1911.12322v3 [cs.LG] 16 Feb 2021

arxXiv

Crypto-Oriented Neural Architecture Design

Avital Shafran Gil Segev

Shmuel Peleg Yedid Hoshen

School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Abstract

As neural networks revolutionize many applications,
significant privacy conflicts between model users and
providers emerge. The cryptography community developed
a variety of techniques for secure computation to address
such privacy issues. As generic techniques for secure com-
putation are typically prohibitively ineffective, many ef-
forts focus on optimizing their underlying cryptographic
tools. Differently, we propose to optimize the initial de-
sign of crypto-oriented neural architectures and provide
a novel Partial Activation layer. The proposed layer is
much faster for secure computation. Evaluating our method
on three state-of-the-art architectures (SqueezeNet, Shuf-
fleNetV2, and MobileNetV2) demonstrates significant im-
provement to the efficiency of secure inference on common
evaluation metrics.

1. Introduction

Deep neural networks are revolutionizing many applica-
tions, but practical use may be slowed down by privacy con-
cerns. As an illustrative example, let us consider a hospital
that wishes to use an external diagnosis service for its med-
ical images (e.g. MRI scans). In some cases, the hospital
would be prevented from sharing the medical data of its pa-
tients for privacy reasons. On the other hand, the diagnosis
company may not be willing to share its model with the
hospital to safeguard its intellectual property. Such privacy
conflicts could prevent hospitals from using neural network
services for improving healthcare. The ability to evaluate
neural network models on private data will allow the use of
neural network services in privacy-sensitive applications.

The privacy challenge has attracted significant research
in the cryptography community. Cryptographic tools were
developed to convert any computation to secure computa-
tion, i.e. computation where the view of each involved party
is guaranteed not to reveal any non-essential information on
the inputs of the other parties. The deep learning setting
consists of two parties, one providing the data and the other
providing the neural network model. Secure computation is

typically slower then non-secure computation and requires
much higher networking bandwidth. Recently, various ap-
proaches were proposed for secure computation of neural
networks [3, 49]. However, due to the efficiency limitations
of secure computation, these approaches have so far been
somewhat limited to simple architectures, decreasing their
accuracy and applicability.

Our Contribution. Instead of using existing architec-
tures and optimizing the cryptographic protocols, we take a
complementary approach. We propose to design new neural
network architectures that are crypto-oriented. We propose
a novel partial activation layer for the design of crypto-
oriented neural architectures. Non-linear activations such as
ReLU are very expensive for secure computation. We pro-
pose to split each layer to two branches, applying the non-
linear activation on one branch only, to significantly reduce
required resources. Different activation layers have differ-
ent effects on accuracy, therefore we propose to carefully
choose the ratio between the branches in different layers.
For layers whose removal makes no significant impact on
accuracy we suggest to use a 0%-partial activation layer, i.e.
removing the activation layer completely. For clarity, we
will refer to this as “activation layer removal” rather than
0%-partial activation.

Given our proposed partial activation layer, we present
new crypto-oriented architectures based on three popular
(non crytpo-oriented) efficient neural network architectures:
MobileNetV2 [42], ShuffleNetV2 [37] and SqueezeNet
[27]. Our new architectures are significantly more efficient
than their non-crypto-oriented counterparts, with a minor
loss of accuracy.

2. Background
2.1. Privacy-Preserving Machine Learning

Research on privacy-preserving machine learning has so
far focused on two main challenges: Privacy-preserving
training and privacy-preserving inference. Privacy-
preserving training [45, 2, 6] aims at enabling neural net-
works to be trained with private data. This happens, for

CIFAR-10/100 \ MNIST / FASHION

Model Accuracy Comm. Rounds Runtime Accuracy Comm. Rounds Runtime

CIFAR10/ 100 (MB) (sec) MNIST / FASHION (MB) (sec)
Squeeze-orig 92.49/70.41 327.2 393 14.59 99.27/94.05 248.07 393 14.36
Squeeze-ours 91.87/69.7 149.59 232 9.03 99.08 /93.29 66.77 152 6.34
Shuffle-orig 92.6/70.95 311.63 484 24.37 99.26/93.51 249.36 484 23.8
Shuffle-ours 92.5/70.07 157.63 294 14.88 99.23/93.4 104.3 294 11.4
Mobile-orig 94.49/74.8 1926.34 806 41.01 99.23/94.51 1517.37 806 38.41
Mobile-ours 93.44/72.61 403.52 296 17.11 99.25/94.29 250.42 296 16.12

Table 1. Comparison of performance on secure classification using a few known networks (SqueezeNet, ShuffleNetV2, and MobileNetV2),
before and after our proposed crypto oriented modifications. Our modification provides substantial increase of efficiency with a minor
reduction of accuracy. While the accuracy is noted separately for each dataset, the complexity measures for the two CIFAR datasets are

almost the same, as well as for the two MNIST datasets.

example, when private training data arrives from different
sources, and data privacy must be protected from all other
parties.

In this work we address the challenge of privacy-
preserving inference. A pre-trained neural network is pro-
vided, and the goal is to transform the network to process
(possibly interactively) encrypted data. The network’s out-
put should also be encrypted, and only the data owner can
decode it. This enables users with private data, such as med-
ical records, to rely on the services of a model provider.

Existing privacy-preserving inference methods [3, 49]
rely on three cryptographic approaches, developed by the
cryptography community in the context of secure computa-
tion: Homomorphic encryption, garbled circuits, and secret
sharing.

Given a neural network N with depth k, it can be repre-
sented by a list of composed layers:

N(X):FkOFk,IO...OFl(X) (1)

where F is the i layer of the network, and X is the input
to the network. Using the above cryptographic tools, each
layer can be transformed into a privacy-preserving layer F,
such that given the encoding X of a private input X the
output of:

—

N(X)=FyoFy_q0..0F(X))

is encrypted as well, and can be decoded only by the owner
of X to compute N(X).

The challenge of practicality. Despite the extensive re-
search within the cryptography community towards more
practical secure computation protocols, the above ap-
proaches are practical mainly for simple computations. In
particular, homomorphic encryption and secret sharing are
most suitable for layers that correspond to affine functions
(or to polynomials of small constant degrees). Non-affine

layers (e.g. ReLU or Max Pooling) lead to significant over-
head, both in computation and in communication. Garbled
circuits can be efficient for layers corresponding to func-
tions that can be represented via small Boolean circuits, but
interaction between the parties for computing every layer is
required. This may be undesirable in many scenarios.

