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ABSTRACT

Coronavirus disease 2019 (COVID-19) is a Public Health
Emergency of International Concern infecting more than 40
million people across 188 countries and territories. Chest
computed tomography (CT) imaging technique benefits from
its high diagnostic accuracy and robustness, it has become an
indispensable way for COVID-19 mass testing. Recently,
deep learning approaches have become an effective tool
for automatic screening of medical images, and it is also
being considered for COVID-19 diagnosis. However, the
high infection risk involved with COVID-19 leads to relative
sparseness of collected labeled data limiting the performance
of such methodologies. Moreover, accurately labeling CT
images require expertise of radiologists making the pro-
cess expensive and time-consuming. In order to tackle the
above issues, we propose a supervised domain adaption based
COVID-19 CT diagnostic method which can perform effec-
tively when only a small samples of labeled CT scans are
available. To compensate for the sparseness of labeled data,
the proposed method utilizes a large amount of synthetic
COVID-19 CT images and adjusts the networks from the
source domain (synthetic data) to the target domain (real
data) with a cross-domain training mechanism. Experimental
results show that the proposed method achieves state-of-the-
art performance on few-shot COVID-19 CT imaging based
diagnostic tasks.

Index Terms— COVID-19 diagnosis, computed topogra-
phy, few-shot learning, supervised domain adaptation

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) [1] is an ongoing
global pandemic that was declared by the World Health Or-
ganization (WHO) on 11 March 2020. It has already infected
more than 40 million individuals and caused 1,119,369 death,
as of 20 October 2020 [2]. COVID-19 is highly contagious
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and it spreads more readily compared to similar infectious
diseases such as Middle East Respiratory Syndrome (MERS)
or Severe Acute Respiratory Syndrome (SARS) [3]. To slow
down the rapid transmission of this disease, it is necessary to
detect the COVID-19 in an early stage of infection.

With the emergence of deep learning, medical imaging
area also benefited from effective feature representation ca-
pability of deep learning techniques [4, 5, 6, 7, 8]. However,
applying deep learning on COVID-19 diagnosis is challeng-
ing due to lack of sufficiently large labeled data, particularly
of COVID-19 CT data, as it involves high infection risk and
the labeling process requiring experienced radiologists [9]. To
enable effective deep learning based COVID-19 diagnosis, it
is necessary to develop a novel approach capable of learning
in few-shot conditions (only limited data is available).

One promising approach that can tackle the above issue is
to use synthetic data for model training. However, a model
trained with synthetic data may not perform satisfactorily on
real data when applied directly. This is because of the domain
shift problem: synthetic data (source domain) may not nec-
essarily have similar distribution compared to the distribution
of real data (target domain). To handle the domain shift prob-
lem, some supervised domain adaptation (SDA) methods are
proposed recently. FADA [10] applied adversarial learning to
learn embedding features that maximize the distance between
two domains while aligning on a semantic level. CCSA [11]
proposed a series of loss functions in order to manage the
domain gap for a few-shot domain adaptation tasks. d-SNE
[12] introduced a new approach that exploits the stochastic
neighborhood embedding theory and modified-Hausdorff dis-
tance to improve the few-shot classification performance. Al-
though, many efforts have been done on SDA or few-shot
COVID-19 diagnosis areas [13, 14], applying domain adap-
tation on CT images for the COVID-19 diagnostic task is rel-
atively a new area, and our proposed method is one of the
first attempts in utilizing synthetic chest CT scans for few-
shot COVID-19 diagnostic task.

In this paper, we propose a novel supervised domain adap-
tation based few-shot COVID-19 diagnostic method applied
to CT scans. The proposed method consists of a Siamese
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structure, and the domain shift problem is solved with a
cross-domain training mechanism. The main idea is to learn
a model that can quantify three distances at domain-level: (a)
Classification loss £. to maximize the distribution distance
between samples from different categories; (b) Cross-domain
pairing loss L., to minimize the distribution distance between
samples from a different domain but of the same category;
(c) Cross-domain detaching loss £.; to maximize the distri-
bution distance between samples from different domains and
categories.
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Fig. 1. Demonstration of domain shift problem and proposed
solution. (A) Model trained on a large synthetic dataset then
tested on real data; (B) Model trained on a large real dataset
then tested on real data; (C) The proposed model trained on
a large synthetic dataset and few real data, then evaluated on
real data.

An illustration of the domain shift problem and the pro-
posed solution is shown in Figure 1. Figure 1 (A) depicts the
situation in which a COVID-19 CT based diagnostic model is
pre-trained by a large amount of synthetic data and tested on
real data. The model in Figure 1 (B), on the other hand, was
given a large quantity of real data for training and was tested
the same way as in the model in Figure 1 (A). As would be ex-
pected, Figure 1 (A) model performs poorly due to the domain
shift problem compared to Figure 1 (B) model. Figure 1 (C)
shows the proposed method which utilizes the same synthetic
data as in model (A) plus few real data to reduce the domain
gap between synthetic data and real data so that it can achieve
a similar performance level as in (B), as synthetic data can
easily be generated from our previous work [15]. The main
contributions of our work are as follows:

(1) We propose a novel chest CT data based COVID-19
diagnostic method designed for few-shot conditions in

which only a small quantity of COVID-19 CT data is
available. To the best of our knowledge, the proposed
method stands the first domain adaptation method that
utilizes synthetic COVID-19 CT data for a few-shot
COVID-19 diagnostic task.

