
FONTNET: ON-DEVICE FONT UNDERSTANDING AND PREDICTION PIPELINE

Rakshith S, Rishabh Khurana, Vibhav Agarwal, Jayesh Rajkumar Vachhani, Guggilla Bhanodai

Samsung R&D Institute India, Bangalore, India – 560037

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

ABSTRACT

Fonts are one of the most basic and core design concepts.

Numerous use cases can benefit from an in depth

understanding of Fonts such as Text Customization which

can change text in an image while maintaining the Font

attributes like style, color, size. Currently, Text recognition

solutions can group recognized text based on line breaks or

paragraph breaks, if the Font attributes are known multiple

text blocks can be combined based on context in a meaningful

manner. In this paper, we propose two engines: Font

Detection Engine, which identifies the font style, color and

size attributes of text in an image and a Font Prediction

Engine, which predicts similar fonts for a query font. Major

contributions of this paper are three-fold: First, we developed

a novel CNN architecture for identifying font style of text in

images. Second, we designed a novel algorithm for predicting

similar fonts for a given query font. Third, we have optimized

and deployed the entire engine On-Device which ensures

privacy and improves latency in real time applications such

as instant messaging. We achieve a worst case On-Device

inference time of 30ms and a model size of 4.5MB for both

the engines.

Index Terms— Font Detection, Font Prediction,

Convolutional neural network, k-Means Clustering, k-

Nearest Neighbors.

1. INTRODUCTION

In this modern digital age, approximately 3.2 billion people

are accessing social networking platforms through their

mobile phones. The use of visual media such as memes,

stickers and GIFs is ever increasing and the current options

are limited. There is an urgent need for customizable stickers

and GIFs which can be personalized. By identifying the font

style, color and size, users can reuse any one template for

multiple scenarios. The options available can be further

increased by providing a list of aesthetically similar fonts.

Such a subtle art of selecting visually similar fonts requires a

sophisticated skillset. Also the font names themselves are

rarely meaningful which makes this task really challenging

for most users.

 Artificial intelligence is moving towards an On-Device

platform from the cloud platform for better reliability, more

privacy, and consistent performance. However, it requires

lightweight, fast, and accurate neural network models to run

on a resource constraint mobile platform. This is another

crucial aspect we would like to focus in this paper.

 Even though there are websites that detect font styles from

images (WhatTheFont, Font Matcherator, etc.), there exists

no solution which works offline. Similar limitations exist for

font color and font size as well. Websites such as

“Identifont”, suggest similar fonts based on proximity

between visual features with respect to a query font, but there

is a lack of variety in these fonts.

 In this paper, we propose a Font Detection Engine (FDE),

which is capable of identifying all the font attributes (style,

color, size) of text in images. By observing the current

literature we find that there have been many attempts to solve

this task. For example, Wang et al. [1] have used a CNN

based architecture for font classification. Their work attempts

to solve the Visual Font Recognition (VFR) task. Even

though their network accommodates both real world as well

as synthetic data and supports a larger set of fonts, their

network is infeasible to be used On-Device because of a large

model size and inference time. In [2] the authors use a similar

approach to include both synthetic and real world data, but

they have implemented it with VGG [9] and AlexNet [8]

architectures and have the same shortcomings as [1]. Chen et

al. [3] use a Nearest Class Mean Classifier based approach

for solving the VFR task. Such a statistical approach, makes

their model scalable and accommodates new font classes.

Since it is based on a local feature embedding of the image,

it is not very accurate for the font detection task. Furthermore,

it is very difficult to define such local feature vectors which

suits all font types. The results for wild images prove that this

approach does not work well for noisy images with complex

backgrounds. In [4], Yifan Chang has also used a CNN for

identifying typefaces of Chinese text in images. It exhibits

good results only for black and white synthetic images.

