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TRAIN YOUR CLASSIFIER FIRST: CASCADE NEURAL NETWORKS TRAINING
FROM UPPER LAYERS TO LOWER LAYERS

Shucong Zhang ', Cong-Thanh Do %, Rama Doddipatla ?, Erfan Loweimi ', Peter Bell* and Steve Renals !

! Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK
2 Toshiba Cambridge Research Laboratory, Cambridge, UK

ABSTRACT

Although the lower layers of a deep neural network learn fea-
tures which are transferable across datasets, these layers are
not transferable within the same dataset. That is, in general,
freezing the trained feature extractor (the lower layers) and
retraining the classifier (the upper layers) on the same dataset
leads to worse performance. In this paper, for the first time,
we show that the frozen classifier is transferable within the
same dataset. We develop a novel top-down training method
which can be viewed as an algorithm for searching for high-
quality classifiers. We tested this method on automatic speech
recognition (ASR) tasks and language modelling tasks. The
proposed method consistently improves recurrent neural net-
work ASR models on Wall Street Journal, self-attention ASR
models on Switchboard, and AWD-LSTM language models
on WikiText-2.

Index Terms— top-down training, layer-wise training,
general classifier, speech recognition, language model

1. INTRODUCTION

The lower layers (close to the input) of a deep neural network
(DNN) can be interpreted as a feature extractor while the upper
layers (close to the output) can be viewed as a classifier. The
feature extractor learns general low-level features which could
be transferable across datasets [1,2]. Transfer learning exploits
this property — in general, the feature extractor, which is trained
on a base dataset, is transferred to a target dataset with the
classifier retrained on the target dataset [3—6]. Since the feature
extractor learns general low-level features, the trained feature
extractor should also be transferable within the same dataset.
Therefore, retraining the classifier based on a frozen trained
feature extractor using the same dataset should lead to little
change of the model’s performance. However, surprisingly,
this retraining usually results in a performance drop [2].

In this work, experimentally, we observe that if the clas-
sifier is trained with more data, when transferred to unseen
datasets, it leads to better generalisation (which is consistent
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with the transfer learning of feature extractors [3—6]). Fur-
thermore, we observed retraining the feature extractor based
on the frozen trained classifier within the same dataset usu-
ally does not lead to performance drops but results in better
generalisation .

Based on these observations, We propose a top-down,
layer-wise training method in which a network is trained by
freezing the trained upper layers and retraining the lower lay-
ers in a cascade. We have applied this approach to train
models for automatic speech recognition (ASR) using the
clean Wall Street Journal (WSJ) dataset [7], the telephone
conversation Switchboard (SWBD) [8] dataset and for lan-
guage modelling (LM) using WikiText-2 dataset. The trained
models include long short-term memory (LSTM) [9] based
connectionist temporal classification (CTC) [10], LSTM based
CTC-attention [11], Transformer [12] and AWD-LSTM [13].
We observed performance gains over the conventional training
where all the layers are trained jointly; to the best of our knowl-
edge, this is the first time that a layer-wise training method
consistently outperforms conventional joint training across
different domains, models and tasks (ASR and LM).

In summary, we present three novel contributions:

* Demonstration that the upper layers of neural networks
are transferable within the same dataset;

* A top-down, layer-wise, training algorithm;

» Experiments indicating that top-down training outper-
forms conventional joint training across different do-
mains and models.

2. RELATED WORK

Top-down training method can be viewed from different as-
pects. It is related to a variety of previous works, which we
review in this section.

Layer-wise training without a joint fine-tuning stage has
been investigated recently by a number of researchers [14—
19]. However, unlike our top-down training algorithm, these
training methods build DNNs in a bottom-up manner. In
general, the reported experimental results do not indicate that
these training methods surpass joint training. Belilovsky et
al [18] and Nokland et al [19] have reported layer-wise training
outperforms joint training for training convolutional neural



networks for image classification. However, these methods are
not effective for training networks with residual connections.

Zhang et al [20] propose to use the classifier trained on the
clean data to train the feature extractor on noisy data, so the
noisy feature extractor is forced to learn features which fit the
clean classifier and thus the method has the effect of denoising.
In this work we show the classifier is transferable not only
across different datasets but also within the same dataset.