Homomorphic encryption. Homomorphic encryption
[18, 8] allows to compute an arbitrary function f on an en-
crypted input, without decryption or knowledge of the pri-
vate key. In other words, for every function f and encrypted
input & = enc(x) it is possible to compute an encryption

—

f () of f(z) without knowing the secret key that was used
to encrypt «. Gilad-Bachrach et al. [19] relied on homo-
morphic encryption in their CryptoNets system, replacing
the ReLU activation layers with square activation. However
this approach significantly increased the overall inference
time. [23, 9, 43, 11, 7] also propose optimization methods
using homomorphic encryption.

Garbled circuits. In the context of layer-by-layer trans-
formations, garbled circuits [53] can be roughly viewed as
a one-time variant of homomorphic encryption [41, 30, 39].
For two parties, A and B, where A holds a function f (cor-
responding to a single layer of the network) and B holds an
input z, the function f is transformed by A into a garbled
circuit that computes f on a single encoded input. B will
encode its input x, and then one of the parties will be able
to compute an encoding of f(z) from which f(z) can be
retrieved.

Secret sharing. Secret sharing schemes [44, 5] provide
the ability to share a secret between two or more parties.
The secret can be reconstructed by combining the shares
of any “authorized” subset of the parties (e.g., all parties
or any subset of at least a certain size). The shares of any
“unauthorized” subset do not reveal any information about

the secret. As discussed above, secret sharing schemes en-
able privacy-preserving evaluation of neural networks in a
layer-by-layer fashion, where the parties use their shares for
all values on each layer ¢ for computing shares for all value
on layer (i + 1) [38, 36, 40, 50].

2.2. Efficient Neural Network Architecture Design

Real world tasks require both accuracy and efficiency,
sometimes under different constraints e.g. hardware. This
leads to much work focused on designing deep neural net-
work architectures optimally trading off accuracy and effi-
ciency. SqueezeNet [27], an early approach, reduced the
number of model parameters by replacing the commonly
used 3 x 3 convolutions filters with 1 x 1 filters and using
squeeze and expand modules. Recent works shifted the fo-
cus from reducing parameters to minimizing the number of
operations. MobileNetV1 [24] utilizes depthwise separable
convolution to reduce model complexity and improve effi-
ciency. MobileNetV2 [42] further improved this approach
by introducing the inverted residual with linear bottleneck
block. ShuffleNetV1 [54] relies on pointwise group convo-
lutions to reduce complexity and proposed the channel shuf-
fle operation to help information flow across feature chan-
nels. ShuffleNetV2 [37] proposed guidelines for the design
of efficient deep neural network architectures and suggested
an improvement over the ShuffleNetV 1 architecture.

2.3. Efficiency Metrics

Standard neural networks measure efficiency using
FLOPs (Floating-Point Operations). Privacy-preserving
neural networks require different metrics due to the inter-
activity introduced by cryptographic protocols. The main
measures of efficiency for such protocols are typically their
overall communication volume (communication complex-
ity), or the number of rounds of interaction between the par-
ties (round complexity) [52, 53, 20, 4,29, 17, 34, 33, 21].

3. Designing Crypto-Oriented Networks

Our goal is to design neural networks that can be com-
puted efficiently in a secure manner for providing privacy-
preserving inference mechanisms. We propose a novel par-
tial activation layer that exploits the trade-offs that come
with the complexity of the cryptographic techniques en-
abling privacy-preserving inference.

In non-secure computation, the cost of affine operations
like addition or multiplication is almost the same as the cost
of non-linearities such as maximum or ReLU. As typical
neural networks consist of many more additions and multi-
plications than non-linearities, the cost of non-linearities is
negligible [12, 26]. Efficient network designs therefore try
to limit the number and size of network layers, not taking
into account the number of non-linearities.

0.0200{ ™= original B original
no
activation

40

no
0.0175 activation

o

b1 0.0150 30

n

~— 0.0125

[J]

£ 0.0100 20

=

< 0.0075

3

fut
0.0050 10

0.0025

0.0000 0 "
SqueezeNet ShuffleNetV2 MobileNetV2

SqueezeNet ShuffleNetV2 MobileNetV2

(@)

Figure 1. Removal of all activation layers has a negligible effect on
non-secure inference, but has a drastic reduction of complexity in
secure inference. Comparison done on SqueezeNet, ShuffleNetV2
and MobileNetV2 using all datasets. (a) Effects of removal of
activation layers on non-secure inference. (b) Effect of removal
of activation layers on secure inference. Blue - Original network.
Orange - Activation layers removed.

As explained in Sec. 2, the situation is different for
privacy-preserving neural networks, as secure computation
of non-linearities is much more expensive. Homomorphic
encryption methods approximate the ReLLU activation with
polynomials, and higher polynomial degrees are needed for
better accuracy. This comes at the cost of a larger computa-
tional complexity. While garbled circuits and secret sharing
methods present lighter-weight protocols, they have high
communication and round complexities. As a result, the
number of non-linearities is an important consideration in
the design of efficient privacy-preserving networks. The rel-
ative speed of different architectures might change between
the secure and non-secure cases, and therefore the optimal
architecture in each case may be (and typically is) different.

Fig. 1 illustrates the remarkable difference between the
two scenarios, i.e. secure and non-secure inference. We
evaluate the inference runtime of three popular architec-
tures - SqueezeNet, ShuffleNetV2 and MobileNetV2 - on
the CIFAR-10, CIFAR-100, MNIST and Fashion-MNIST
datasets. We can see that in the secure case, the removal
of all activations results in more than a 60% runtime reduc-
tion, while in the non-secure case the reduction is negligi-
ble - around 10%. This highlights that the number of non-
linearities must be taken into account in crypto-oriented
neural architecture design.

To obtain an analytic understanding of the relative cost
of non-linearity vs. convolution evaluation in privacy-
preserving networks, let us consider the analytic cost for a
particular protocol, SecureNN [50]. For a convolution layer,
the round and communication complexities for [bit input of
size m x m X i, kernel size f x f and o output channels is
given by

Roundscony, = 2 3)
CommMeony = (2m2f21' +2f%0i + m20)l)

In comparison, the ReLU protocol has a round and commu-

activation

| split

Figure 2. In Partial Activation layers, the channels are split and ac-
tivation is applied only to a subset of the channels, and not applied
to the other channels.

nication complexities of:

Roundspery = 10 ®))
CommReLU =8l logp + 241 (6)

where p denotes the field size - each [-bit number is secret
shared as a vector of [shares, each being a value between 0
and p — 1 (inclusive).

Consider the toy example of a small neural network with
input of size 32 x 32 x 3, with a convolution layer with
kernel size 3 x 3 and 16 output channels followed by a
ReLU activation layer. When considering 64-bit numbers
and p equal 67 (following SecureNN) the convolution layer
will require 2 rounds and 0.58MB communication, while
the ReLU layer will require 10 rounds and 9.5MB commu-
nication — 5x more rounds and 16x more communication.

