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ABSTRACT

Emotion and expressivity in music have been topics of con-
siderable interest in the field of music information retrieval.
In recent years, mid-level perceptual features have been sug-
gested as means to explain computational predictions of mu-
sical emotion. We find that the diversity of musical styles
and genres in the available dataset for learning these features
is not sufficient for models to generalise well to specialised
acoustic domains such as solo piano music. In this work,
we show that by utilising unsupervised domain adaptation to-
gether with receptive-field regularised deep neural networks,
it is possible to significantly improve generalisation to this do-
main. Additionally, we demonstrate that our domain-adapted
models can better predict and explain expressive qualities in
classical piano performances, as perceived and described by
human listeners.

Index Terms— Music, expressivity, domain adaptation

1. INTRODUCTION

Domain mismatch – a discrepancy between the kind of data
available for training a classifier and the data on which it
should then operate – is an important real-world problem, also
in the field of acoustic recognition. For instance, the DCASE
2019 and 2020 challenges had dedicated tasks on Acoustic
Scene Classification with multiple/mismatched recording de-
vices.1 The machine learning answer to this problem is re-
search on effective methods for transfer learning and (super-
vised and unsupervised) domain adaptation.

The work presented in this paper is motivated by a partic-
ularly difficult acoustic transfer problem involving a complex
musical phenomenon. In a large project,2 we aim at study-
ing the elusive concept of expressivity in music with com-
putational and, specifically, machine learning methods. One
aspect of that is the art of expressive performance, the sub-
tle, continuous shaping of musical parameters such as tempo,
timing, dynamics, and articulation by experienced musicians,
while playing a piece, in this way imbuing the piece with

1e.g., http://dcase.community/challenge2019/task-acoustic-scene-
classification-results-b

2https://www.jku.at/en/institute-of-computational-perception/research/
projects/con-espressione

particular expressive and emotional qualities [1]. The Con
Espressione Game was a large-scale data collection effort we
set up in order to obtain personal descriptions of perceived ex-
pressive qualities, with the goal of studying human perception
and characterisation of expressive aspects in performances of
the same pieces by different artists [2].

In analyzing this data, we are now interested in seeing
whether these subjective characterisations of expressive qual-
ities are consistent and systematic enough for a machine to
be able to predict them – at least partially – from the audio
recordings. Moreover, we aim at obtaining musical insights:
we want interpretable models that point to specific musical
qualities that might underlie perceived expressive qualities. A
set of musical descriptors that seem particularly suited to this
was proposed in [3], where mid-level musical features were
described that are intuitively understandable to the average
musical listener, and a corresponding human-annotated set of
music recordings was published (see next section). In [4], we
had shown how such mid-level features, predicted from audio
via trained classifiers, can be exploited to provide intuitive ex-
planations in the context of emotion and mood recognition in
general (non-classical) music. This was extended to a two-
level explanation scheme in [5] which permitted to trace the
mid-level explanations back to properties of the acoustic sig-
nal. There is reason to believe that some of these features may
also hold predictive and explanatory power for expressive as-
pects in piano performance.

This is where a severe mismatch problem arises: there
is no annotated ground truth data available for training mid-
level feature extractors in classical piano music, and obtain-
ing such data would be extremely cumbersome. At the same
time, recordings of solo piano music are very different, mu-
sically and acoustically, from the kind of rock and pop music
contained in the available mid-level training dataset. It is thus
likely that a classifier trained on the latter will not generalise
well to our piano recordings.3

In this paper, we present several steps to bridge this do-
main mismatch through architecture choice and unsupervised
domain adaptation techniques, and show that they are effec-

3Note that we cannot test this directly, as we have no mid-level feature
ground truth for the Con Espressione performances. (We will use the few
piano recordings in the midlevel dataset as our domain adapatation test set –
see Section 4.)
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tive in generalising a model to solo piano recordings. In a final
step, we will try the adapted classifier on the Con Espressione
recordings, testing whether domain adaptation improves the
predictability of expressive qualities from mid-level features
predicted from audio, and identifying those features that seem
to have specific predictive and explanatory power.