 There have been multiple attempts for predicting suitable

fonts for design tasks. In [15], the authors adopt a deep neural

network based model to predict most suitable fonts for a

given web design. They use visual features from a CNN along

with semantic tags from the webpage for understanding

context. In [11], the authors follow a complicated method to

learn the distance/similarity between two fonts for predicting

visually similar fonts. They use crowd sourced data which is

costly and cumbersome to collect. Therefore, we use an

alternate approach for finding similar fonts as discussed in

section 2.

2. PROPOSED METHOD

2.1. Font Detection Engine

FDE uses localized text regions generated by a text

recognition API (Google ML Kit) [16]. Our engine captures

all the font attributes (style, color, size) of the text. We use

deep CNN architecture for the font style identification. For

training the model we use a dataset of 1814 fonts (Google

Fonts [13]) with 700 images each. The dataset consists of 3

image resolutions, 16 text sizes, 8 text colors, lower/upper

case, and augmentations like scaling, contrast etc.

2.1.1. Deep CNN

We start with the architecture from the DeepFont paper [1]

with a fixed input size of 105x105 comprising of

Convolutional, Normalization and MaxPool layers, followed

by 3 Dense layers with Softmax activation for the final

classification. The 3 Dense layers made the model size

excessively large and exhibited poor validation accuracy due

to overfitting. Therefore, we reduced the number of Dense

layers to 1. Though this improved the accuracy, the model

size and inference time were still high. The fixed input size,

requires preprocessing operations (dividing the input image

into individual patches of size 105x105) before inferring the

model which is another limitation.

 Due to these shortcomings, we introduced necessary

changes as depicted in Figure 1. To solve the fixed input

problem, we decided to use a Fully Convolutional Network

(FCN) architecture with a sliding window approach. To

reduce the model size, we decreased the input height from

105 pixels to 50. The final convolutional layer uses a Softmax

activation function and outputs the probabilities for each font.

There are no Dense layers and the number of output channels

is equal to the effective number of 50x50 patches created due

to the stride of the sliding window. This stride is fixed by the

number of MaxPool layers. As this stride value increases the

inference time of the model reduces. From Figure 2, it is

evident that each RGB image is converted to grayscale. The

image is also uniformly rescaled to a height of 50 pixels and

a width less than 80 pixels to limit the maximum inference

time.

2.1.2. Text Color

For identifying the text color we used an algorithm inspired

from K-Means clustering. We clustered the colors in an

image based on their individual RGB pixel values and picked

the top ‘K’ colors. We consider the pixel values of the three

channels as points in 3D space. Euclidean distance was used

as a metric to assign each point to one of the K clusters. The

centroids of all the K clusters are updated accordingly.

𝑑 = √[(𝑅1 − 𝑅2)2 + (𝐺1 − 𝐺2)2 + (𝐵1 − 𝐵2)2] (1)

 Here (R1, G1, B1) is color1 and (R2, G2, B2) is color2 and

𝑑 is the distance between them. Once the centroid locations

are constant after successive iterations we choose the top K

colors as the K centroids that were obtained and rank them

based on the number of points in the cluster (i.e. the area they

occupy in the image). Based on our analysis over a wide

variety of images, we found that the text color always

occupies the second highest area in the bounding box.

2.1.3. Text Size

Using a simple edge detection algorithm, we find the first and

last vertical edge in an image. The difference between them

is chosen as the maximum height of the text. In the algorithm,

we include a threshold parameter 𝑇. This parameter helps in

differentiating between stray edges due to the background

noise and the edges of text in the image. Here 𝐼 represents

Fig. 1. The Fully Convolutional Neural Network architecture for

Font style detection.

Fig. 2. FDE procedure. Here, ‘Width’ is min (80, rescaled width). A

factor of 4 in the denominator is due the 2 MaxPool layers.

the 𝑅, 𝐺 and 𝐵 channels. An edge exists in the 𝑖𝑡ℎ row of the

image, only if this condition is satisfied.

𝑎𝑏𝑠(𝐼[𝑖, 𝑗] − 𝐼[𝑖 + 1, 𝑗]) > 𝑇 (2)

2.2. Font Prediction Engine

This engine predicts a list of visually similar fonts for any

given query font from our dataset of 1762 fonts. These

similar fonts can be used to replace the query font without

compromising on the overall aesthetic quality of the image.