In the above, ReLU is only used as an illustration. This
applies identically to all other non-linear activation layers
such as Leaky-ReLU, ELU, SELU, ReLU®6, although the
exact numerical trade-offs may differ slightly.

Partial activation layers. In order to reduce the number
of non-linear operations used, we propose a novel partial
activation layer, illustrated in Fig. 2. Partial activation
splits the channels into two branches with different ratios,
similarly to the channel split operation suggested in Shuf-
fleNetV2 [37]. The non-linear activation is only applied
on one branch. The two branches are then concatenated.
By using partial activation we can reduce the number of
non-linear operations, while keeping the non-linearity of
the model. Our experiments show that this operation results
in attractive accuracy-efficiency trade-off, dependent on the
amount of non-linear channels.

Beyond reducing the number of non-linearities per layer,
it is beneficial to simply remove activations, i.e. 0%-partial
activation, in locations where they do not improve the net-
work accuracy. Dong et al. [16] and Zhao et al. [55] have
studied the effect of erasing some ReLU layers and have
shown that this sometimes even improves accuracy. Sandler

et al. [42] also explored the importance of linear layers and
incorporates this notion into the bottleneck residual block.

4. Experiments

In this section, we conduct a sequence of experiments
demonstrating the effectiveness of our method in the design
of crypto-oriented neural architectures. Our crypto-oriented
architectures have better trade-offs between efficiency and
accuracy in the privacy-preserving regime than standard ar-
chitectures.

Efficiency evaluation metric. The fundamental com-
plexity measures for secure computations are the commu-
nication and the round complexities, as they represent the
structure of the interactive protocol. The runtime of a pro-
tocol is hardware and implementation specific, both having
large variability. In this work we focused on the commu-
nication and round complexities, and provided the runtime
only on the two extreme cases: removing all activation in
Fig. 1, and using all our proposed optimizations in Table 1.

Implementation details. We focused on the case of
privacy-preserving inference and assumed the existence of
trained models. For this reason, during experiments, we
trained the different networks in the clear and “encrypted”
them to measure accuracy, runtime, round complexity and
communication complexity on private data. We use the tf-
encrypted framework [] to convert trained neural networks
to privacy-preserving neural networks. This implementa-
tion is based on secure multi-party computation and uses
the SPDZ [14, 13] and SecureNN [50] protocols as back-
end. For runtime measurements we used an independent
server for each party in the computation, each consisting of
30 CPUs and 20GB RAM.

Due to limited resources, we evaluated on the CIFAR-
10 and CIFAR-100 datasets [32]. Experiments were con-
ducted on downscaled versions of three popular efficient ar-
chitectures - SqueezeNet [27], ShuffleNetV2 [37] and Mo-
bileNetV2 [42]. For more details on the downscaling, we
refer the reader to the supplementary material.

Training details. We train our models using stochastic
gradient descent (SGD) optimizer and the Nestrov acceler-
ated gradient and momentum of 0.9. We use a cosine learn-
ing rate which starts from 0.1 (0.04 for SqueezeNet) and
reduces to 0. In every experiment, we trained from scratch
five times and report the average result.

4.1. Partial Activation Ratio

We experimented with different partial activation ratios
between the channels in the non-linear branch and the total
number of channels. Results are presented in Fig. 3. 50%

2000
. —— SqueezeNet
04 74 g 17501 shufflenetv2
< 15001 —— MobileNetVv2
> c
2 72 21250
@© =
< 93 ©
2 0 1000
c
® 70 5 750
92 —— SqueezeNet —— SqueezeNet E 500
—— ShuffleNetv2 | 68 —— ShuffleNetv2 IS}
01 —— MobileNetv2 —— MobileNetv2 © 250 _____——r—
10% 25% 50% 75% 90%rig 10% 25% 50% 75% 90%rig 10% 25% 50% 75% 90% orig
(a) (b) ()
901 . :) | ' I '
801 v |
704
1
60
501 Hm partial activation B partial activation . partial activation
downscale downscale downscale
407 10% 25% 50% 75% 10% 25% 50% 75% 10% 25% 50% 75%
(e) (f)
701 . . | ‘
\ '
60 |
! 1
501 Em partial activation BN partial activation . partial activation
downscale downscale downscale
40-

10%

25% 50%

(9)

75% 10%

25%

50% 75%

10%

25% 50%
(i)

75%

Figure 3. Comparison between different partial activation ratios on SqueezeNet, ShuffleNetV2, and MobileNetV2, in terms of accuracy
((a) - CIFAR-10, (b) - CIFAR-100) and communication complexity (c). Ratio of 50% presents a good balance between accuracy and
efficiency. (d)-(i): comparison between partial activation and reducing network width at the same ratios (i.e. removing the no-activation
branch) between SqueezeNet ((d) - CIFAR-10, (g) - CIFAR-100), ShuffleNetV2 ((e) - CIFAR-10, (h) - CIFAR-100) and MobileNetV2
((f) - CIFAR-10, (i) - CIFAR-100). Results demonstrate that the channels with no ReLU activation still contributes significantly to the

accuracy.

appears to be a good trade-off between efficiency and accu-
racy. Note that round complexity was eliminated from this
comparison as we assume that element-wise non-linearities
can all be computed in parallel, i.e. each round of inter-
action during the secure computation consists of the com-
munication of all element-wise non-linearities in the layer.
Under this reasonable assumption, the round complexity is
constant across each layer regardless of the number of non-
linearities in the layer.

4.2. Scaling Down Network Width

The reduction of non-linearities across layers can also be
achieved by simply scaling down the architecture’s width,
i.e. reducing the number of channels in each layer (equiv-
alent to dropping the no-activation branch). We compared
the performance of scaling down and using partial activa-
tion with the same ratio of remaining channels. As can
be seen in Fig. 3, scaling down the width is inferior to the
use of partial activation with the original width, demonstrat-

ing the importance of both branches in the partial activation
layer. Note that as we enlarge the non-linear branch in the
partial activation layer or reduce the number of removed
channels in the downscaling, the difference to the original
model decrease, resulting with a reduction in the accuracy
loss.

4.3. Activation Removal

We evaluated the effectiveness of removing activation
layers from each of the three architecture blocks, where
each block has two activation layers. Our experiment ex-
haustively evaluates the effects of removing one or both
layers. The results presented in Table 2 clearly demonstrate
that one activation layer in each block can be removed com-
pletely with a plausible loss of accuracy.

