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ABSTRACT

We propose using federated learning, a decentralized on-
device learning paradigm, to train speech recognition models.
By performing epochs of training on a per-user basis, fed-
erated learning must incur the cost of dealing with non-IID
data distributions, which are expected to negatively affect
the quality of the trained model. We propose a framework
by which the degree of non-IID-ness can be varied, conse-
quently illustrating a trade-off between model quality and the
computational cost of federated training, which we capture
through a novel metric. Finally, we demonstrate that hyper-
parameter optimization and appropriate use of variational
noise are sufficient to compensate for the quality impact of
non-IID distributions, while decreasing the cost.

Index Terms— speech recognition, federated learning.

1. INTRODUCTION

The increasing ubiquity of mobile devices with high com-
putational power [1], along with advances in sequence-to-
sequence neural networks [2, 3], have made it possible to de-
velop mobile applications powered by on-device automatic
speech recognition (ASR) systems [4]. For example, neural
ASR models with state-of-the-art quality [5] have been de-
ployed on-device with additional latency and reliability bene-
fits [6] relative to server-based models.

Considering user privacy in the context of on-device ASR,
we investigate the feasibility of training speech models on-
device using federated learning (FL) [7, 8]. FL is a decen-
tralized training method that does not require sending raw
user data to central servers. Instead, user data are stored in
an on-device training cache, where training iterations can be
performed. FL optimization proceeds in synchronous rounds
of training, wherein a set of clients (devices) contributes up-
dates to a central model. FL has been successfully deployed
in large production systems to perform emoji prediction [9],
next-word prediction [10], and query suggestion [11].

When used to perform per-user training of models, FL
presents an inherent difference in comparison to centralized
training in that training data under FL are non-IID. With
standard central mini-batch training, an IID (independent

and identically distributed) assumption is typically made as
examples are sampled with a uniform probability across the
training set. Under FL, examples are sampled from client dis-
tributions which may be similar, but not identical (non-IID).
Training on non-IID data has been shown to be sub-optimal
across multiple domains [12, 13, 14] and remains an open
problem in federated learning [15, 16].

In this work, we study the impact of speaker-split (non-
IID) data in the context of ASR training, and make the fol-
lowing contributions:

• We provide a mental model to reason about the differ-
ences between IID and non-IID training.

• We introduce a general cost function for FL which mea-
sures the computational cost of model quality.

• We show that ASR models trained with FL can achieve
the same quality as server-trained models.

2. METHODOLOGY

2.1. Federated Averaging Algorithm

A common optimization algorithm for FL is Federated Aver-
aging (FedAvg) [7]. Outlined in Algorithm 1, FedAvg consists
of two levels of optimization: local optimization performed
on K participating clients, and a server step to update the
global model. FedAvg is used in all experiments in this work.

Algorithm 1 FedAvg. TheK clients are indexed by k, rounds
are indexed by r, and n is the number of examples.

1: initialize w0

2: for each round r = 1,2,... do
3: K ← (random subset of M clients)
4: for each client k ∈ K in parallel do
5: ŵr

k ← ClientUpdate(k,wr)
6: ∆wr

k = wr − ŵr
k

7: end for
8: w̄r =

∑K
k=1

nk

n ∆wr
k . Weighted average

9: wr+1 = wr − ηw̄r . Server update
10: end for
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2.2. Understanding non-IID Data

Various studies have shown noticeable quality degradation
when training neural models with non-IID data. Strategies to
mitigate this include accounting for client model drift [14],
using adaptive optimizers [17], tuning local optimization
hyper-parameters [12, 7], and weighting client updates with
estimates of client data skew [16, 18, 19].

In this work, we build on the observation that, given an
increased computation budget, a non-IID distribution can be
modified to approximate an IID one. To elaborate, in a feder-
ated training round, a set of clients is randomly selected from
a training population. If, in the client optimization, a single
local example is sampled and used to compute an SGD up-
date with learning rate 1, raw gradients would be aggregated
in the server update step. As the sampling of clients in a feder-
ated training round is random, the server step would aggregate
effectively IID contributions in this example. However, train-
ing in this manner would likely cause a sharp increase in the
number of rounds needed for convergence, and subsequently
increase training time and server-client communication.

We therefore note that the degree of non-IID-ness in a par-
ticular experiment can be varied at the expense of computa-
tional cost, and this idea can be used to make adjustments
to the experimental setup depending on the desired quality-
performance trade-off.

2.3. The Cost of Federated Model Quality

We capture the cost of federated computation through a met-
ric we name the Cost of Federated Model Quality (CFMQ).
This is, to our knowledge, the first attempt at formulating a
general cost function which may be adapted for any feder-
ated optimization. Along with non-IID/IID considerations,
this cost function helps compare the impact of convergence
time, local optimization, client participation and communica-
tion payload on quality. Therefore, when used in conjunction
with a quality metric, the CFMQ provides a useful way to
compare experiments.

