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ABSTRACT
Context modeling plays a critical role in building multi-turn
dialogue systems. Conversational Query Rewriting (CQR)
aims to simplify the multi-turn dialogue modeling into a
single-turn problem by explicitly rewriting the conversational
query into a self-contained utterance. However, existing ap-
proaches rely on massive supervised training data, which is
labor-intensive to annotate. And the detection of the omitted
important information from context can be further improved.
Besides, intent consistency constraint between contextual
query and rewritten query is also ignored. To tackle these is-
sues, we first propose to construct a large-scale CQR dataset
automatically via self-supervised learning, which does not
need human annotation. Then we introduce a novel CQR
model Teresa based on Transformer, which is enhanced by
self-attentive keywords detection and intent consistency con-
straint. Finally, we conduct extensive experiments on two
public datasets. Experimental results demonstrate that our
proposed model outperforms existing CQR baselines signif-
icantly, and also prove the effectiveness of self-supervised
learning on improving the CQR performance.

Index Terms— conversational query rewriting, self-
supervised learning, multi-turn dialogue

1. INTRODUCTION

Building conversational bots has attracted increasing atten-
tion due to the promising potentials on applications like
virtual assistants [1] or customer service systems [2]. With
the development of deep learning, both the task-oriented dia-
logue and open-domain conversation have made remarkable
progress in recent years [3, 4, 5]. However, multi-turn di-
alogue modeling still remains extremely challenging. One
major reason is people tend to use co-reference and ellip-
sis in daily conversations [6], which leaves the utterances
paragmatically incomplete if they are separated from context.
According to previous research, this phenomenon exists in
more than 60% conversations [7]. Taking the conversation in
Table 1 for example, the key information of Bluetooth head-
phones is omitted in the Q2. To help the conversational bots
understand the incomplete utterances, we rewrite Q2 to R2.

∗Corresponding author.

Turn Utterance (Translation)

Q1
请问Mix3可以连接蓝牙耳机吗?
Can Mix3 connect to Bluetooth headphones?

A1
可以的
Yes, Mix3 can.

Q2
小米8可以连接吗?
Can Mi8 connect it?

R2
小米8可以连接蓝牙耳机吗?
Can Mi8 connect to Bluetooth headphones?

Table 1. An example of contextual query rewriting. The
incomplete query Q2 is rewritten into R2 by our proposed
model. Mix3 and Mi8 are model names of cellphone.

Previous works [7, 8, 9, 10, 11, 12] formulate the con-
versational context understanding as a query rewriting prob-
lem, transforming a user utterance with anaphora or ellip-
sis into a new utterance where the left-out or referred ex-
pressions are automatically generated from the dialogue con-
text. Usually an end-to-end sequence-to-sequence model with
copy mechanism is applied for this task. Su et al. [8] proposed
a Transformer-based generative model with pointer network.
To locate the omitted information from context, Song et al.
[9] employed a multi-task learning framework by taking se-
quence labeling as an auxiliary task. Pan et al. [7] proposed
a Pick-and-Combine model to decompose the task into a cas-
caded process. The picking stage predicts the omitted words
and the combining stage rewrites the query. As the training
process of generative model needs massive rewriting pairs, all
above works construct their datasets by manual annotation.

Although tremendous progress has been made, we argue
that the following aspects can be further improved. First,
collecting large-scale supervised data is extremely time-
consuming and labor-intensive, which becomes the bottle-
neck of neural models. Second, the sequence labeling task
tends to focus on entities and may ignore other important
information, such as verb and adjective words. However,
the omitted information is usually text spans which are not
limited to entity words. Third, previous works lack intent
consistency constraint between contextual query and rewrit-
ten query, which leaves the generation under-constrained.

To tackle above issues, in this paper, we propose a novel
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Transformer-based query rewriting model, equipped by Self-
Attentive Keywords Detection (SAKD) and Intent Consis-
tency Constraint (ICC), namely Teresa. Specifically, SAKD
utilizes the self-attention weights of words to build a graph
network on encoder to represent relevance between words.
Then TextRank [13] algorithm is adopted to calculate each
word’s importance, which guides the copy mechanism dur-
ing generation. As to ICC, we first obtain the intent repre-
sentations of contextual query and rewritten query with the
same encoder, then force their distributions on intent to keep
consistent by Kullback-Leibler divergence loss [14]. Lastly,
we propose to construct the CQR training data automatically
from raw dialogue corpus with self-supervised learning (SSL)
[15], which does not need manual annotation. Extensive ex-
periments are performed on two public datasets. And exper-
imental results demonstrate the superiority of our proposed
model compared with state-of-the-art baselines.