4.4. Activation Removal and Partial Activation

In order to further minimize the use of non-linearities,
we investigated the combination of our partial activation

Model Accuracy Comm. Rounds
CIFAR-10/100 (MB)
Squeeze-1 90.54/64.72 189.36 233
Squeeze-2 93.15/72.37 309.97 313
Squeeze-0.5-1 90.4/66.04 180.75 233
Squeeze-0.5-2 92.66/70.76 241.05 313
Squeeze-none 86.95/60.03 172.13 153
Squeeze-orig 92.49/70.41 327.2 393
Shuffle-1 92.83/71.02 219.01 294
Shuffle-2 929/71.37 188.86 324
Shuffle-0.5-1 92.5/70.07 157.63 294
Shuffle-0.5-2 92.19/69.53 142.55 324
Shuffle-none 83.26/46.8 95.25 134
Shuffle-orig 92.6/70.95 311.63 484
Mobile-1 93.92/7435 1168.2 466
Mobile-2 94.13/74.17 1003.02 486
Mobile-0.5-1 93.66/72.77 706.54 466
Mobile-0.5-2 93.28/72.86 623.95 486
Mobile-none 78.45/51.45 244.88 146
Mobile-orig 94.49 /748 1926.34 806

Table 2. Effects of the removal of activations in network blocks.
Tested networks are built of blocks having two activation layers
each. In Network-i we keep only the i'th activation layer in
each block, and remove the other activation layer. In Network-
0.5-i we replace the i'th activation layer with a 50% partial acti-
vation layer, and remove the other activation layer. We also show
the original blocks and the removal of all activation layers in each
block. The table shows that removing most of the activations in
each block has minimal effect on accuracy but substantially in-
crease speed.

layer with complete removal of other activation layers. We
evaluated the removal of one activation layer while replac-
ing the other with a 50%-partial activation layer. Results
are presented in Table 2 and demonstrate that we were able
to significantly improve the communication complexity of
the secure inference of SqueezeNet, ShuffleNetV2 and Mo-
bileNetV2 by 26.3%, 49.4% and 63.3%, respectively, with
a minor change in accuracy. The round complexity was
considerably improved as well with 20.4%, 39.2% and
42.2% improvement for SqueezeNet, ShuffleNetV2 and
MobileNetV2, respectively.

4.5. Alternative Non-Linearities

Secure computation of non-linear layers is costly, but the
cost of different non-linearities varies significantly. In ad-
dition to the removal of non-linearities, we investigated the
cost of several commonly used non-linearities and propose
more crypto-oriented alternatives.

Pooling. Previous empirical results show that replacing
max pooling with average pooling has minimal effect
on network accuracy and (non-secure) inference runtime.

B max pooling Emm max pooling
961 mmm avg pooling 761 mmm avg pooling

72

accuracy
©
N

90 70
88 68
86 66
SqueezeNet ShuffleNetV2 2 q ShuffleNetvV2 MobileNetV2

(a)

20007 @ max pooling
s avg pooling

10001 mm max pooling
mm avg pooling

S 1250

rounds

©
o
=
=]
g 750
£
o
o

0 SqueezeNet ShuffleNetv2 N i V2

(c)

Squ eNet ShuffleNetV2 MobileNetv2

Figure 4. Comparison between max pooling (blue) and average
pooling (orange) on SqueezeNet, ShuffleNetV2 and MobileNetv2,
in terms of accuracy ((a) - CIFAR-10, (b) - CIFAR-100), commu-
nication complexity (c) and round complexity (d). Average pool-
ing has similar accuracy but is much more efficient.

98

mmm RelU6 78| mmm RelLU6
96| mmm RelU 56| ™ RelU
94
- 74
3
92
5 72
S
@ 90 70
88 68
86 66
qL ShuffleNetv2 MobileNetV2
2000
mmm RelU6
1750
—_ s RelU
)
= 1500
S 1250
S
S 1000
S
g 750
§ 500
o
250
07 SqueezeNet ShuffleNetvz i 2 qL ShuffleNetv2 MobileNetv2

(c)

Figure 5. Comparison between ReLU6 (blue) and ReLU (or-
ange) activation functions on SqueezeNet, ShuffleNetV2 and Mo-
bileNetv2, in terms of accuracy ((a) - CIFAR-10, (b) - CIFAR-
100), communication complexity (c) and round complexity (d).
Accuracy is similar but ReLU is more efficient that ReLU6.

Many recent neural networks use both pooling methods,
or replace some of them with strided convolutions, which
are a computationally efficient approach to average pooling
[28, 22,47, 46, 10, 25, 42, 48]. In secure inference of neu-
ral networks, max and average pooling have very different
costs. While max pooling is a non-linear operation which
requires computing a complicated protocol, average pooling

can be simply performed by summation and multiplication
with a constant scalar. For example, in the SecureNN [50]
protocol, the max pooling layer has a round complexity of:

ROundSMamPooling = 9(f2 - 1) (7

here f x f is the kernel area, and a communication com-
plexity of

CommatazPooting = (8llogp +291)(f* — 1) (8)

where [is the number of bits representing the input num-
bers and p denotes the field size - each [-bit number is secret
shared as a vector of [shares, each being a value between
0 and p — 1 (inclusive). Consider a pooling layer with in-
put image of size 32 x 32 x 3 and pooling kernel size of
2 x 2. Max pooling would require 27 rounds and 1.43 MB
communication, whereas average pooling can be computed
locally by each party, i.e. with no communication required.

We evaluated the effect of using max pooling against av-
erage pooling. SqueezeNet consists of multiple max pool-
ing layers and a global average pooling layer. In the max
pooling experiment, we replaced the global pooling layer
with a max global pooling, while in the average pooling
experimented we replaced all max pooling layers with av-
erage pooling. MobileNetV2 and ShuffleNetv2 use strided
convolutions for dimensionality reduction. In order to bet-
ter emphasize the effect of the different pooling methods,
we removed the strides and replaced them with pooling lay-
ers. Results are presented in Fig. 4. We can see that average
pooling is much more efficient while not affecting accuracy
significantly in comparison to max pooling.

ReLLU6. Many variants were proposed for the ReLU acti-
vation function with the objective of improving the training
procedure. One common variant is the ReLU6 activation
[31], which is defined as:

ReLU6(x) = min(max(z,0),6))

This activation function is used in several recent efficient
architectures including MobileNetV2 [42]. As mentioned
in Sec. 2, comparisons are difficult to compute in a secure
manner. Therefore, the cost of ReLU6, which consists of
two comparisons is double the cost of the standard ReLLU
activation. We provide a protocol for the secure computa-
tion of ReLU6 and corresponding analysis in the supple-
mentary material.

We investigated the effect of using ReLU6 versus ReLU
activations. MobileNetV2 was designed with ReLU6 so
we simply replace those with ReLU. ShuffleNetV2 and
SqueezeNet use the ReLU activation, which we replaced
with the ReLU6 activation. Results are presented in Fig. 5.
The choice of non-linearity has minimal effect on accuracy,
while ReL.U is twice as efficient as ReLU6.