2.2.1. Dataset Creation

For estimating the similarity of two fonts, we need a mapping

between a font and a set of attributes. These attributes are

basically adjectives that explain the visual characteristics of

the font, example ‘legible’, ‘serif’, ‘thin’ etc. There are 37

such attributes and their range is [0,100]. In [11], they use

crowdsourced data to obtain such a mapping. This

crowdsourced dataset is available only for 200 fonts from the

Google Fonts [13] website.

 In order to extend this dataset, we use a kNN based

algorithm [10], where we consider the 𝑘 nearest neighbors of

a new font to calculate its attribute vector 𝑓. In [10], the

authors have proven the effectiveness of using such an

approach for extending the dataset. For finding the neighbors

we use 200-dimensional CNN embeddings 𝑔⃗ defined for

1883 Google fonts [14] from a pre-trained network. Out of

the 1883 font dataset and 200 font dataset, there are 156

common fonts. These 156 fonts will be used as seed data for

finding the nearest neighbors. Out of the 1883 fonts, only

1762 fonts are supported for Android devices, therefore we

can extend our dataset up to 1762 fonts (156 old fonts + 1606

new fonts).

𝑤𝑖 =
1

𝑘 − 1
(

∑ 𝑑(𝑔⃗, 𝑔𝑗⃗⃗⃗⃗⃗)𝑘
𝑗=1
𝑖≠𝑗

∑ 𝑑(𝑔⃗, 𝑔𝑗⃗⃗⃗⃗⃗)𝑘
𝑗=1

) (3)

𝑓 = ∑ wi𝑓𝑖
⃗⃗⃗

𝑘

𝑖=1

 (4)

 Once we get the nearest neighbors for each new font, we

then calculate its attribute vector using the weighted average

of attribute vectors of these nearest neighbors as shown in (3)

and (4). Here, 𝑑(𝑔1⃗⃗⃗⃗⃗, 𝑔2⃗⃗⃗⃗⃗) is the L2-distance between the two

embeddings, this metric is used to find the nearest neighbors.

The same procedure is repeated for all the 1606 fonts.

2.2.2. Font Prediction Algorithm

This algorithm predicts visually similar fonts to a given query

font using the attribute vector. We first select 11 most faithful

attributes, i.e. the attributes whose values and their

manifestation in the visual properties of the fonts is in

congruence. We define these as priority attributes ‘𝑝’ as

depicted in Figure 4. In addition to this, we define relative

weights for each of these priority attributes using weight

vector ‘𝑤’. We choose an Interval vector ‘𝐼’ that defines

ranges for all attributes which behave as search windows

around the attributes of the query font. We consider fonts

which lie in this range and then rank them based on their

weighted distance with respect to the priority attributes.

 In Figure 3, we have shown the top-4 fonts for each of the

attributes. In (a), the attributes (italic, thin) describe the visual

nature of the fonts and therefore we consider them in our list

of priority attributes. But in (b), we notice that the attributes

(cursive, delicate) and the fonts have no correlation with each

other. Therefore these are less reliable and we don’t consider

them in the Font Prediction algorithm.

 Figure 4 outlines the high level description of the font

prediction algorithm. We start with our query font fq. From

our newly created dataset we get its corresponding 37-

dimensional attribute vector. The interval vector 𝐼 defines the

search space for nearby fonts. From fq and 𝐼 we get the search

window for each attribute. While searching for the

prospective candidates we only consider the priority

attributes 𝑝. Once we have the list of candidate fonts, we use

a weighted Euclidean distance measure to rank the candidate

fonts. This list of sorted fonts is our final list of predicted

fonts.

