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ABSTRACT

Supervised learning is a major task to classify datasets. In
our context, we are interested into classification from high-
order tensors datasets. The “curse of dimensionality” states
that the complexities in terms of storage and computation
grow exponentially with the order. As a consequence, the
method from the state-of-art based on the Higher-Order SVD
(HOSVD) works well but suffers from severe limitation in
terms of complexities. In this work, we propose a fast Grass-
mannian kernel-based method for high-order tensor learning
based on the equivalence between the Tucker and the tensor-
train decompositions. Our solution is linked to the tensor net-
work, where the aim is to break the initial high-order ten-
sor into a collection of low-order tensors (at most 3-order).
We show on several real datasets that the proposed method
reaches a similar accuracy classification rate as the Grass-
mannian kernel-based method based on the HOSVD but for a
much lower complexity.

Index Terms— Tensor classification, HOSVD, sub-
spaces, Grassman manifold, Tensor Train.

1. INTRODUCTION

Nowadays, data needs more and more dimensions to be de-
scribed [1]. A natural way to represent such data is to use
multidimensional arrays called tensors [2]. Tensors of order
@ [3] are multiway arrays of () dimensions. They generalize
the notions of vectors (first order tensors) and matrices (sec-
ond order tensors). A prominent tensor decomposition is the
High-Order SVD (HOSVD) [4] but this decomposition suf-
fers from the well-known “curse of diemnsionality” meaning
that the storage and computational costs grow exponentially
with the order of the tensor. This is a severe limitation for
tensors with @ > 3 [5, 6].

In the context of supervised classification, Support Vector
Machines (SVMs) [7, 8] have been widely used due to their
solid theoretical foundations, their performances and their
easy implementation. Despite only processing linear classifi-
cation, they can be modified to treat non linear problems via a
kernel method. The main idea is to map data that are initially
non linearly separable into a higher dimensional space (an
RKHS) where it becomes linearly separable using a mapping

¢. In practice (thanks to the kernel trick), the explicit com-
putation is ¢ is not required as long as an expression for the
kernel: k(.,.) =< &(.), ¢(.) > exists. The exploitation of the
HOSVD and SVMs to tensorial data has been introduced in
[9]. The proposed method, denoted FAKSETT (Fast Kernel
Subspace Estimation based on Tensor Train decomposition)
shows good classification performance at the price of higher
computational complexity due to the use of the HOSVD. The
main idea of this work is to decrease this complexity using a
recent theoretical result giving an algebraic link between the
Tucker and Tensor-Train format [6].

For the remaining part of this work, scalar will be denoted
by lower case letters (e.g: a), matrix will be denoted by upper
case letters (e.g: A) while tensors will be denoted by calli-
graphic letters (e.g: A)). The order of a tensor will gener-
ally be denoted by ) and we will consider the case when
@ > 3. The ¢-th unfolding for A is a matrix and will be
denoted A~ whose elements are given by:

.A<q>(iq 3 i]...l‘qfll.q+1...2.Q) = Ailv,”’iQ.

The n-product between A and B will be denoted by x,,
according to

(.A Xn B)il,m-,iQ = ZA.,,7in71’i’“_ Bi,in-

The contraction product x]* between A and B is a tensor
constructed similarly by summing over the n-th index on A
and over the m-th index from 5.

2. KERNEL FOR DATA TENSORS

We focus on supervised classification problems where data
are high order tensors. Kernel-based classification methods
[10, 11] require a similarity measure. It is standard [9] to
consider a kernel between two tensors X’ and ) as for instance
the RBF Gaussian kernel :

k(X,Y) = exp(—||X — V||%) (1)

where v > 0 is the bandwidth and ||.||F is the Frobenius
norm.

However, this kernel does not consider the multidimensional
structure of data tensors.



2.1. HOSVD Decomposition

Definition: Tucker decomposition. A tensor X follows a
Tucker Decomposition (TD) if it can be written as [4]:

X:gxlUl Xg...XQUQ (2)

where U, are of size I X Ry, 1 < ¢ < @ and G is the core
tensor of size 1 X --- X Rg. The multi-linear ranks (m-
ranks) of X is the Q-uplet {R1, ..., Rg}.