(2) We propose a Siamese network structure that is trained
by a novel cross-domain training mechanism. This
cross-domain training mechanism enables an effective
domain transfer via three different losses (L., L., and
L.q) in few-shot condition.

2. PROPOSED METHOD
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Fig. 2. Overview of the proposed method. The proposed
model mainly consists of three parts: the source branch f(-)
depicted in blue color, the target branch f(-) in orange color,
and the prediction branch g(-) in gray color. The cross-
domain losses (L. and L.;) and the classification loss L. are
derived through the green arrow and the blue arrow, respec-
tively.

In this work, we propose a novel Siamese network based
model for a few-shot COVID-19 CT diagnostic task as illus-
trated in Figure 2. The Siamese network structure is basi-
cally formed in three components: source branch f(-), tar-
get branch f(-) and prediction branch g(-). Source and target
branches have the same network structure which consists of a
feature extractor and two fully-connected (FC) layers. The
prediction branch is a network that contains three FC lay-
ers. During the training stage, weight sharing occurs between
source and target branches as they take staggered input of
synthetic and real as (X1, Xi1, Xs2, Xt2, oee-- , Xsns Xeny )
Since the synthetic data outnumber the real data in a large
proportion, the real data were reused. Two embedded fea-
ture vectors (fs(Xs) and f;(X:)) are extracted through the
two branches. Only f,(X) is passed to the prediction branch
for calculating classification loss £, while both f,(X) and
f+(X}) are used to compute the cross-domain losses (Lep and
L.q). The classification loss and the cross-domain loss are
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used together to construct the overall loss for updating the
network. During the test stage, a real CT image is passed
through the network, and the network makes a binary diag-
nostic decision.

2.1. Classification loss

In order to train the proposed classifier to classify an input
CT scan to be positive or negative, we propose a classification
loss L, as follows:

Le=—[y-logg(f(x))+ (1 —y)log(l—g(f(z)] (1)

where x denotes the input CT scan, y denotes the binary label
(0, 1) of the corresponding input. The binary category cross
entropy loss learns the difference between positive case and
negative case and teaches the network to recognize the charac-
teristics of the lesion representation associated with COVID-
19. Since the data distributions of source and target domains
are different, this domain gap can influence the diagnostic
performance of the model when the network is pre-trained in
the source domain but is tested in the target domain. There-
fore, the classification loss alone is not sufficient to handle the
domain shift problem, and further cross-domain measures are
required to deal with the domain shift problem.

2.2. Cross-domain pairing loss

We define here a novel Cross-domain pairing loss for manag-
ing the distance between features from different domains but
have the same label. The cross-domain pairing loss is defined
as

Lep = D(p(f(XE),p(f(X])))) + D(p(f(Xé"),p(f(X?));)

2
where X? represents a sample from the source domain with
a positive label, while X}* denotes a sample from the target
domain with a negative label. D is the distance between two
probability distributions, p(-), and it is computed by average
pairwise Euclidean distances between points of the same label
from the two domains. By applying the cross-domain pairing
loss L, the model can learn the pair-wise (same category)
relationship between two domains by minimizing the distance
between the two feature distributions.

2.3. Cross-domain detaching loss

In order to further enhance the cross-domain diagnostic per-
formance, we propose a cross-domain detaching loss, aimed
at maximizing the distance between two feature distributions
of different classes. The definition of cross-domain detaching
loss is defined as follows:

Lea = D(p(f(XT),p(f(X])))) + D(p(f(X;”),p(f(Xf)g;

Similar to L,, the cross-domain detaching L.; uses Eu-
clidean distance to manage the difference between the two
feature distributions. The learning object is to maximize
L4 so that the diagnostic model is able to effectively sep-
arate the distributions well at the feature-level for enhanced
performance.

2.4. Overall learning objective

The overall learning object is defined as

Loveranl = L + O‘(‘Ccp - ﬁcd) 4

where hypo-parameter o denotes a weight factor of the cross-
domain losses. By applying both the classification loss L.
and the cross-domain losses L, L4, our proposed COVID-
19 diagnostic model can not only effectively classify the pos-
itive/negative cases within the domain, but also can transfer
the knowledge from the source domain to the target domain.
Thus, the proposed combination of the loss functions fully
exploits the large number of synthetic data for COVID-19 CT
diagnostic task when only a small number of real data are
given.