2.3. Model Compression and On-Device Deployment

A very crucial part of this paper is to deploy both the engines

on a mobile device and use it in real time. We applied

multiple optimizations to our model making it more efficient

with respect to time and space constraints. Firstly, we reduced

Fig. 3. Basis for selecting high priority attributes

Fig. 4. Overview of the Font Prediction algorithm

the input height from 105 to 50 while preserving the aspect

ratio. This reduced the model size drastically while

maintaining its accuracy. We used “Depth-wise Separable

Convolutional” layers which reduce the model size and work

well in edge devices as shown in [12]. This is the final model

(shown in Figure 1) used in the FDE which shows a 70%

reduction in model size (15MB to 4.5 MB) and 86%

reduction in inference time (300ms to 40 ms). This model was

converted to TFLite and used in an Android application. We

used native inferencing using C++ to get the optimal results.

3. OBSERVATIONS AND RESULTS

3.1. Font Detection Engine

3.1.1. Model Comparison

From Table 1, it is evident that there is a drastic reduction in

the number of parameters in the FCN compared to the model

with a Dense layer and also improves the validation accuracy.

For the inference time calculation, we use two sets of images,

one with a width of 50 pixels and the other with 80 pixels.

For the inference of the dense layer model, we created image

patches of size 50x50 after a width of every 4 pixels. These

are the same patches that are being seen internally by the

FCN.

 With FCN we achieved a worst case inference time of

30ms. This is one of the crucial improvements which made it

possible to port the model on a mobile device and achieve

seamless experience. We achieved a Top-1 validation

accuracy of 78% on the VFR synthetic dataset with a model

size as small as 5MB. In [1], we see that the DeepFont model

has a Top-1 accuracy of 80% on the VFR synthetic dataset.

But their model has a whopping 26M parameters which is 5

times larger than our model. The VFR model is also

compressed using matrix factorization techniques. Therefore

in comparison to the state of the art, our model has a

commendable accuracy considering the massive difference in

model size.

3.1.2. Font Detection in Full Sized Digital Images

Figure 5 shows detailed steps of the FDE pipeline for

replacing the original message (“Happy Birthday”) with a

new message (“Happy New Year”) while preserving the

background. The FDE detects style, color and size on the text

region selected by the user. Inpainting API from Open CV

[17] is used for removing original text. The detected font

attributes are applied on the new input message and replaced

in the image. The entire process takes less than 30ms.

3.2. Font Prediction Engine

The results for the FPE can be seen in Figure 6. For every

query font, we have listed the top 3 predictions. We notice

that the predicted fonts have many common qualities with the

query font. For a cursive font such as Sacramento all of its

top predictions also have the same nature and similar stroke

thickness. For a thick and bold font such as Erica One, the

predictions have a consistent visual quality. The serif quality

is preserved for a font such as Abril Fatface. The predicted

fonts have the same features and preserves the underlying

intent as much as possible while also maintaining the

requisite amount of diversity. The features and styles to be

preserved is controlled by tuning the priority attributes and

the weight vector. In [11], the authors have used a learned

"distance metric" over crowd sourced data to quantify the

similarity between two fonts. Compared to this, we have

devised a simpler method.

Model
Dataset Size

(MB)

Model

parameters

Inference

time (ms)

Validation

Accuracy

(Top-1) 50px 80px

Dense

Model

Google
Fonts

17.8 18.2 M 48 115 0.783

FCN
Google

Fonts
4.5 4.6 M 12 29 0.885

FCN
VFR

Dataset
5.0 5.1 M 14 33 0.782

Table. 1. Comparison between models. (All results were evaluated

on a mobile device with 12 GB RAM and an Octa-core processor).

Fig. 5. FDE pipeline for a sample image.

Fig. 7. Attribute Comparison between Query font (Sacramento) and

Predicted fonts.

Fig. 6. Font Prediction results for three different query fonts

 Figure 7 depicts the 37 font attributes of the font Abril

Fatface and its top three predictions. The predicted fonts

closely resemble the query font in terms of the distance

between attributes. This is reflected in their visual

characteristics in Figure 6. The attributes showing large

deviation in values (eg: attribute 9, 10, 17 etc.) belong to the

low priority attributes which are not being used by the FPE.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we implemented a Font Detection Engine,

which identifies font style, font color and font size of text in

an image. We developed a novel algorithm for predicting

visually similar fonts for a given query font. Both the engines

were then deployed on a mobile device and can work in real

time. This Font Detection Engine can be used in applications

such as, text customization and recognition. Both engines

reduce the design effort required for selecting suitable fonts.