Definition: HOSVD. An important constrained format of
the TD is the HOSVD. In the latter, the factors U, are or-
thonormal and the core tensor G is all-orthogonal. In order to
compute the HOSVD presented in Equation (2), [9] consider
the R, left dominant singular vectors from the g-th unfolding
X<g>. The complexity of the HOSVD for a cubic Q-order
tensor of size I; x - -+ x I is evaluated to O(QRI?) where
I = maxg{l,} and R = max,{R,} is the maximal multi-
linear rank. We can see that the HOSVD complexity grows
linearly and exponentially with respect to the order (). For
low-order tensor [12, 13], this complexity remains acceptable
but this limitation becomes rapidly severe for high-order ten-
sors (@ > 3).

2.2. Tensor-based Kernel on HOSVD factors

In order to take account of the multidimensional structure of
input data tensors, an idea presented in [9] consists in decom-
posing each tensor into its HOSVD:

X:Qx1 U1 X9 ... XQ UQ (3)
y:HX1V1 X2...XQVQ (4)

The kernel-based part of the proposed method is
Q
k(X Y) = [k U, V) )
q

where k,(.,.) is a positive definite kernel defined on the ma-
trices RI*Ba x RIXFa,

2.3. Kernel on a Grassmann manifold

It shall be noted that the decompositions from Equation (3)
are not unique [3]. The output class will be affected by this
lack of non-uniqueness. To mitigate this issue in the learn-
ing context, one can consider the subspaces spanned by the
factors {Uy, ..., U, } and {V1, ..., Vu}. Indeed, the subspace
spanned by the factor U, g < N (respectively V) are invari-
ant to any right multiplication by a non-singular matrix.
Therefore, let consider the sub-kernels £, in the form:

kq (Uqs Vg) = kq (span(Uy), span(Vy)) ©)

where l;:q is a kernel defined on the Grassman manifold
G(Rg, I), i.e the subspaces from R! with dimension R,,.

Fig. 1. Illustration of the angle 6, from Equation (7)

A popular choice for l;q that gives rise to a positive definite
kernel and used in [9] is given by:

kq (Uy, V) = exp (—7 sin® (9q)) @)

where 6, is the principal angle between span(U,,) and span(V).
It should be noted that despite ¢, being the geodesic distance
in the Grassman manifold between the two subspaces, the
expression sin(f,) is considered instead, making the kernel
k, definite positive (therefore, SVM methods can be used
for classification) [14]. Readers can refer to [14] for explicit
ways of computing the principal angles. In our case, it is
possible to directly use the projectors:

sin? (0,) = 2||[U, UL ~ Vv || ®)

The principal angle 6, is illustrated in Figure 1.

3. THE FAKSETT METHOD : A FAST
ALTERNATIVE TO THE METHOD OF [9]

In order to decrease the complexity of the HOSVD discussed
in Section 2.2, we propose to use a fast multiLinear projec-
tion method proposed in [6]. The theoretical foundations of
this method are based on the Tensor Network theory [5] and in
particular on the equivalence between the Tucker and Tensor-
Train formats introduced in [6] and described in the follow-
ing. We will first begin with a definition of Tensor Train de-
composition (TTD).

Definition: Tensor-Train Decomposition (TTD). A
Tensor X admits a TTD with TT-ranks (R}, .., Rg_,) if it
can be expressed as:

X =G1x3G: x5 1 Gg-1 x4 Gg ©9)
where the size of each core is:
.« G € RIXRll

« Gy e R IXE i1 < g < Q



span (gq<2>

Fig. 2. In the case of R, = 2 with U, = [U;,UZ]: Despite
giving different factors, HOSVD and FAKSETT gives factors
that span the same subspace.

* GQ S RRIQFlXI

and where (R}, Ry, ..., Ry _,) are the TT-ranks. To estimate

the core tensors, we can use the TT-SVD algorithm [15] or its
generalization [16].

Assume that a tensor X follows a TD of m-ranks { Ry, - -- Rg}
with orthonormal factor U,. An equivalence between TD and
TTD is presented in [6]. Each core extracted from the TD
given by Equation (9) follows a 3-order Tucker model with
two latent matrices in its first and third dimensions. In the
second dimension, we have the interesting property that R,
left dominant singular vectors from the second unfolding
spans the same subspace as U,. As a consequence, we have
for2<¢<@-1

span(U,) = span (Gy<2>) - (10)

This property is illustrated on Figure 2 and span(U;) =
span(G1), span(Ug) = span(Gg). Therefore, the expression
from Equation (7) can be obtained from a the computation of
the left dominant singular vectors thanks to the SVD associ-
ated to Q — 2 cores.