4.6. Crypto-Oriented Neural Architectures

We use our method to design state-of-the-art crypto-
oriented neural network architectures, based on reg-
ular state-of-the-art architectures. Specifically, we
present crypto-oriented versions of the building blocks in
SqueezeNet [27], ShuffleNetV2 [37] and MobileNetV2
[42]. For illustrative purposes, we describe in detail the ap-
plication of our method on the inverted residual with linear
bottleneck blocks from MobileNetV2 with the CIFAR-10
dataset, illustrated in Fig. 6. A more detailed description of
the applications of our method for the other 2 blocks and
other datasets is presented in the supplementary material.
Final results on CIFAR-10, CIFAR-100, MNIST [35] and
Fashion-MNIST [51] are presented in Table 1.

In order to reduce the number of non-linear evaluations
we replaced all activation layers in the inverted residual with
linear bottleneck block with 50%-partial activation layers.
This results with an improvement of 43.6% in communica-
tion complexity.

After careful evaluation, we removed the first activa-
tion layer completely (i.e. the depthwise convolution is the
only non-linear layer). This reduces the communication
complexity by 47.9% and the round complexity by 39.8%.
Combining this change with the former, i.e. replacing the
second activation layer by a 50% partial activation results
with additional improvement of 37.8% in communication
complexity. Overall, by applying both changes we reduce
the communication and round complexity by 67.6% and
39.8%, respectively.

As discussed in Sec. 4.5, the ReLU®6 variant costs twice
as much as the ReLU activation. Therefore, we replace the
ReLUG6 activation function with the ReLU function. This
change produces an improvement of 45.3% in communica-
tion complexity and 43.6% in round complexity.

The above modifications yield an improvement of 79%
in communication complexity and 63.4% in round com-
plexity.

5. Discussion

Accuracy measurements. Due to the slow inference run-
time of secure neural networks, we have measured accu-
racy in the non-secure setting. As the SecureNN frame-
work, which we base our analysis on, applies no approx-
imations on the inference, there should be no significant
difference between the secure and non-secure accuracy. In
order to verify this assumption, we have measured the se-
cure inference accuracy on a subset of experiments, using
the tf-encrypted library [1], and compared to the non-secure
accuracy of the same model. The results, presented in the
supplementary material, show minor loss of accuracy.

Figure 6. Crypto-oriented inverted residual with linear bottleneck
block. By applying our method, i.e. removing the first activation
layer, replacing the second activation layer with 50%-partial acti-
vation and using the ReLU activation instead of the ReLU6 vari-
ant, we achieved a significant improvement in communication and
round complexity of the MobileNetV2 architecture.

Comparison to other frameworks. Our analysis focused
on the SecureNN protocol [50]. We stress that the same
idea applies to other frameworks. For example, consider the
Gazelle framework [30], which proposed a hybrid between
homomorphic encryption for linear layers, and garbled cir-
cuits for non-linear layers. According to the benchmarks
provided by the authors, a convolution layer with input of
size 32 x 32 x 32, kernel size 3 and 32 output channels, i.e.
32,768 output neurons, will take 899ms and no communi-
cation. In comparison, a ReLU layer with 10, 000 neurons,
less than third of the output of the aforementioned convolu-
tion layer, will take 1, 858ms and 71.1MB.

It should be noted that there are frameworks for which
secure computation of a convolution layer is more expen-
sive then secure computation of a ReLU layer. An example
is the DeepSecure framework [4 1] which only uses garbled
circuits. The optimal architectures might change slightly in
this case, but the core idea of our work, i.e. the need for
designing crypto-oriented architectures, is highly relevant.

Increasing channels. In order to minimize accuracy re-
duction, we tried to gain more expressiveness by increasing
the number of channels with no activation. As discussed in
Sec. 3, based on the analysis of the SecureNN [50] frame-
work (and others, as discussed above), secure computation
of convolution layers is more efficient than the cost of ac-
tivation layers. Therefore we can add more channels when
removing non-linearities. Results are detailed in the sup-
plementary material and show a minor increase in accu-
racy while slightly increasing communication. The differ-
ence was not significant enough to be included in our final
crypto-oriented architectures.

6. Conclusion

We addressed efficiency challenges in privacy-
preserving neural network inference. = Motivated by

the unique properties of secure computation, we proposed
a novel activation layer for crypto-oriented neural net-
work architectures: partial activation layers. By using
our activation layer, together with selective removal of
some activation layers and avoiding the use of expensive
non-linear variants, on three state-of-the-art architectures
(SqueezeNet, ShuffleNetV2 and MobileNetV2) and various
datasets (CIFAR-10, CIFAR-100, MNIST and Fashion-
MNIST) we achieved significant improvement on all
architectures. For MobileNetV2 on the CIFAR-10 dataset,
for example, we achieved an improvement of 79% in
communication complexity, 63% in round complexity and
58% in secure inference runtime, with only a reasonable
loss in accuracy.

Acknowledgments

This research has been supported by the Israel ministry of
Science and Technology, by the Israel Science foundation,
and by the European Union’s Horizon 2020 Framework
Program (H2020) via an ERC Grant (Grant No. 714253).

References

[1] TF Encrypted: Machine Learning on Encrypted Data in Ten-
sorFlow. https://tf-encrypted.io/, 2019. 4, 7,
12

[2] Martin Abadi, Andy Chu, lan Goodfellow, H Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 308-318. ACM, 2016. 1

[3] Ho Bae, Jachee Jang, Dahuin Jung, Hyemi Jang, Heonseok
Ha, and Sungroh Yoon. Security and privacy issues in deep
learning. arXiv preprint arXiv:1807.11655,2018. 1, 2

[4] Donald Beaver, Silvio Micali, and Phillip Rogaway. The
round complexity of secure protocols. In STOC, volume 90,
pages 503-513, 1990. 3

[5] Amos Beimel. Secret-sharing schemes: A survey. In Pro-
ceedings of the 3rd International Workshop on Coding and
Cryptology, pages 1146, 2011. 2

[6] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ra-
mage, Aaron Segal, and Karn Seth. Practical secure aggre-
gation for privacy-preserving machine learning. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1175-1191. ACM, 2017. 1

[7] Florian Bourse, Michele Minelli, Matthias Minihold, and
Pascal Paillier. Fast homomorphic evaluation of deep dis-
cretized neural networks. In Annual International Cryptol-
ogy Conference, pages 483-512. Springer, 2018. 2

[8] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without bootstrap-
ping. ACM Transactions on Computation Theory (TOCT),
6(3):13,2014. 2

https://tf-encrypted.io/

(9]

(10]

[11]

(12]

[13]

(14]

[15]

(16]

(7]

(18]

(19]

(20]

(21]

[22]

Hervé Chabanne, Amaury de Wargny, Jonathan Milgram,
Constance Morel, and Emmanuel Prouff. Privacy-preserving
classification on deep neural network. [ACR Cryptology
ePrint Archive, 2017:35, 2017. 2

