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ABSTRACT

Recent progress in network-based audio event classification
has shown the benefit of pre-training models on visual data
such as ImageNet. While this process allows knowledge
transfer across different domains, training a model on large-
scale visual datasets is time consuming. On several audio
event classification benchmarks, we show a fast and effective
alternative that pre-trains the model unsupervised, only on au-
dio data and yet delivers on-par performance with ImageNet
pre-training. Furthermore, we show that our discriminative
audio learning can be used to transfer knowledge across audio
datasets and optionally include ImageNet pre-training.

1. INTRODUCTION

Deep learning for audio event detection and classification
benefits from large datasets. Despite unlimited access to
audio data (e.g. YouTube, Freesound, etc), labeling audio
events is labor intensive and noisy due to ambiguity in start
and end times and short duration of some audio events.

On the other hand, due to similarities of the most com-
monly used audio features (i.e. spectrograms) to images, it is
possible to benefit from advances in the image and video do-
main. Recent work shows improved performance when pre-
training models on pretext tasks such as image classification
or video based prediction [1} 2].

However, using image/video pre-training is very time de-
manding due to the size of visual data. Also, for every archi-
tectural change, this time-demanding pre-training needs to be
repeated. Finally, it limits network design since the feature
extractor has to be able to process image data which might
not be necessarily suitable for an audio task.

Furthermore, for audio applications on embedded devices,
such as voice assistants, it is desirable to be able to improve
the model performance on the edge over time through fine-
tuning on new recorded data. The need of on the edge com-
putation might be due to privacy concerns, to avoid sending
users’ audio data to the Internet, or due to missing network
availability. As a result, task performance needs to improve
fast with few epochs and little data on the device. Large net-
work models, as used for image data, may be too computa-
tionally expensive for many devices.
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Fig. 1. Embedding of spectrograms into the feature space
with ESResNet. Stereo channels are stacked for illustration.
First the network learns to embed similar spectrograms close
together on a hypersphere. Second, sound event classification
is trained, starting with the pre-trained network.

We present a pre-training method that accelerates net-
work fine-tuning on the task of sound classification while
being itself fast, efficient and versatile. Compared with the
state-of-the-art approach ESResNet [3]], we show how our
method achieves competitive results and significantly out-
performs training from scratch. On one benchmark we even
outperform state-of-the-art pre-training in early epochs.

We are faster at pre-training because we need only three
audio datasets which combined have a fraction of the size of
ImageNet. We focus on achieving fast results in very few
epochs for edge computation and do not aim to go beyond
state of the art performance on sound classification after ex-
tensive training. For a fair comparison we apply our method
to the ESResNet codebase.

With unsupervised training on a pretext task, using only
audio data, we also avoid the need for labels. By using Non-
Parametric Instance-level Discrimination (NPID) [4] to train
ESResNet on audio datasets we learn features beneficial for
downstream audio classification tasks, illustrated in fig. E}
This allows us to integrate all data seamlessly across datasets
and after deployment to train on novel unlabeled audio data.
We call this approach Unsupervised Discriminative Learning
of Sounds (DLS) and give an overview in fig. 2]
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Fig. 2. Discriminative Learning of Sounds (DLS) for Audio Event Classification. We compare the same network, pre-trained
either on our proxy-task, ImageNet image classification or not at all. ImageNet pre-training takes several days on common
GPUs. DLS can train unsupervised, only on sound data and within a few hours. When fine-tuning on Audio Event Detection,
DLS stays on par with ImageNet pre-training over many epochs. It constitutes an efficient alternative, especially useful for edge
computing or to accelerate the design phase of novel network architectures.

2. RELATED WORK

Audio Event Detection. Audio event detection was largely
improved in the last decade by leveraging new available
datasets [5]. We use: ESC-50, its subset ESC-10, Urban-
Sound8K and the DCASE 2013 scene classification dataset
(SCD) (e.g. evaluated on in [1]]). Others are: AudioSet [6]
which holds predominantly music and speech examples, and
the newer DCASE datasets [7]. These were not evaluated
since we focused on comparison with a specific recent state-
of-the-art method that does not use these datasets.

Unsupervised representation learning. Unsupervised
approaches in the vision domain improve in great strides to-
wards their supervised counterparts. MoCo [8], SimCLR [9]
and NPID [10]] have shown to produce valuable features for
downstream tasks. We base our contribution on NPID and
extend it to the audio domain.