2. MID-LEVEL FEATURES AND THE
CON ESPRESSIONE DATA

2.1. The Mid-level Features Dataset

Seven mid-level musical features were proposed in [3], viz.
melodiousness, articulation, rhythmic complexity, rhythmic
stability, dissonance, tonal stability, and modality (or “minor-
ness”). To approximate these perceptual features for a set of
audio clips, the authors took a data-driven approach. Ratings
from listeners were modelled into the final feature values that
were made available as labels in the associated dataset (which
we call the Mid-level Features Dataset) along with the audio
clips. The labels for each feature are in the form of continu-
ous values between 1 and 10 (the learning task for our models
will thus be a regression task.) The exact questions asked to
the listeners for rating each perceptual feature can be found
in [3]. The audio clips chosen for the dataset come from dif-
ferent sources such as jamendo.com, magnatune.com,
and the Soundtracks dataset [6]. There are a total of 5,000
clips of 15 seconds each in the dataset.

2.2. The Con Espressione Game Dataset

In the Con Espressione Game, participants listened to extracts
from recordings of selected solo piano pieces (by composers
such as Bach, Mozart, Beethoven, Schumann, Liszt, Brahms)
by a variety of different famous pianists (for details, see [2])
and were asked to describe, in free-text format, the expressive
character of each performance. Typical characterisations that
came up were adjectives like “cold”, “playful”, “dynamic”,
“passionate”, “gentle”, “romantic”, “mechanical”, “delicate”,
etc. From these textual descriptors, the authors obtained, by
statistical analysis of the occurrence matrix of the descrip-
tors, four underlying continuous expressive dimensions along
which the performances can be placed. These are the (nu-
meric) target dimensions that we wish to predict via the route
of mid-level features predicted from the audio recordings.

The central challenge in this is that the Mid-level Features
Dataset [3], consisting mainly of pop, rock, hip-hop, jazz,
electronic, and film soundtrack music, is vastly different, in
sound and musical style, from the music of the Con Espres-
sione dataset. This results in what is known as a covariate
shift [7] between the training and the testing data.

In the following section, we describe a deliberate choice
of training architecture that results in better generalisability
of the trained models, and then present a two-step method to
further adapt the model to our domain of choice.

3. MID-LEVEL FEATURE LEARNING
VIA DOMAIN ADAPTATION (DA)

In the following sections, target domain refers to solo piano
performance audio and source domain refers to all other mu-
sical audio (non-piano audio clips in the Mid-level Features
Dataset).

3.1. Receptive Field Regularized ResNet

As a first step towards improving out-of-domain generaliza-
tion of mid-level feature prediction, we switch from the VGG-
ish network of [4] to the Receptive-Field Regularized ResNets
(RF-ResNet) originally introduced in [8] for acoustic scene
classification and later shown to work well for music infor-
mation retrieval tasks as well [9]. The rationale behind this
is that the smaller receptive field of the RF-ResNet prevents
overfitting, particularly when the training data is limited in
quantity. The architecture differs from a regular ResNet [10]
by reducing the kernel sizes of several convolutional layers
and removing some max pooling layers. Our RF-ResNet con-
sists of three stages with three residual blocks in the first stage
and one residual block each in the second and third stages.
The last stage consists of only 1-by-1 convolutional layers.
There are two max pooling layers in the first stage between
the convolutional blocks, and one average pooling layer after
the third stage before going into a final 1-by-1 convolutional
feed forward layer. The output is a seven-dimensional vector
where the elements correspond to the predictions of each of
the seven mid-level features.

3.2. Unsupervised DA through Backpropagation

We adopt the reverse-gradient method introduced in [11],
which achieves domain invariance by adversarially training a
domain discriminator attached to the network being adapted,
using a gradient reversal layer. The procedure requires a large
unlabelled dataset of the target domain in addition to the
labelled source data. The discriminator tries to learn discrim-
inative features of the two domains but due to the gradient
reversal layer between it and the feature extracting part of
the network, the model learns to extract domain-invariant
features from the inputs.