Francois Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251-1258, 2017. 6

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Al-
bert Haque, and Li Fei-Fei. Faster cryptonets: Leveraging
sparsity for real-world encrypted inference. arXiv preprint
arXiv:1811.09953, 2018. 2

Jason Cong and Bingjun Xiao. Minimizing computation
in convolutional neural networks. In International confer-
ence on artificial neural networks, pages 281-290. Springer,
2014. 3

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pas-
tro, Peter Scholl, and Nigel P Smart. Practical covertly se-
cure mpc for dishonest majority—or: breaking the spdz limits.
In European Symposium on Research in Computer Security,
pages 1-18. Springer, 2013. 4, 12

Ivan Damgérd, Valerio Pastro, Nigel Smart, and Sarah Za-
karias. Multiparty computation from somewhat homomor-
phic encryption. In Annual Cryptology Conference, pages
643-662. Springer, 2012. 4, 12

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 10

Xuanyi Dong, Guoliang Kang, Kun Zhan, and Yi Yang.
Eraserelu: A simple way to ease the training of deep con-
volution neural networks. arXiv preprint arXiv:1709.07634,
2017. 4

Matthew Franklin and Moti Yung. Communication complex-
ity of secure computation. In Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing,
pages 699-710. ACM, 1992. 3

Craig Gentry and Dan Boneh. A fully homomorphic encryp-
tion scheme, volume 20. Stanford University Stanford, 2009.
2

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In International Conference on
Machine Learning, pages 201-210, 2016. 2

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game. In Proceedings of the nineteenth an-
nual ACM symposium on Theory of computing, pages 218—
229. ACM, 1987. 3

Shafi Goldwasser. Multi party computations: past and
present. In Proceedings of the sixteenth annual ACM sym-
posium on Principles of distributed computing, pages 1-6.
ACM, 1997. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770778, 2016. 6

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi.
Cryptodl: Deep neural networks over encrypted data. arXiv
preprint arXiv:1711.05189, 2017. 2

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 3

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700-4708, 2017. 6
Eric Hunsberger and Chris Eliasmith. Training spiking
deep networks for neuromorphic hardware. arXiv preprint
arXiv:1611.05141, 2016. 3

Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and; 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016. 1, 3,4,7, 10

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 6
Yuval Ishai and Eyal Kushilevitz. Randomizing polyno-
mials: A new representation with applications to round-
efficient secure computation. In Proceedings 41st Annual
Symposium on Foundations of Computer Science, pages
294-304. IEEE, 2000. 3

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. {GAZELLE}: A low latency framework for se-
cure neural network inference. In 27th {USENIX} Secu-
rity Symposium ({USENIX} Security 18), pages 16511669,
2018. 2,8

Alex Krizhevsky and Geoff Hinton. Convolutional deep be-
lief networks on cifar-10. Unpublished manuscript, 40(7):1-
9,2010. 7

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 4, 10

Eyal Kushelvitz. Privacy and communication complex-
ity. SIAM Journal on Discrete Mathematics, 5(2):273-284,
1992. 3

Eyal Kushilevitz. Communication complexity. In Advances
in Computers, volume 44, pages 331-360. Elsevier, 1997. 3
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
7,10

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivi-
ous neural network predictions via minionn transformations.
In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 619-631.
ACM, 2017. 3

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 116-131, 2018. 1, 3, 4, 7,
10

[38] Payman Mohassel and Yupeng Zhang. Secureml: A system
for scalable privacy-preserving machine learning. In 20717
IEEE Symposium on Security and Privacy (SP), pages 19—
38.IEEE, 2017. 3

M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim
Laine, Kristin E Lauter, and Farinaz Koushanfar. Xonn:
Xnor-based oblivious deep neural network inference. JACR
Cryptology ePrint Archive, 2019:171, 2019. 2

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M Songhori, Thomas Schneider, and Farinaz
Koushanfar. Chameleon: A hybrid secure computation
framework for machine learning applications. In Proceed-
ings of the 2018 on Asia Conference on Computer and Com-
munications Security, pages 707-721. ACM, 2018. 3

Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz
Koushanfar. Deepsecure: Scalable provably-secure deep
learning. In Proceedings of the 55th Annual Design Automa-
tion Conference, page 2. ACM, 2018. 2, 8

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 45104520, 2018. 1, 3,4, 6,7, 10

Amartya Sanyal, Matt J Kusner, Adria Gascon, and Varun
Kanade. Tapas: Tricks to accelerate (encrypted) prediction
as a service. arXiv preprint arXiv:1806.03461, 2018. 2

Adi Shamir. How to share a secret. Communication of the
ACM, 22(11):612-613, 1979. 2

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep
learning. In Proceedings of the 22nd ACM SIGSAC con-
ference on computer and communications security, pages
1310-1321. ACM, 2015. 1

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and
Alexander A Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017. 6
Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818-2826, 2016. 6

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105-6114, 2019.
6

Harry Chandra Tanuwidjaja, Rakyong Choi, and Kwangjo
Kim. A survey on deep learning techniques for privacy-
preserving. In International Conference on Machine Learn-
ing for Cyber Security, pages 29—46. Springer, 2019. 1, 2

(39]

[40]

[41]

(42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

[50] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Se-
curenn: 3-party secure computation for neural network train-
ing. Proceedings on Privacy Enhancing Technologies, 1:24,
2019. 3,4,7,8,12,13

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747,2017.
7,10

[51]

10

[52] Andrew Chi-Chih Yao. Protocols for secure computations.
In FOCS, volume 82, pages 160-164, 1982. 3

Andrew Chi-Chih Yao. How to generate and exchange se-
crets. In 27th Annual Symposium on Foundations of Com-
puter Science (sfcs 1986), pages 162-167. IEEE, 1986. 2,
3

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
6848-6856, 2018. 3

Gangming Zhao, Zhaoxiang Zhang, Jingdong Wang, and He

Guan. Training better cnns requires to rethink relu. arXiv
preprint arXiv:1709.06247, 3(7), 2017. 4

(53]

(54]

[55]

Appendix
A.1. Architecture Downscaling

Experiments were conducted on three popular efficient
architectures - SqueezeNet [27], ShuffleNetV2 [37] and
MobileNetV2 [42]. These architectures were designed for
the ImageNet dataset [15], a large scale dataset. Due to lim-
ited resources we evaluated on smaller datasets - CIFAR-
10, CIFAR-100, MNIST and Fashion-MNIST [32, 35, 51]
which required downscaling the architectures accordingly.
We will detail the modifications applied to each architec-
ture:

SqueezeNet. Changed the kernel size of the first convolu-
tion layer from 7 x 7 to 3 x 3 and reduced the stride from
2 to 1. In each pooling layer, we replaced the 3 x 3 kernel
with a 2 x 2 kernel. In addition, we added batch normal-
ization layers after every convolution layer. In CIFAR-10,
CIFAR-100 and Fashion-MNIST we removed the dropout
layer while in MNIST we added a 0.1 dropout layer at the
end of each block.