Audio representation learning. Compared to traditional
hand-crafted features unsupervised training can lead to more
robust and compact audio representations. [11] applied deep
belief networks to learn audio representations for speech and
music. Generative methods have been explored in [12}[13}[14]]
using variants of autoencoders. Audio representation learning
has also been studied for speech [15] and music [[16].

Knowledge transfer from vision. Transfer learning from
visual tasks and exploiting audio-visual correspondences has
been explored in the past. [17] was able to learn associations
between free form audio, i.e. spoken sentences, and related
images. By predicting simply if parts of an audio and video
correspond, [18] was able to learn good audio and visual rep-
resentations. They were also able to extend this to localize

sounding objects in a scene [19] and their approach was ex-
tended to be used in audio classification [1].

Concurrent work which we use as basis for our eval-
uation improves downstream task performance by directly
fine-tuning ImageNet pre-trained visual models. By mapping
spectrograms to the format of a color image and by using
a pre-trained Resnet50 they achieve state of the art results
on audio event detection [3]. However, these methods rely
on a large network to leverage visual input for training. We
present a method which can be used to pre-train networks
optimized for the audio domain and low resources.

3. DISCRIMINATIVE LEARNING OF SOUNDS (DLS)

Here we show how to pre-train ESResNet using DLS on four
datasets and fine-tune on each dataset. We use the best per-
forming ESResNet with attention for all experiments and pre-
training steps.

Audio Datasets. Most sounds in the datasets contain au-
dio events recorded in natural environments, such as glass
breaking or dog barking. DCASE2013 sounds also include
longer recordings, such as riding in a bus. Across datasets,
sounds differ in length and number of classes, summarized in
table[I] Some contain events only on a fraction of their length,
such as a single dog bark, compared to other files filling the
entire standardized length, such as kids playing (see fig. E[)

Spectrogram Network Input. Power spectrograms, cre-
ated with Short-Time Fourier Transform (STFT), are the in-
put for all stages of training, following the method from [3]].
We follow this method exactly to compare on equal grounds.
Magnitude and phase are squared separately and the results



| US8K | ESC50 | ESC 10 | DCASE 2013

Events ‘ 8732 ‘ 2000 ‘ 400 ‘ 200
Classes | 10 | 50 | 10 | 10
Length | <4s | 5s | 5s | 30s
Fold | 10f10 | 1of5 |1of5 | 1of2

Table 1. Dataset setup. Classification is hardest on ESC50
because it has the least data per class. We tune hyperparame-
ters on one fold and use all data for unsupervised pre-training.

Fig. 3. Spectrograms after pre-processing. Frequency ranges
are split into three and concatenated as color channels. For
illustration stereo channels are separated into rows. The left-
most two columns show children playing, followed by car
horns. Large appearance changes exist within some classes.

are added. Spectrograms are divided into three equal sized
parts to separate the higher, middle and lower frequencies.
Finally the three parts are concatenated along a new channel
dimension to create color images from the spectrograms to be
processed by the network.

4. NETWORK PRE-TRAINING.

The pre-text task of instance discrimination generates fea-
tures, useful for the downstream task of audio classification.
The network’s task is to assign a unique id to every spectro-
gram. Applied on images, this creates a feature space where
visually similar images are grouped. However, visual similar-
ity is not an explicitly defined criteria in the loss function, but
a by-product of the pressure on the network to structure and
differentiate between all images of the dataset.

We follow [4] and use spectrograms as input. We train
ESResNet fy with weights 6 to map a spectrogram x; with
the assigned id ¢ in the training set to a latent output vector
vi. The vector is L2 normalized, so ||v;|| = 1 and updates its
entry in a memory bank in each training iteration to calculate
{v;} of all spectrograms. This allows efficient calculation
of a non-parametric softmax to get the assigned instance id
probabilities. The probability of a spectrogram = mapped to

vector v having training set id 7 is defined by:

exp (vIv/7)
Z;'L:1 exp (vav/T)

where 7 is the Softmax temparature parameter. Stochas-
tic gradient decent is used to minimize the log-likelihood:
argming — >, log P(i|fo(x;)) during training.

The final feature mapping has the advantage that sim-
ilar spectrograms are mapped close in the feature space.
This enables to group sounds with similar characteristics, as
sketched in fig. (I} While this enables our performance on the
downstream task, larger variance within a class than between
classes is an issue and limits this approach. Examples of very
different car horns can be seen in fig. [3]

Evaluation of Unsupervised Learning. We first trained
and evaluated on each dataset separately, according to the of-
ficial training/evaluation folds (see tab. [I). Every instance of
the evaluation set is mapped and we check its label alignment
with its weighted K=5 nearest neighbors in the training data
feature space. We tune hyperparameters separately for each
dataset but found the optimal configuration was almost the
same for all. Therefore, we use the average parameters: Em-
bedding dimension=128, NCE-K=64 and NCE-T=0.4, which
are the number of negative samples and Softmax temperature
of the Noise Contrastive Estimation in [4]. We trained 200
epochs with a batchsize of 64.