2. METHODOLOGY

We denote a conversation session s = {u1, u2, ..., ut} with
t utterances. Given q = ut is the incomplete query and
c = {u1, ..., ut−1} is the context, our goal is to learn a rewrit-
ing model g(c, q) to generate a context-independent query
r, which has the same meaning with q but recovers all co-
referenced and omitted information. r could be equivalent to
q when q is already self-contained without context c.

2.1. Self-Supervised Learning

Generally, the supervised learning (SL) is trained over a
specific task with a large manually labeled dataset. Differ-
ently, self-supervised learning (SSL), also known as self-
supervision, is an emerging solution to such cases where data
labeling is automated, and human interaction is eliminated.
In SSL, the learning model trains itself by leveraging one
part of the data to predict the other part and generate labels
accurately. In the end, this learning method converts an un-
supervised learning problem into a supervised one. While
Computer Vision is making amazing progress on SSL only in
the last few years [16], SSL has been a trend in NLP research
recently. Especially for the representation learning in NLP
(e.g. Skip-Gram [17] and BERT [18]), various pre-training
tasks are proposed in the self-supervised formulations, such
as Neighbor Word Prediction, Masked Language Modeling,
and Next Sentence Prediction etc.

Inspired by SSL, as Figure 1 shows, we propose to con-
struct the training sample (c, q, r) from raw dialogue corpus
automatically, by corrupting the normal query r into incom-
plete query q. Suppose there exist common text spans be-
tween context c and normal query r, we can construct the
incomplete q by treating the common text spans by following
two approaches: (1) removing the common text spans from
r directly, (2) if the common text spans are noun phrases in

Fig. 1. Dataset construction based on SSL.

r, we replace them with pronouns in 50% of time. The first
approach is designed to cover the ellipsis situation, and the
second approach is to cover the co-reference scenario. To im-
prove the quality of the constructed dataset, we require the
common text spans to contain at least one word of noun, verb
or adjective. And only informative queries (queries with at
least 10 characters for Chinese in this work) are processed.
With the constructed dataset above, the CQR task can be for-
mulated as a typical SSL problem. We first corrupt the normal
query r, then force the model to recover it.

We also follow the trendy pre-train and fine-tuning two-
stage learning paradigm to train our CQR model. The pre-
training stage is based on SSL with auto-generated data, and
the fine-tuning stage is based on SL with annotated data.

2.2. Model

Transformer-based Generative Model. Figure 2 shows the
overall architecture of our proposed model Teresa, which is in
the encoder-decoder framework [19]. Both the encoder and
decoder are based on the transformer model [20]. To learn
dependency between context c and query q, the input context
and query are packed together with a segment token [SEP].
For each token wi, the input embedding is the sum of token,
position and segment embedding where segment embedding
indicates if each token comes from the context or query. Then
transformer encoder is leveraged to produce a sequence of
hidden states H .

The transformer decoder is applied to generate rewritten
query r, in which the copy mechanism [21] is utilized to copy
important words from the context c and query q. Each layer
l of decoder is composed of three sub-layers. The first sub-
layer is a multi-head self-attention layerM l. The second sub-
layer is an encoder-decoder interaction layer. And the third
sub-layer is a feed-forward layer. Inspired by Su et al [8], we
calculate the context representation Cl and query represen-
tation Ql separately in the encoder-decoder interaction sub-
layer, and Cl and Ql are concatenated as input of the feed-
forward sub-layer to obtain the final decoder hidden state Sl.
At each time step t, the decoding probability P (w) is com-
puted by fusing the information from c, q and last decoding
layer hidden state St. The copy mechanism is used to predict
the next target word according to P (w), which is computed
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Fig. 2. The framework of our propose model Teresa.

as follows:

P (rt = w) = λ
∑

i:(wi=w,∈c)

at,i+(1−λ)
∑

j:(wj=w,∈q)

a′t,j (1)

at = Attention(Mt, Hc) (2)

a′t = Attention(Mt, Hq) (3)

λ = σ(wT
SSt + wT

CCt + wT
QQt) (4)

where wS , wC , and wQ are trainable parameters. σ is the
sigmoid function to output a value between 0 and 1. λ is a
learning coefficient to decide whether to copy token from c
or q. Note that all tokens in r can only be copied either from
the context c or query q. The rewriting model is trained by
maximizing the log-likelihood of the output rewritten query.