As future work, we would want to make our current neural

network scalable, to include extra fonts and also fonts from

languages other than English. We can also try to link fonts

and the corresponding moods they convey, making the

prediction process much more robust and accurate.

5. REFERENCES

[1] A.B. Smith, C.D. Jones, and E.F. Roberts, “Article Title,”

Journal, Publisher, Location, pp. 1-10, Date.

[2] Jones, C.D., A.B. Smith, and E.F. Roberts, Book Title, Publisher,

Location, Date.

[1] Zhangyang Wang, Jianchao Yang, Hailin Jin, Eli Shechtman,

Aseem Agarwala, Jonathan Brandt, and Thomas S. Huang.

"Deepfont: Identify your font from an image," in Proceedings of the

23rd ACM international conference on Multimedia, pp. 451-459.

2015.

[2] Yizhi Wang, Zhouhui Lian, Yingmin Tang, and Jianguo Xiao.

"Font recognition in natural images via transfer learning," in

International conference on multimedia modeling, pp. 229-240.

Springer, Cham, 2018.

[3] Guang Chen, Jianchao Yang, Hailin Jin, Jonathan Brandt, Eli

Shechtman, Aseem Agarwala, and Tony X. Han. "Large-scale visual

font recognition," in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3598-3605. 2014.

[4] Yifan Chang. "Chinese Font Recognition Based on Convolution

Neural Network," in 2018 3rd International Conference on

Automation, Mechanical Control and Computational Engineering

(AMCCE 2018). Atlantis Press, 2018.

[5] D. Z. Matthew, and R. Fergus. "Visualizing and understanding

convolutional neural networks," in Proceedings of the 13th

European Conference Computer Vision and Pattern Recognition,

Zurich, Switzerland, pp. 6-12. 2014.

[6] Marcelo Bertalmio, Andrea L. Bertozzi, and Guillermo Sapiro.

"Navier-stokes, fluid dynamics, and image and video inpainting,"

in Proceedings of the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp.

I-I. IEEE, 2001.

[7] Alexandru Telea, "An image inpainting technique based on the

fast marching method," in Journal of graphics tools 9, no. 1 (2004):

23-34.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

"ImageNet classification with deep convolutional neural networks,"

in Advances in neural information processing systems, pp. 1097-

1105. 2012.

[9] Karen Simonyan, and Andrew Zisserman. "Very deep

convolutional networks for large-scale image recognition," in arXiv

preprint arXiv: 1409.1556 (2014).

[10] Kulahcioglu, Tugba, and Gerard De Melo. "Predicting

Semantic Signatures of Fonts." In 2018 IEEE 12th International

Conference on Semantic Computing (ICSC), pp. 115-122. IEEE,

2018.

[11] O'Donovan, Peter, Jānis Lībeks, Aseem Agarwala, and Aaron

Hertzmann. "Exploratory font selection using crowdsourced

attributes." ACM Transactions on Graphics (TOG) 33, no. 4 (2014):

1-9.

[12] Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,

and H. Adam Mobilenets. "Efficient convolutional neural networks

for mobile vision applications." arXiv preprint arXiv: 1704.04861

(2017).

[13] Google Fonts,

https://fonts.google.com/

[14] FontJoy,

https://github.com/Jack000/fontjoy

[15] Zhao, Nanxuan, Ying Cao, and Rynson WH Lau. "Modeling

fonts in context: Font prediction on web designs." In Computer

Graphics Forum, vol. 37, no. 7, pp. 385-395. 2018.

[16] Google ML Kit,

https://developers.google.com/ml-kit/vision/text-recognition

[17] Image Inpainting,

https://docs.opencv.org/master/df/d3d/tutorial_py_inpaintin

g.html