The m-ranks and TT-ranks verify the following relation:

q Q
R/, = min <H Ry, [] R,,) :
p=1

p=q+1
The last step of the FAKSETT method is to compute the ker-
nel defined in Equations (5) and (7).

4. EXPERIMENTS

For the following datasets, a classification task is realized via
SVM [7]. This relies on the similarity matrix obtained using
the kernel defined previously. The kernel is computed with
FAKSETT and is compared to the native method of [9].

Fig. 3. Three classes from Extended Yale Database.
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Fig. 4. Two classes from UCF11 Database.

4.1. Datasets

¢ UCF11 dataset: This dataset [17] contains 1600 video
clips belonging to 11 human actions such as: diving,
trampoling jumping, walking, shooting... Two human
actions are chosen: trampoling jumping and walking,
presented in Figure 4. They will represents 2 classes
for the classification. Sequence that contains the first
240 frames from each clip video where the resolution
of each RGB frame is 320 x 240 are considered. These
clip videos can be interpreted as tensors of order 4 with
dimensions 240 x 240 x 320 x 3. A total of 109 tensors
are present in each class. Randomly selecting 60% of
them constitutes the training set. The rest is left for the
test.

* Extended Yale dataset B: This dataset [18] contains
28 human subjects. For each subject, there are 576 im-
ages of size 480 x 640 taken under 9 poses. Each pose
is taken under 64 different illuminations. In that case,
3 subjects, represented in Figure 3 represents 3 classes
for a classification problem. In order to construct the
training and the test set, we break the tensor of each
subject in 16 tensors by considering each 4 illumina-
tions in a tensor of size 9 x 480 x 640 x 4.

4.2. Classification performance

In this section, we report on numerical experiments where we
use accuracy as a performance measure.

Both the SVM regularization parameter and the kernel
bandwidth v from Equation (7) are selected from the grid
of values {279,278 .../ 28 29} by a 5 fold cross validation.
All the experiments are conducted on a computer with Intel
Core i7 9th generation 2.6 GHZ processor and 32 Go RAM



memory running Windows 10. Computations of SVDs are re-
alised using optimised TensorLy (Tensor Learning in Python)
library.

» Table 1 and Table 2 show very close accuracy scores
between FAKSETT and method of [9] for classifica-
tion tasks on both real database. This indicates that the
FAKSETT method operates as efficiently as the state-
of-art method. Reducing the size of the training data
set (i.e training with less data) does not impact signifi-
cantly the performances.

¢ However, it is noticeable from Table 3 that FAKSETT
reduces significantly the running time for the computa-
tion of the factors, despite working with only () = 4 or-
der tensors. Higher orders would lead to an even higher
running time gain between the two methods.

s% | m-ranks | FAKSETT | method of [9]
%50 | [2,2,2,2] | 0.72(1072) | 0.73(1072)
%60 | [3,3,3,3] | 0.7(10~2) | 0.7(10~2)
%80 | 3,3,3,3] | 0.76(1072) | 0.77(1072)

Table 1. Mean accuracy (standard deviation) on test data for
UCF11 database

s% | m-ranks FAKSETT method of [9]
%50 | [1,3,2,1] | 0.98(1072) 0.99(10—2)
%60 | [1,2,2,1] | 0.99(10~2%) | 0.99(10~%)

Table 2. Mean accuracy (standard deviation) on test data for
Extended Yale database

Database m-ranks | FAKSETT | method of [9]
[2,2,2,2] 14(0.42) 69(3)
UCF11 [3,3,3,3] 15(0.63) 104(5)
Extended Yale | [1,2,2,1] | 2.56(0.09) 9.47(0.1)

Table 3. Mean time (standard deviation) on seconds con-
sumed to compute HOSVD for different databases w.zt to dif-
ferent values of multi-linear ranks.

5. CONCLUSION

Recently, supervised kernel-based learning for tensors based
on a Grassmannian metric between subspaces extracted from
HOSVD has been proposed. Despite a good classification
accuracy, this method suffers from a high complexity cost
in particular for datasets associated to (Q-order tensors when
@ > 3. In this work, we exploit some recent algebraic link
between the HOSVD and the TTD to speed up the native
method. We call this new supervised leaning scheme FAK-
SETT for Kernel-based Fast Multilinear Projection. On real

datasets, we show that the FAKSETT scheme reaches a very
similar classification accuracy as the state-of-art method but
for a running time considerably reduced on real datatsets.
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