Both the proposed training method and dropout [21] reduce
the size of the network during training. Dropout can be viewed
as reducing the effective width of the network in a random
manner, while our training method reduces the effective depth
of the network by following a fixed schedule. When these two
methods are combined, during training thinner and shallower
sub-networks are trained while during testing, the model has
the representation power of a wide and deep network. In our
experiments, the combination of these two methods yields
significant performance gains.

In gradient based optimization, the learning rate can either
be dynamically tuned by the user or be tuned by optimization
algorithms [22-26]. In top-down training, since the classifier
is frozen, its learning rate can be viewed as 0 when retraining.
Our experiments show that this procedure is compatible with
popular methods of changing the learning rate dynamically.

3. TRANSFERABLE UPPER LAYERS

In this section, we empirically show: the quality of the frozen
classifier decides the quality of the retrained model and in
the joint training the quality of the classifier increases then
decreases. We present the top-down training algorithm in
Section 4 and present comprehensive comparisons between
the top-down training method and joint training in Section 5.
We define general classifier by making an analogy to the
concept of general feature extractor: if the classifier is more
general, then training the feature extractor with respect to it on
unseen data should lead to better generalisation compared to a
classifier which is not general. We hypothesize that with more
training data, the trained classifier becomes more general/has
higher quality. To verify this, we conducted a series of end-to-
end speech recognition experiments using the WSJ. We divide
the WSJ training set into 5%, 10%, 20%, 40% and 80% size
subsets, leaving 20% unseen training data. We train 4-layer
BLSTM CTC models and the training stops if for 5 consecu-
tive epochs there is no improvement on the development set
(dev93). Other experimental setups follow [11]. We group the
softmax layer and the topmost BLSTM layer as the classifier.
As shown in Table 1, with more training data, the model
achieves better ASR performance. To test if the classifiers
from each trained model become more general as the size of
the training subsets increases, on the unseen 20% training set,
we run experiments of training the feature extractor with these
frozen trained classifiers. Figure 1 shows on the unseen train-
ing data, training with respect to the frozen classifier trained
on larger subsets consistently yields lower character error rates

dev92 CER

19 1
L ]

10% Classifier 20% Classifier

» 80% Classifier

e 5% Classifier
40% Classifier

eval93 CER

[

=

Lh "
ao8e

16.5 "
[ ]

10% Classifier 20% Classifier

» 80% Classifier

® 5% Classifier
40% Classifier

Fig. 1: The CERs of models trained on the 20% unseen data
with frozen classifiers from trained models on different si284
subsets. The experiments are repeated 5 times with different
random seeds.

Table 1: CERs of models trained on si284 subsets.

Training set dev92/eval93 (CER)
5% train si284 | 34.4/32.9
10% train si284 | 28.3/26.1
20% train si284 | 22.5/19.9
40% train si284 | 17.5/14.7
80% train si284 | 13.2/10.6

(CERs). Thus, we conclude the classifiers trained on larger
subsets are indeed more general/have higher quality, and train-
ing feature extractor with them leads to better generalisation.

We further investigate in the joint training, does the classi-
fier become more general as the training proceeds? We train
the CTC model on the 80% subset for a sufficiently large num-
ber of epochs. Then, we take the classifiers from the models
among these training epochs and retrain the feature extractor
based on them respectively on the 20% unseen data. Figure 2
shows on the 20% unseen data, the model trained with the
frozen classifier which is from epoch 11 of the joint training
on the 80% subset gives the lowest CERs. In the joint training
on the 80% subset, the model around epoch 11 also gives the
lowest development loss. On the 20% unseen data, the models
trained with frozen classifiers which are from later epochs of
the joint training on the 80% subset have increasing CERs.
Also, in the joint training on the 80% subset, the development
loss increases after epoch 11. Thus, the classifier firstly be-
comes general (low CERs when transferred to the unseen data),
then it becomes overfitting and leads to worse generalisation
(high CERs when transferred to the unseen data).



24

=i 23

=1k 22

» \\\//—NJ —Dev Loss o 21 ——Dev
P

—Train Loss B a0 Test
19

S 18

h S
135791113151719

Epoch where the classifier is from

(b) CERs on 20% unseen

Training epoch

(a) Loss on 80% joint training

Fig. 2: Train/dev loss for the joint training on the 80% subset
and CERs of the models trained on the 20% unseen data with
frozen classifiers taken from the epochs of the joint training.