In a second phase, we use all available audio datasets and
folds to combine one large training dataset, without evalua-
tion or test set. Therefore we train the embedding with the
fixed hyperparameters found in phase one and no longer eval-
uate the performance in this step. However, we observe that
the training loss at epoch 200 is sufficiently converged. The
result of this phase is the pre-trained ESResNet.

P(ilv) =

(1

5. NETWORK FINE-TUNING.

The pretrained ESResNet is fine-tuned and evaluated on each
dataset individually. The final classification layer is set to the
number of classes depending on the dataset we fine-tune on,
which means it needs to be retrained. We found fine-tuning
all layers yields faster performance gain than fixing them and
only fine-tuning the classifier. Results are shown in fig. 4]

Comparison with ImageNet Data We compare pre-
training by image classification on ImageNet with DLS on
the four audio datasets: DCASE2013 (SCD), ESC-50/ESC-
10 and UrbanSounds 8k which provide 9.3Gb of sound data.
ImageNet consists of over 200Gb of data, with 14,197,122
images. Training a classification task on ImageNet with
Resnet50, which is also the backbone of the ESResNet ar-
chitecture, can take almost two weeks on a single GPU [20].
Even if we assume ImageNet training happens on a similar
modern setup as ours (4x GeForce GTX 1080 Ti), the training
time of ImageNet would still be at least 1-2 days. Training
DLS with ESResNet on 200 epochs takes 4 hours.
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Fig. 4. Evaluation accuracy over epochs on a) ESC10, b) DCASE2013, ¢) ESC50 and d) UrbanSounds8k. Shaded areas show
standard deviation of average n-fold cross validation results. The average accuracy pretrained with DLS is on par with ImageNet
pre-training and significantly better than training from scratch. Even though we use only sound data with a fraction of the size
of ImageNet, we reach a similar performance gain. In d) pre-training shows on par results with ImageNet pretraining. In c)
DLS pre-training outperforms from scratch training over the first 18 epochs. In b) DLS pre-training even outperforms ImageNet

pre-training on the first 11 epochs.

6. EXPERIMENTAL RESULTS

We evaluated the performance of ESResNet with attention
with DLS pretraining, Imagenet pretraining and training from
scratch. The architectures are fully identical [3]].
DCASE2013 and ESC10. Training on small datasets ben-
efits largely from pre-training, as can be seen by the perfor-
mance gain on ESC10 and DCASE2013 (fig. d). On ESCI0,
DLS pre-training outperforms ImageNet pretraining slightly
in the first three epochs, rising to 80% accuracy where train-
ing from scratch remains under 40%. On DCASE2013, DLS
pre-training is best for 11 epochs, rising towards 50% accu-
racy and continuing on par with ImageNet pre-training.
ESCS50 and UrbanSounds8k. On larger datasets, the accu-
racy gain in the first epochs is similar between DLS and Ima-
geNet pre-training. However DLS was trained in significantly
shorter time and on less data. On ESC50, it outperforms from
scratch training significantly and rises to over 60% accuracy
in the first 15 epochs. UrbanSoundsS8k is the largest dataset
and both pre-training methods show similar performance gain
per epoch. Each epoch contains more sound files than in any

other dataset so methods are already close after the first epoch
when they are evaluated. DLS still outperforms training from
scratch on 5-6 epochs.

Densenet as backbone. We also compared using Densenet
as backbone and omit graphs for brevity. Results show slower
performance gain over the first 15 epochs and then level off at
similar levels. All trends are similar though on DCASE2013,
all performance gains are very close before epoch 30.

7. DISCUSSION

We presented an unsupervised pre-training method which
enables fast fine-tuning when training networks for audio
event classification. While using only a comparatively small
amount of sound data, we show that we can gain early per-
formance as the same network pre-trained on ImageNet. We
validate our results on three commonly used datasets for au-
dio classification. Our approach enables network training on
devices with limited computing resources, e.g. for continu-
ous improvement by adopting novel collected data. Because
pre-training with DLS is unsupervised, novel unlabeled data
can be integrated with existing data seamlessly.
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