LNLL = − 1

T

T∑
t=0

logP (rt) (5)

Self-Attentive Keywords Detection. To facilitate car-
rying the omitted important information from context into
the rewritten query, we propose to enhance the copy mech-
anism by a novel Self-Attentive Keywords Detection module
(SAKD). Inspired by Xu et al [22], we build a graph network
by stacking a self-attention layer over the output of context
encoder. Formally, let G = (V,D) be a directed graph where
vertices V is word set from context and edge Di,j represents
the self-attention weight from word wi to the word wj . Then
the TextRank algorithm [13] is adopted to calculate word im-
portance score based on graph G.

The word importance score can be seen as a prior infor-
mation to indicate the salient information in dialogue context.
It is incorporated into copy mechanism as an extra input to
calculate the attention weights at of context words. To fur-
ther ensure that important information is extracted by copy
mechanism, the Kullback-Leibler (KL) divergence is adopt as
an auxiliary loss to force the distribution of attention weights
close to the prior importance score.

at = softmax(Attention(Mt, Hc) + wT
scorescore) (6)

LSAKD = KL(
1

T

T∑
t=0

at, score) (7)

Intent Consistency Constraint. Intent matters to query
understanding in dialogue. We argue that the rewritten query
should be consistent with the contextual query in the intent
dimension. Therefore, we propose a novel Intent Consistency
Constraint (ICC) to guide the rewriting process. In this mod-
ule, the latent intent recognition task is equipped to learn the
corresponding intent representation for the given contextual
query. The latent intent recognition shares encoder param-
eters with the rewriting model. A special classification to-
ken [CLS] is inserted in front of the input sequence to collect
the intent information of original query in the context. Simi-
larly, the corresponding intent representation for the rewritten
query can also be collected by the content of itself, because
the rewritten query is self-contained. Then another KL diver-
gence loss is adopted to keep the intent distributions consis-
tency between the contextual query and the rewritten query.

To sum up, the total objective of our proposed model is to
minimize the integrated loss:

L = LNLL + LSAKD +KL(f(Hc,q
CLS), f(H

r
CLS)) (8)

where f is a function to map text representations into intent
distributions.

3. EXPERIMENTS

3.1. Datasets and Metrics

We carry out extensive experiments on two public datasets.
First, we construct a new CQR dataset from scratch based
on large-scale raw dialogue corpus JDDC [23]. The JDDC
corpus contains more than 1 million real multi-turn con-
versations between users and customer service staffs in E-
commerce scenario. The average turn number of dialogues is
20, indicating the contextual dependency is very common in
the dialogues. By applying the SSL approach mentioned in
Section 2.1, we generate the pre-training data JDDC-CQR-
10M, which includes about 10 million (c, q, r) triplets. We
generate the positive samples by SSL, and the negative sam-
ples by random sampling. To compare with the SL approach,
we also annotate another 146,000 triplets manually, namely
JDDC-CQR-146K. The ratio of positive and negative samples
is 1:1 in above two datasets. The positive sample means r is
different from q, and the negative sample means r is the same
as q. For context c, we keep at most 5 utterances. Second,
to compare with previous CQR models, we also conduct ex-
periments on a public CQR dataset Restoration-200K, which
was collected from open-domain conversations and manually
annotated by [7]. We split both the JDDC-CQR-146K and
Restoration-200K into train/dev/test sets. The JDDC-CQR-
10M is only used for pre-training in our experiment.