If we freeze the classifier when it is general/of high-quality,
we can prevent it from becoming overfitting and we can fur-
ther train the feature extractor with the high-quality classifier.
Based on this, we propose the top-down training algorithm,
which is described in Section 4. The opposite strategy (freez-
ing the feature extractor then retraining the classifier on the
same dataset) usually leads to higher error rates [2].

4. TOP-DOWN TRAINING ALGORITHM

Based on the findings of Section 3, we develop a novel top-
down, layer-wise training algorithm, which can be viewed as a
process of searching for high-quality classifiers. The algorithm
searches among models trained by conventional joint training
along the epoch dimension and the layer dimension (layer
index).

Algorithm 1 Greedy Layer-wise Top-down Training

Input: A trained n layer network M
e < validation error of M
for i=1ton—1 do
M « M
Freeze top 1 layers (near output) of M’
Reinitialize bottom n — 7 layers of M’
Retrain bottom n — ¢ layers of M’
e’ « validation error of M’
if ¢/ > e then
BREAK
end if
M+~ M’
e+ ¢
end for
Output: A retrained n-layer network M

Searching the time/epoch dimension is useful since at the
beginning of the training the classifier is under-trained and at
the end of the training the classifier tends to be overfitting. We
denote the model at epoch p as MP. We search for the best
classifier through all MP.

Searching the layer dimension is essential since arbitrarily
many upper layers can be grouped and viewed as the classifier
(the feature extractor should at least have one layer). For a n-

layer neural network M which is trained by the joint training,
freezing the top ¢ layers of it then reinitializing and retraining
the bottom n — ¢ layers generates a new model M; ,,_;. For the
model M; ,,_;, we can add newly retrained lower layers to the
classifier and retrain the remaining lower layers. M; ; ,—;—;
denotes a model trained by freezing the top i + j layers of
model M; ,,_; followed by retraining the lower n —i — j layers.
This corresponds to a search of ordered sequences of natural
numbers (i,5,k,--- ,r)suchthati+j+k+---+r = n;
for a network M with three layers, the search would be across
Mi 11, My and My (e.g., My 1,1 indicates train all the
layers jointly;then freeze the topmost layer and retrain the
bottom two layers; then freeze the top two layers and retrain
the bottom most layer).

As the complete search along these two dimensions is
expensive, we use a greedy search algorithm for layer-wise
training (Algorithm 1), which uses a converged model for
the epoch dimension. For the layer dimension, we freeze
layers from top to bottom in a layer-by-layer manner (i.e. we
only consider M ,,_1, M11,n—2, - Mi,1,...1). We also use
the validation set to halt the search. The complexity of this
algorithm is O(n), where n denotes the number of layers of
the network. We omit the complexity of training the network
since it is independent of the top-down training algorithm.

5. EXPERIMENTS

We apply the top-down training algorithm to train a range of
neural networks on speech and text domains. We have used
end-to-end speech recognition models. We test the end-to-end
models rather than the conventional hybrid system since the
end-to-end models have only one feature to output unit com-
ponent, allowing an exact fair comparison between the joint
and top-down training. For a hybrid system, better training
of one component may not lead to a better performance of
the entire system. For the same reason, we do not perform
language model fusion or adaptation. All models were built
using PyTorch [27].

5.1. Experiments on Speech Recognition

We employ our method to train CTC models on the full WSJ
si284 training set. The experimental setup follows [11]. We
used three different random seeds to build three baselines, and
executed greedy top-down layer-wise training (Algorithm 1)
for each baseline. For seed 1, we also tested freezing the lowest
layer, followed by reinitializing and retraining the remaining
upper layers.

Top-down training significantly reduces the CER for each
of the baseline models (Table 2). For seed 1 and seed 2,
the layer-wise training stops at the lowest layer. For seed 3
(where the proposed method brings the least improvement),
the training procedure stops at the layer above the lowest layer
(i.e. the final model is M; 1,1,2). An additional experiment
on seed 1, indicates that if we freeze the lowest layer and



Table 2: CERs for experiments on WSJ.