ShuffleNetV2. Reduced the stride in the first convolution
layer from 2 to 1. In addition, we removed the first pooling
layer.

MobileNetV2. Reduced the stride in the first convolution
layer and in the first inverted residual block from 2 to 1. In
addition, we increased the weight decay from 0.00004 to
0.0002. For CIFAR-100 and Fashion-MNIST we have used
a dropout rate of 0.1.

A.2. Other Crypto-Oriented Neural Architectures

We present our crypto-oriented version of the building
blocks in SqueezeNet [27] and ShuffleNetV2 [37].

ReLU,

|

1x1
conv

1x1
cony

lconcat|
—>

3x3
conv

F 50%

(7]
A

[

50%

Figure 7. Crypto-oriented Fire module block. By applying our de-
sign method, i.e. removing first activation layer and replacing sec-
ond activation layer with a partial activation layer, we achieved a
significant improvement in communication and round complexity
of the SqueezeNet architecture, with a reasonable accuracy loss.

A.2.1 SqueezeNet

In order to reduce the number of non-linearities we replaced
the activation layers in the Fire module (i.e. the SqueezeNet
building block) with partial activation layers, and used a ra-
tio of 50% for the CIFAR-10 and CIFAR-100 datasets and
25% for the MNIST and Fashion-MNIST datasets. This re-
duces the communication complexity by 23.7% for the two
CIFAR datasets and 35.56% for the two MNIST datasets.

For the two CIFAR datasets we removed the first activa-
tion layer in the Fire module, i.e. from the squeeze phase
of the block. This results with an improvement of 5.26% in
communication complexity and with 20.36% in round com-
plexity. For the two MNIST datasets we removed the sec-
ond activation layer, which results with 42.15% and 40.71%
improvement in communication and round complexity, re-
spectively. Combining this change with the former, i.e. re-
placing the remaining activations with partial activation lay-
ers results further improves the communication complex-
ity by 22.23% and 19.31% for the two CIFAR and the two
MNIST, respectively.

Overall, by applying both changes we reduce commu-
nication and round complexity by 26.39% and 20.36%, re-
spectively, for CIFAR-10 and CIFAR-100. For MNIST and
Fashion-MNIST we reduce communication complexity by
46.1% and round complexity by 40.71%.

We replaced each max pooling layer with an average
pooling layer, as max pooling is very expensive to compute
in a secure manner. This improved the communication
complexity by 28.02% for CIFAR and 26.97% for MNIST,
and the round complexity by 20.61%.

Our final crypto-oriented version of the SqueezeNet
architecture is improving over it’s non crypto-oriented

11

Figure 8. Crypto-oriented ShuffleNetV2 unit. By applying our
method, i.e. removing second activation layer and replacing first
activation layer with partial activation, we achieved a signifi-
cant improvement in communication and round complexity of the
ShuffleNetV2 architecture with only a small loss of accuracy.

counterpart by 54.41% in communication complexity
and 40.97% in round complexity, for CIFAR-10 and
CIFAR-100, at the cost of a reasonable accuracy loss of
0.6% and 0.7%, respectively. Our CIFAR crypto-oriented
Fire module block is presented in Fig. 7. For MNIST and
Fashion-MNIST we improve communication complexity
by 73.08% and round complexity by 61.32% with accuracy
loss of 0.19% for MNIST and 0.7% for Fashion-MNIST.

A.2.2 ShuffleNetV2

We replaced all activation layers in the ShuffleNetV2 unit
by 50%-partial activation layers, for CIFAR-10 and CIFAR-
100, and 25%-partial activation layers for MNIST and
Fashion-MNIST. This improves the communication com-
plexity by 34.56% and 50.81%, respectively.

We removed the second activation layer from the Shuf-
fleNetV2 unit. This results with an improvement of
29.71% in communication complexity and 39.26% in round
complexity, for CIFAR-10 and CIFAR-100. For MNIST
and Fashion-MNIST this results with an improvement of
29.44% in communication complexity.

By further reducing the number of non-linearities and re-
placing the remaining activation layer with a partial activa-
tion layer we get an additional improvement of 28.02% and
40.71% in communication complexity for the two CIFAR
datasets and two MNIST datasets, respectively.

We did not change the non-linearities in the architecture
as the ShuffleNetV?2 unit was not using expensive variants
such as ReLU6. In addition, the max pooling layer that
existed in the original design of the architecture was
removed in our downscaling process, detailed above.

Applying the aforementioned modifications yields an
improvement of communication and round complexity
by 49.41% and 39.26%, respectively, for the CIFAR-10
and CIFAR-100 datasets. This optimization has a reason-
able accuracy loss of 0.1% for CIFAR-10, and 0.88% for

Model Secure Non-Secure
Accuracy Accuracy
CO-SqueezeNet 91.88 91.89
CO-ShuffleNetV2 92.49 92.51
CO-MobileNetV2 93.46 93.44

Table 3. Comparison of secure and non-secure CIFAR-10 accu-
racies on our crypto-oriented architectures. We denote by CO-
Network our crypto-oriented variant. There is a negligible differ-
ence in accuracy between the secure and non-secure setting.

CIFAR-100. Our CIFAR crypto-oriented ShuffleNetV?2 unit
is presented in Fig. 8. For MNIST and Fashion-MNIST,
our modifications yields an improvement of 58.17% in
communication complexity with a small accuracy loss
of 0.03% and 0.11% for MNIST and Fashion-MNIST,
respectively.

A.2.3 MobileNetV2

As detailed in the experiments section, for the CIFAR-10
and CIFAR-100 datasets we have replaced all ReLU6 acti-
vations in the inverted residual with linear bottleneck block
by ReLU activations. In addition, we removed the first ac-
tivation layer in the block completely and replaced the sec-
ond with a 50%-partial activation layer. Overall, these mod-
ifications yield an improvement of 79% in communication
complexity and 63.4% in round complexity, with a reason-
able accuracy loss of 1.05% for CIFAR-10 and 2.19% for
CIFAR-100.

For the MNIST and Fashion-MNIST we have applied the
same modification, with the only difference in the partial
activation ratio - 25% rather than 50%. Overall, the modi-
fications result with an improvement of 83.5% in commu-
nication complexity, with small accuracy loss of 0.22% for
Fashion-MNIST and a minor accuracy gain of 0.02% for
MNIST.