For evaluation, we choose three automatic evaluation met-
rics of BLEU-4 [24], ROUGE-L [25], and Exact Match by



Model B4 RG-L EM(-) EM(+)
JDDC-CQR-146K
T-Ptr-λ [8] 73.34 84.71 96.55 32.40
PAC [7] 70.78 83.52 87.18 28.24
MLR [9] 68.53 81.12 92.65 19.08
Teresa w/ SL 73.71 84.90 96.60 33.07
Teresa w/ SSL 78.34 87.68 94.94 47.36
Teresa w/ SSL+SL 79.62 88.78 97.59 50.82
w/o SAKD 79.35 88.61 97.36 50.00
w/o ICC 78.81 88.25 97.07 48.69

Restoration-200K
T-Ptr-λ [8] 74.73 88.65 86.63 53.63
PAC [7] 73.69 86.66 82.23 46.27
MLR [9] 71.99 86.74 82.42 48.01
Teresa w/ SL 74.82 88.69 87.49 54.46

Table 2. The experimental results on JDDC-CQR-146K and
Restoration-200K datasets. B4 and RG-L stand for BLEU-4
and ROUGE-L respectively. EM(+) and EM(-) represent EM
percentage for positive and negative samples.

following previous works [8]. BLEU and ROUGE are widely
used in generation tasks to measure the lexical similarity be-
tween generated utterance and ground-truth. Exact Match is
a very strict metric which requires the generated utterance to
be the same as the ground-truth.

3.2. Baselines

Our baselines are as follows: (1) T-Ptr-λ [8]. This is a
Pointer-Generator Network based on Transformer, which
only copies words from context or query during generation.
(2) PAC [7]. Pick-and-Combine (PAC) is a cascaded model
that first identifies omitted words in context based on BERT
[18], then appends the omitted words to the query as the input
of Pointer-Generator Network. (3) MLR [9]. MLR is a two-
stage CQR model with multi-task learning, which trains the
sequence labeling task and query rewriting task jointly. All
three baseline models are trained with the annotated training
set (aka. supervised learning) in the following experiments.

For our proposed model Teresa, both the encoder and de-
coder consist of 6 layers of transformer block. The embed-
ding dimension is set to 256 and the attention head number is
8. It is optimized with the Adam optimizer. The initial learn-
ing rate is 0.5 and batch-size is 64. Beam search is used for
decoding and beam size is 4. For all the baselines, we follow
the same experimental settings in the corresponding papers.

3.3. Experimental Results

Table 2 shows the experimental results on JDDC-CQR-146K
and Restoration-200K. We can obtain following interesting
conclusions: (1) For both two CQR datasets, with only the an-

Fig. 3. Performance analysis of fine-tuning experiments.

notated training data, Teresa w/ SL outperforms above three
baselines on all metrics. It indicates the superiority of our
proposed model. (2) Even with the pre-training data only,
Terera w/ SSL has already outperformed Terera w/ SL signif-
icantly on B4, RG-L and EM(+), which proves the effective-
ness of SSL. For EM(-), we argue it may be slightly effected
by the random negative samples. (3) By utilizing the pre-train
and fine-tune paradigm, Teresa w/ SSL+SL makes further im-
provement and obtains the best performance.

To figure out the contributions of SAKD and ICC, we
conduct two groups of ablation study on JDDC-CQR-146K.
From Table 2, it’s observed that, by removing SAKD and
ICC separately, both the performance drops notably, which
demonstrates the necessity and rationality of each module.

Figure 3 illustrates the performance when we fine-tune
Teresa with different percentages of annotated data. The two
curves show that the performance improves very fast when
adding only 10% of annotated data. Then it starts to saturate
even adding more annotated data. This indicates much less
of annotated data is needed with the help of SSL. We tried to
plug our CQR model in the dialogue system and the experi-
ments show that CQR can facilitate downstream tasks too.

4. CONCLUSIONS

In this paper, we propose a novel transformer-based gen-
erative model (denoted as Teresa) for conversational query
rewriting, which is equipped by a novel self-attentive key-
words detection module and an auxiliary intent consistency
constraint. To address the time-consuming data annotation
issue, we propose to construct the CQR training data via self-
supervised learning automatically. Experiments on two CQR
datasets demonstrate the superiority of SSL and the competi-
tiveness of our proposed model. In the future, we will explore
integrating the CQR task into pre-training stage of Pre-trained
Language Model, and provide an universal pre-trained CQR
model for various dialogue tasks.
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