Let µ be the average number of local optimization steps
taken by a client. Let e be the number of local epochs, N the
total number of examples in a round, b the batch size, and K
the number of clients participating. It follows that:

µ =
eN

bK
(1)

Let P be the round-trip communication payload in bytes,
R the number of rounds, and ν the peak memory consumed
during a step. Equation 2 unifies the communication cost
and local computation cost, as these are the two resource-
constrained aspects of the federated optimization [11]. We as-
sume an abundance of server resources/memory in our study.
We therefore formulate the cost CFMQ as:

CFMQ = RK(P + αµν) [bytes] (2)

Predicted Labels

Joint Network

Audio Encoder (8 Layers) Label Encoder (2 Layers)

Acoustic Frames

Fig. 1. RNN-T speech model architecture.

α is a balancing term added to the CFMQ, and can be modi-
fied to adjust the importance of the two components of cost.

3. MODEL AND DATA

3.1. Model Architecture

We use the RNN-T architecture [5] depicted in Figure 1 in
this paper. The model has 122M trainable parameters, and
predicts the probability P (y|x) of labels y given acoustic data
x. It consists of an LSTM audio encoder, an LSTM label
encoder, a fully-connected layer concatenating the encoder
outputs, and an output softmax. The input acoustic frames
are 128-dimensional log-mel filterbank energies, and output
labels belong to a set of 4096 word-pieces.

3.2. Librispeech Corpus

We use the Librispeech [20] corpus, containing 960 hours of
transcribed training utterances from 2338 speakers, and 21
hours of evaluation audio from 146 speakers split amongst 4
sets Dev, DevOther, Test, and TestOther, with the reporting
metric of Word Error Rate (WER). The sets labelled “Other”
are intended to be more difficult to recognize. The data are
evenly balanced in terms of male and female speakers.
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Fig. 2. Histogram of utterance distribution across speakers.

We run FL experiments on this corpus by associating each
speaker label to a device that could participate in rounds of
federated training. Librispeech data, when split by speaker,
are non-IID for a variety of reasons including differences in
voice, vocabulary, recording quality, and utterance counts (as
represented in Figure 2) across users.
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4. EXPERIMENTS

4.1. Baseline and Federated Training

We conducted a series of experiments to recover quality
degradation due to non-IID training, and compared them to
a centrally trained IID Baseline. The Baseline configuration
was trained with a linear ramp-up learning rate schedule,
SpecAugment [21], and Variational Noise [22]. Baseline
results (E0) can be found in Table 1.

Federated training of RNN-T models was performed us-
ing FedAvg on a FL simulator written in TensorFlow [23] run-
ning on TPU [24] hardware, where data were split by speaker.
Training hyper-parameters were kept as similar to the Base-
line as possible, with the exception of Variational Noise ini-
tially being omitted as it needed to be adapted for the FL (dis-
cussed further in 4.2.2).

4.2. Matching Baseline Model Quality

In non-IID federated experiments, SGD was used as the client
optimizer with a constant learning rate which was set to 0.008
through a coarse sweep. Adam [17] was used for the server
update. The number of participating clients,K, was gradually
increased from 32 to 128, beyond which it stopped offering
improvements to model quality. In this configuration, clients
cycled through local data over a single epoch. Table 1 shows

ID Exp. WER
Test TestOther Dev DevOther

E0 Baseline 4.8 12.1 5.1 12.1

E1 Non-IID 6.8 17.2 7.0 17.3

E0 v. E1 % Rel. WER +42% +42% +37% +43%

Table 1. Quality degradation with non-IID training.

the Baseline performance and the initial non-IID config, with
a substantial WER degradation across all evaluation sets.

4.2.1. Limiting Per-speaker Data

In an attempt to push data distributions closer to IID and min-
imize per-client drift, a subset of examples were randomly
sampled from each speaker participating in a federated round
to impose a per-client data limit. We show that data-limiting
pushes distributions to be more IID through a thought exper-
iment, wherein a single example is sampled from each client.
In this scenario, assuming client-selection is random, the par-
ticipating data in a round is as close as possible to IID.

It is important to note that the entire per-speaker dataset
was still seen over the course of multiple rounds.

Table 2 illustrates the quality improvement due to data-
limiting, bringing WER degradation from over 40% to less
than 30% relative across all sets.

ID Data Limit WER
Test TestOther Dev DevOther

E1 None 6.8 17.2 7.0 17.3

E2 32 6.2 14.8 6.5 15.3
E3 64 6.5 15.1 6.8 15.5
E4 128 7.1 16.4 7.1 16.5

E0 v. E2 % Rel. WER +29% +22% +27% +26%

Table 2. Impact of data-limiting on non-IID training.

