Loading [a11y]/accessibility-menu.js
Exploring Visual-Audio Composition Alignment Network for Quality Fashion Retrieval in Video | IEEE Conference Publication | IEEE Xplore

Exploring Visual-Audio Composition Alignment Network for Quality Fashion Retrieval in Video


Abstract:

Fashion retrieval in video suffers from the issues of imperfect visual representation and low quality of search results under the E-commercial circumstance. Previous work...Show More

Abstract:

Fashion retrieval in video suffers from the issues of imperfect visual representation and low quality of search results under the E-commercial circumstance. Previous works generally focus on searching the identical images from visual perspective only, but lack of leveraging multi-modal information for high quality commodities. As a cross-domain problem, instructional or exhibiting audio reveals rich semantic information to facilite the video-to-shop task. In this paper, we present a novel Visual-Audio Composition Alignment Network (VACANet) to deal with quality fashion retrieval in video. Firstly, we introduce the visual-audio composition module in VACANet aiming to distinguish attentive and residual entities by learning semantic embedding from both visual and audio streams. Secondly, a quality alignment training scheme is then designed by quality-aware triplet mining and domain alignment constraint for video-to-image adaptation. Finally, extensive experiments conducted on challenging video datasets demonstrate the scalable effectiveness of our model in alleviating quality fashion retrieval.
Date of Conference: 06-11 June 2021
Date Added to IEEE Xplore: 13 May 2021
ISBN Information:

ISSN Information:

Conference Location: Toronto, ON, Canada

Contact IEEE to Subscribe

References

References is not available for this document.