoch and final
epoch, respectively, for the ATIS database. We observe that
the ALN linguistic embeddings are closer to BERT embed-
dings in Figure 2(b) than in Figure 2(a). We note similar
embeddings visualization behavior for FSC database.

In Table 3 we report performance of the ALN linguis-
tic and ALN frameworks. We also demonstrate the effect
of weight, α in Equation 4, with experiments for two val-
ues of α (0.5 and 0.8) in total loss computation. In both the
frameworks, we observe relatively better performance using
α = 0.8. This indicates that the transfer learning loss con-
tributes more in learning better ALN linguistic embeddings.
The intent classification accuracy of ALN linguistic (87.75%)
is better than that of Baseline-2 (85.34%) for ATIS database.
For FSC database the performance of Baseline-2 (98.80%)
is slightly better that that of ALN linguistic (98.31%). This
shows the efficacy of the ALN linguistic embeddings derived
through the transfer learning layer.
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Fig. 2. t-SNE visualization plots to compare BERT embeddings with
ALN linguistic embedding in (a) initial epoch, (b) final epoch for 6
intent classes of the ATIS database .

It is evident from Table 3 that the proposed ALN frame-
work outperforms both baseline systems presented in Table 2.
For α = 0.8 the accuracy of the proposed ALN framework is
90.86% for ATIS database, and 99.07% for FSC database.
The same for Baseline-2 are 85.34% and 98.80%, respec-
tively. We observe the performance is consistently higher
for both the values of α for ALN framework, compared to
Baseline-1 and Baseline-2, for the two databases. For the
ATIS database the performance of the ALN framework with
α = 0.5 is lower than that of the Baseline-1. This may be be-
cause of the lower WER of the ATIS database and insufficient
representation of ALN linguistic features using α = 0.5.

Table 3: Intent classification accuracy (%) using ALN linguistic and
proposed ALN frameworks for different values of weight α.

Database α value ALN linguistic ALN

ATIS 0.5 85.00 86.37
0.8 87.75 90.86

FSC 0.5 97.20 99.02
0.8 98.31 99.07

4. CONCLUSIONS

This paper presents an end-to-end intent classification frame-
work using both acoustic and linguistic embeddings extracted
from a speech signal, without using any intermediate text rep-
resentation. We extract the acoustic features from a pretrained
ASR model and we learn the linguistic features from a pre-
trained BERT model. We use transfer learning technique to
convert acoustic features towards linguistic features. In par-
ticular, we employ the teacher-student transfer learning ap-
proach to leverage the linguistic information and incorporate
into the intent classification network. Finally, we fuse both
the acoustic and linguistic embeddings effectively through a
cross-attention module.

The two modalities, speech and text corresponding to a
spoken utterance carry contrasting and crucial behavior to in-
terpret it’s meaning. Through the proposed method, we estab-
lish the impact of using both acoustic and linguistic modali-
ties for SLU task. Our experimental results indicate that the
transfer learning can learn the information from the linguis-
tic embeddings and perform better than using only acoustic
information as well as conventional pipeline SLU approach.
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