4.2.2. Federated Variational Noise

The Baseline used Variational Noise [22] (VN), applied by
adding Gaussian noise to model parameters during each op-
timization step. A modification had to be made to VN in or-
der to accommodate the two-step optimization that exists in
FL: allowing each client to add its own random noise tensors
during local optimization. We called this Federated Varia-
tional Noise (FVN), and found it was critical to recuperating
the non-IID quality degradation. Table 3 shows experiments
E5 and E6, which introduced FVN in a similar manner to the
Baseline. We exceeded Baseline model quality by further im-
proving the application of FVN in E7, wherein we increased
the standard deviation of Gaussian noise linearly during train-
ing.

ID FVN Std Dev WER
Test TestOther Dev DevOther

E2 - 6.2 14.8 6.5 15.3

E5 0.01 5.1 12.6 5.5 12.4
E6 0.02 5.0 12.2 5.2 12.4
E7 Ramp to 0.03 4.6 11.9 5.0 11.9

E0 v. E7 % Rel. WER -4% -2% -2% -2%

Table 3. Impact of FVN on non-IID training.

In addition, we hypothesize that FVN regularizes non-IID
client drift because VN was designed to reduce entropy in
Bayesian inference tasks. It is based on the idea that model
parameters are like random variables sampled from a prior
distribution, γ, which can be better approximated with a given
distribution Q(β) by adding Gaussian noise during training.
Therefore, under FL, if noise from the same underlying Gaus-
sian is applied on each client, the resulting approximation is
that all client model parameters are sampled from the same
Q(β) distribution, thus limiting per-client drift.

Results in Table 2 show that model quality degrades as
the per-client data volume is increased. Client models drift in
varying directions, causing server updates to be sub-optimal.
However, experiments E7 and E8 in Table 4 show that, with
the addition of FVN, there is minimal change in model quality
even without per-client data limits. This adds evidence to our
claim that FVN prevents client drift.
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ID Data Limit WER
Test TestOther Dev DevOther

E7 32 4.6 11.9 5.0 11.9

E8 - 4.6 11.9 5.1 11.8

Table 4. Impact of data-limiting on FVN experiments.

4.3. Computational Efficiency

4.3.1. Quality-Cost Analysis

So far, we focused on quality impact due to non-IID train-
ing. However, as described in Section 2.3, a crucial aspect of
designing an FL system lies in its computational cost. In pro-
duction FL, model payload size would vary per-experiment
due to the presence of transport compression. Likewise, client
memory usage would vary across devices due to differing
hardware characteristics. Motivated by simplicity, approxi-
mations were used in this analysis. The round trip communi-
cation payload was approximated to be twice the model size
(960 MB), and peak memory was approximated as the size of
the model plus 10% intermediate storage (660 MB). As Eq. 2
also requires α to be set, it was chosen as 1 for this study.
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(b) Comparing experiments by cost function.

Fig. 3. Experiment efficiency comparison.

Figure 3 shows the quality-cost trade-off for key ex-
periments from the previous section, contrasting number of
rounds as the measure of cost against CFMQ. Quality is mea-
sured through mean WER on the Other evaluation sets, as
these are more challenging. If rounds to convergence is the
measure of cost, E8 achieved better quality than the Baseline
for a marginal increase in cost. However, when using CFMQ,

it is clear that E7 achieved the same quality as E8 at lower
cost. This is due to the fact that no per-client data limits were
imposed in E8, leading clients to take more local optimization
steps than in E7 for the same model quality.

4.3.2. Reducing the Cost of non-IID Model Quality

Experiments thus far have recuperated the quality loss due
to non-IID training data, but incurred an increase in cost.
New experiments, aimed at reducing cost, were conducted
by varying the number of local epochs, server learning rate
schedule, and amount of SpecAugment. Table 5 shows the
two most promising experiments, E9 and E10, which had a
lower CFMQ and better quality in comparison to the Base-
line. They both modified the learning rate schedule to have a
shorter ramp-up and introduced an exponential decay. E10 in-
creased the amount of SpecAugment during the training pro-
cedure and yielded slightly better quality. Therefore, we were
able to recuperate the quality degradation from non-IID train-
ing data at a lower computation cost than the IID Baseline in
this study. We must note that in order to limit scope we did
not re-visit and refine the Baseline in this work.

ID CFMQ [TB] WER
Test TestOther Dev DevOther

E0 3077 4.8 12.1 5.1 12.1

E9 2779 4.8 11.4 4.6 11.5
E10 2945 4.8 11.4 4.6 11.4

Table 5. Exceeding Baseline quality with lower CFMQ.

5. CONCLUSION

Federated learning implies training on non-IID data, a prop-
erty that has been considered a potential drawback of the tech-
nique. We argued that the degree of non-IID-ness can be
adjusted through random client data sampling, resulting in a
flexible cost-quality trade-off. Initially, recuperating quality
in a federated setting is likely to lead to a cost increase. When
this is resolved, e.g. through optimizer configuration, hyper-
parameter tuning, and use of regularizers, FL can provide IID-
level quality at relatively low costs. We demonstrated that
this double optimization could be performed for the federated
learning of a state-of-the-art ASR model, resulting in a better
model at lower cost than the baseline Adam-SGD model.
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