3. EXPERIMENTS

3.1. Experimental settings

Dataset. We constructed our dataset by using the data from
both the source and the target domains. The source domain
data is generated by our previous work [15], and the target do-
main data comes from a public COVID-19 CT dataset which
contains 29 individual cases [16]. Here, all the CT slices are
divided into training set (20) and test set (9) by patient level.
Specifically, we apply a combination of 6,000 source domain
slices (synthetic data) and 60 target domain slices (real data)
to form the training set, and we use 600 real CT scans as our
test set. The COVID-19 diagnostic task is formulated as a
binary classification task here, therefore, there are only two
possible categories: positive and negative. In order to evalu-
ate the proposed model, we randomly select n positive cases
and n negative cases from the target domain slices and pair
them with a randomly selected source domain group which
contains 600 samples, so we can obtain 2n - 600 source-target
pairs for the n-shot learning task.

Evaluation metrics. We report the diagnostic performance
by two metrics: accuracy and F1 score. We randomly re-
sample 10 times for building 10 individual training sets, and
report the results with the format as MEAN+95% CONFI-
DENCE INTERVAL among the 10 folds.

Experimental details. All CT scans are transformed to gray
images on a Hounsfield unit (HU) scale [-600,1500] and re-
sized to 512 x 512. The learning rate is set as 0.001 with a
decay rate 0.95. The weight factor « is 0.25.
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Table 1. Diagnostic performance comparison of few-shot
COVID-19 CT diagnostic task (n-shot: 5-shot, feature ex-
tractor: Xception [17], the best evaluation score is marked
in bold. Higher number of the metrics is better.)

Methods Metrics Performance
Accuracy | 0.8040+0.0356
OURS F1 score | 0.7998+0.0384
Source onl Accuracy | 0.5353+0.0268
Y "Flscore | 0.5133£0.0272
Accuracy | 0.706840.0443
CCSA[M] F1 score | 0.6841+0.0573
Accuracy | 0.73001+0.0688
FADA IO e 07167200796
Accuracy | 0.7693£0.0415
SNEN2) 5 oore 10.765120.0426

Table 2. Ablation study for cross-domain losses (n-shot: 5-
shot, feature extractor: Xception [17], the best evaluation
score is marked in bold. Higher number of the metrics is bet-
ter.)

Loss terms Metrics Performance
Accurac 0.8040+0.0356
Lo+ Lop+ Loa (OURS) |- pr 000800384
o4l Accuracy | 0.6553+0.0313
¢ P F1 score | 0.6487+0.0622
Lot Lo Accuracy | 0.7142+0.0650
¢ ¢ F1 score | 0.69984-0.0514

3.2. Experimental results

In this sub-section, we focus on comparing the performance
between the proposed method and other state-of-the-art su-
pervised domain adaptation methods, including CCSA [11],
FADA [10], d-SNE [12]. In order to show how does our do-
main adaptation help to improve the cross-domain diagnostic
performance, we also involve a source only competitor which
is trained on a deep network with only source domain data
and tested on a target domain test set. This experiment is a
5-shot learning task and we used the Xception [17] network
as the feature extractor. As shown in Table 1, the proposed
method outperforms the other state-of-the-art supervised do-
main adaptation approaches on both accuracy and F1 score
metrics.

3.3. Ablation Study of the Proposed Cross-domain Losses

We discuss the ablation study focused on examining the ef-
fectiveness of the components of our proposed loss functions
in this sub-section.

Our overall loss consists of three terms: classification loss
L., cross-domain pairing loss L., and cross-domain L.q. In
order to explore the performance contribution of each loss

term, we evaluated the proposed model under four conditions:
Lo+ Lep, Lo+ Legand Lo+ L, + Leg (ours). Experiment
results are summarized in Table 2. By comparing the contri-
bution of each cross-domain loss term, it is clear that both the
cross-domain paring and cross-domain detaching losses can
help to overcome the domain gap and improve cross-domain
diagnostic performance.

3.4. Ablation Study of n-shot learning task

Accuracy
mmm F1 score

0.8 1
I
0.6 1

0.4 4

0.2

0.0 -

Fig. 3. Ablation study for n-shot learning task.

We evaluate the proposed method in terms of its capability
in a few-shot learning problem. We consider a total of five
cases with n=1, 3, 5, 7 and 9, where n represents the shot
number. Experiment results are shown in Figure 3. From
Figure 3, it is clear that the proposed method can effectively
handle few-shot diagnoses under diverse n-shot conditions.
As expected, the diagnostic performance improves as the shot
number n increases. It should be noted, however, that even in
the extreme case of n = 1, the performance was maintained at
above 0.6.

4. CONCLUSION AND FUTURE STUDY

In this paper, we proposed a supervised domain adaptation
based few-shot COVID-19 diagnostic method for CT scans.
The novelty of the proposed method consists of constructing
a cross-domain training architecture by integrating a Siamese
network and introducing two cross-domain training losses
in addition to a classification loss. Siamese network based
architecture and the proposed cross-domain losses have been
demonstrated to be effective in handling the domain shift
problem between the source and the target domains. Exper-
imental results on the public COVID-19 CT dataset show
that the proposed method outperforms the other state-of-
the-art supervised domain adaptation methods on a few-shot
COVID-19 CT diagnostic task. For the future plan, we would
like to pay attention to channel attention mechanism based
COVID-19 diagnostic method using 3D CT volume.
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