A.3. Encrypted Accuracy

In our experiments, we measured accuracy in the non-
secure setting, due to the slow inference time of secure neu-
ral networks. Our experiments were conducted using the tf-
encrypted library [1] which is based on the SPDZ [14, 13]
and SecureNN [50] protocols. As this implementation does
not apply any approximations on the inference, we do not
expect there to be a significant difference between the se-
cure and non-secure accuracy measurements. In order to
verify this assumption, we evaluated the secure accuracy
on our final crypto-oriented architectures and compared the
results against the non-secure accuracy, on the CIFAR-10
dataset. As done in all of our experiments, each experiment
was conducted five times, and we report the average results.
The results presented in Table 3 show that the accuracy dif-
ference is indeed negligible.

12

Model Accuracy Comm. (MB) Rounds
Sq-0.5 - 1% 90.4 179.95 233
Sq-0.5 - 1*-double 90.66 241.75 233
Sg-0.5 - 2™ 92.66 240.26 313
Sg-0.5 - 2"-double 92.98 256.74 313
Sq-orig 92.49 326.41 393
Sh-0.5 - 1% 92.5 156.89 294
Sh-0.5 - 1*-double 92.81 308.41 294
Sh-0.5 - 2" 92.19 141.82 324
Sh-0.5 - 2"-double 92.46 188.84 324
Sh-orig 92.6 310.89 484
Mb-0.5 - 1% 93.66 705.62 466
Mb-0.5 - 1*-double 94.15 1397.7 466
Mb-0.5 - 2™ 93.28 623.03 486
Mb-0.5 - 2"-double 94.15 1213.51 486
Mb-orig 94.49 1925.42 806

Table 4. Comparison of the effect of increasing the number of
channels in convolution layers without activations. In this ex-
periments, we removed different activation layers (none, 1st, 2nd
or both) and replaced the remaining with a 50% partial activa-
tion layer. This was performed on SqueezeNet (Sg), ShuffleNetV2
(Sh) and MobileNetV2 (Mb) blocks. By Sq-0.5 - i-double , we de-
note: i) the removal of all but the ™ activation layer ii) its replace-
ment with a 50% partial activation layer iii) doubling the amount
of channels in the no-activation convolution layer. Results show
minor minor effect on CIFAR-10 accuracy while increasing the
communication complexity.

A.4. Double Channels Results

As mentioned in the discussion section, we tried to re-
duce the accuracy loss resulting from the minimization of
activations, i.e. the removal of activation layers and replace-
ment of the remaining layers with partial activation layer,
described in Table 4. We evaluated the effect of increasing
the number of channels in layers with no activations by a
factor of two. The goal is to amplify the model’s expres-
siveness, without adding further non-linearities. As men-
tioned in the paper and based on the analysis of the Se-
cureNN framework [50], the added cost of increasing the
convolution channels is less then the cost of the removed
activations, therefore enabling us to “compensate” for the
removal of activations with more convolutional channels.
As can be in the results, detailed in Table 4, increasing the
amount of channels had a minor affect on CIFAR-10 accu-
racy while increasing the costs. The benefit of increasing
the channels was not significant enough to be included in
our final crypto-oriented architectures.

A.S. LeakyReL U Protocol

We present a protocol, based on the ReLU protocol from
[50], for the secure computation of the LeakyReLU activa-

tion function. The LeakyReL U activation is defined as:

LeakyReLU (x) = max(0.1z, x) (10)

This activation function can be also written as:

LeakyReLU(xz) = 2(0.1 4+ 0.9 - H(x)) (11)

Note that the secure computation of LeakyReLU only
differs from the secure computation of ReLU, provided in
[50], by only a constant scalar multiplication, and there-
fore has the same communication and round complexity.
This suggests that the LeakyReLU activation function can

be used instead of ReLLU with no additional costs.

Algorithm 2. HLeakyReLU({‘PO’ P}, Py):
Input: Py, P; hold (a)} and (a)¥, respectlvely
Output: Py, P, get (LeakyReLU(a))¥
(LeakyReLU(a))¥.

Common Randomness: Fj, P; hold random shares
of 0 over Z,, denoted by wug and u; resp.

L Py, P, P, run Jlpggy({Fo, Pi}, P) with
P;,j € {0,1} having input (a)} and Py, Py
learn ()} and ()L, resp.

and

2. Py, P, Py call HMatMul({P()’Pl} Pg) with
Pj,j € {0,1} having input ((a), (0.14+0.9a)F)
and Py, P; learn (c)§ and (c)¥, resp.

3. For j € {0,1}, P; outputs (¢) ¥ + u;.

A.6. ReLUG Protocol

We provide a protocol for the secure computation of
ReL U6, based on the the ReLLU protocol from [50]. The
protocol is a step-by-step secure evaluation of the ReLU6
function, when decomposed into a combination of Heavi-
side step functions (H):

ReLU6(z) = H(z) - (x+ (6 —2) - H(x —6)) (12)
1, ifx>0
Hw) = {0, otherwise (13

We denote the model provider by P, and the data owner
by P;. P» represents the crypto-producer, a third-party “a
sistant” that provides randomness. (a)} and (a)¥ are the
two secret shares of a over Zr. [[prery and [[yatmy are
the secure protocols presented in [50] for computing H and
matrix multiplication (for scalar multiplication, we use Mat-
Mul with 1 x 1 matrices), respectively. For more details we
refer the reader to [50]. The proof of this protocol follows
directly via the security of the two underlying protocols and
the fact that at each point in time the parties learn only secret
shares of the current state of the computation.

13

The round and communication complexities of ReLU6
under this protocol are specified in Eq. (14)—(15).

Roundsrerue = 20 (14)

Commpgervs = 16l logp + 481 (15)

The ReLU®6 protocol involves two secure evaluations of
the Heaviside step function and therefore requires twice the
cost of ReL.U.

Algorithm 1]_[Rel_uﬁ({PO7 P}, P):

Input: Py, P, hold (a){ and (a >1 , respectively.
Output: Py, P; get (ReLU6(a))l and (ReLU6(a))E.
Common Randomness: P, P; hold random shares
of 0 over Zy,, denoted by u and u; resp.

1. P07P1,P2 run HDReLU({P07P1}7P2) with
Pj,j € {0,1} having input (a — 6)% and Py, Py
learn ()} and (o)L, resp.

2. Po,Pl,PQ call HMatMuI({P07P1}7P2) with
Pj, j € {0,1} having input ({(a)%, (6 —a)¥) and
Py, Py learn {(c)} and (c)¥, resp.

3. Py,P,P, run HDReLU({PO’Pl} PQ) with
Pj,j € {0,1} having input (a)} and Py, Py

learn (3)§ and (8)T, resp.

4. Py, P, P, call HMatMuI({PO7P1} Pg) with
P;,j € {0,1} having input (,{a+ c)) and
Py, Py learn (d){ and (d)L, resp.

5. For j € {0,1}, P; outputs (d)¥ + u;.