Table 3: WERs for experiments on SWBD

model dev93/eval92 (CER) model SWBD/Callhm (WER)

CTC seedl seed 2 seed 3 Baseline 9.0/18.1

Baseline 12.4/9.7 12.6/10.4 | 12.6/10.2 + freeze softmax layers 8.6/17.2

+ top-down training | 10.8/8.2 10.6/8.5 11.5/8.9 Previous works

+ freeze lowest 13.1/10.5 | - - Transformer [32] 9.0/18.1

Dropout 0.5 9.6/7.6 -

. Very deep self-attention [33] 10.4/18.6

+ top-down training 8.2/6.3 Multi-stride self-attention [34] | 9.1/

CTC-attention seed 1 —

Baseline A 8.0/6.2

+ freeze softmax layers from A 7.3/5.4 compared to the previous works.

+ freeze softmax layers from B 7.5/5.7 5.2. Experiments on Language Modelling

VGG CTC-attention seed 1

Baseline B 72/5.4 We apply the proposed method in training the AWD-LSTM

+ freeze softmax layers from B 7.0/5.2 language model [13] on WikiText-2 dataset. The architecture

+ freeze softmax layers from A 6.7/5.2 of the networks and the training procedure are same as in

Provious works the previous work [13]. We run the retraining three times —
with the same/different initial weights as the baseline. We

CTC DNN [28] -/10.0 freeze the topmost layer and retrain the bottom layers. The in-

CTC BLSTM [29] -192 put/output embedding are tied in both of the joint training and

CTC-Attention [11] 11.3/7.4 the retraining (so the input embedding is also frozen during the

+ pad silence [30] 7.8/5.8 retraining). This does not contradict the top-down approach

+ deep encoder [31] 1.415.5 since although tied with the input embedding, the output em-

retrain the top layers, the accuracy of the model drops. This
observation is also consistent with the findings of [2].

Using seed 3, we train a model with dropout probability
0.5 and then apply top-down training. We observe large gains
in test accuracy over both the baseline and the model trained
with dropout (38% and 17% relative gain, respectively). The
combination of these two training methods performs impres-
sively, with the CTC model giving CERs comparable to the
joint CTC-attention baseline model, which is more flexible
and has more capacity.

We apply the proposed training method to train hybrid
CTC-attention models [11] on WSJ. The experimental setup
of BLSTM CTC-attention follows [11] and the setup of VGG
BLSTM CTC-attention follows [31]. We freeze only the soft-
max layer of the CTC part and the softmax layer of the atten-
tion based encoder-decoder part (the final model is M ;1)
due to the large number of experiments; and performance
gains are already observed on M; ,,_;. Table 2 demonstrates
that, to the best of our knowledge, top-down training results
in state-of-the art character error rates for LSTM-based end-
to-end models on WSJ, without language model fusion or
adaptations.

We test the proposed training method on SWBD. We em-
ploy the Transformer [12] based CTC-attention model and the
experimental setup follows [32]. We freeze only the softmax
layer of the CTC part and the softmax layer of the Trans-
former due to large number of experiments. Table 3 shows
the proposed method significantly reduces the word error rates
(WERs) over the baseline, and gives noticeably better results

bedding is still the closest to the output and in general the gains
of the tied embedding is from the output embedding [35]. The
top-down method can be viewed as making the LSTM suffi-
ciently trained by retraining the LSTM based on the trained
and frozen word embedding.

As shown in Table 4, although the performance gains from
the top-down training are not as large as the gains in previ-
ous experiments, the reduction of the perplexity is consistent.
The proposed training method may implicitly overlap with
some regularization techniques used in the training of AWD-
LSTM. However, these regularization methods do not nullify
the advantages of the top-down training.

Table 4: Perplexity of the AWD-LSTM language models on
WikiText-2.

Model Dev  Test
Baseline seed 1 68.7 65.6
+ freeze topmost layer seed 1 | 68.2 65.3
+ freeze topmost layer seed 2 | 68.2  65.2
+ freeze topmost layer seed 3 | 68.1 65.2
Previous work [13] | 68.6 6538

6. CONCLUSION

In this paper, we have shown that upper layers are in general
transferable. Based on this, we develop a novel layer-wise
top-down training method, which prevents the upper layers
from overfitting. We demonstrate, for the first time, that layer-
wise training can outperform conventional joint training across
speech recognition and language modelling tasks. Future work
will include reducing the complexity of the search.
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