This adaptation procedure is applied to the RF-ResNet de-
scribed above. Since our target domain of interest solo pi-
ano performance music, we use audio from the MAESTRO
dataset [12] as our unlabelled data source. It contains more
than 200 hours of recorded piano performances. During train-
ing, each batch that the model sees contains an equal num-
ber of labelled source data points and unlabelled target data
points. The regressor/classifier head of the model tries to pre-
dict the source labels while the discriminator head predicts
the domain for each data point in the batch. The combined
loss of the two heads is then backpropagated while reversing
the gradient after the discriminator during the backward pass.

jamendo.com
magnatune.com


3.3. Teacher-Student Training Scheme

As a final step, we refine our domain adaptation using a
teacher-student training scheme tailored to our scenario (see
Fig.1). We train multiple domain-adaptive models using the
unsupervised DA method of Section 3.2 and use these as
teacher models that are eventually used to assign pseudo-
labels to our unlabelled MAESTRO dataset. Before the
pseudo-labelling step, we select the best performing teacher
models with the validation set. Even though the validation set
contains data from the source domain, this step ensures that
models with relatively lower variance are used as teachers.
This helps filter out the particularly poorly adapted models
from the previous step, which may occur due to the inherently
less stable nature of adversarial training methods [13].

After selecting a number of teacher models (in our exper-
iments, we used four), we label a randomly selected subset of
our unlabelled dataset using predictions aggregated by taking
the average. This pseudo-labelled dataset is combined with
the original labelled source dataset to train the student model.
We observed that the performance on the test set increased un-
til the pseudo-labelled dataset was about 10% of the labelled
source dataset in size, after which it saturated.

The teacher-student scheme allows the collective “knowl-
edge” of an ensemble of adapted networks to be distilled into
a single student network. The idea of knowledge distillation,
which was originally introduced for model compression in
[14], has been used for domain adaptation in a supervised set-
ting previously in [15]. The distillation process functions as
a regularizer resulting in a student model with better gener-
alisability than any of the individual teacher models alone.
Additionally, it can be thought of as a stabilisation step help-
ing to filter out the adversarially adapted models that result
from non-optimal convergence.

4. EXPERIMENTAL RESULTS

Since we have no ground truth labels for our real data of inter-
est (the classical piano music) to evaluate the domain adapta-
tion experiments4, we created a (“piano”/target) test set man-
ually by selecting clips from the Mid-level Features Dataset
containing only solo piano. This resulted in a set of 79 pi-
ano clips from the total of 5000. The other 4921 clips (“non-
piano”/source) were split into training (90%), validation (2%)
and test (8%) sets such that the artists in these sets are mutu-
ally exclusive (following [3]). The validation set is used to
tune hyperparameters and for early stopping.

The inputs to all our models were log-filtered spectro-
grams (149 bands) of 15-second audio clips sampled at 22.05
kHz with a window size of 2048 samples and a hop length of
704 samples, resulting in 149×469-sized tensors. For train-
ing, we use the Adam optimizer with a multi-step learning
rate scheduler. In the unsupervised DA step, the recordings

4https://gitlab.cp.jku.at/shreyan/midlevel_da
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Fig. 1. Teacher-Student training scheme for unsupervised do-
main adaptation.

from the MAESTRO dataset are split into 15-second seg-
ments and a random subset of size equal to the mid-level
training set is sampled on each run. During the pseudo-
labelling stage, a random subset of 500 segments is sampled.

We observe (Fig. 2) that each of the steps mentioned in the
previous section results in an improvement in the performance
on the “piano” test set without compromising the performance
on the “non-piano” one. In fact, we see a slight improvement
in the non-piano metric upon introducing DA. This could be
due to the presence of some data points similar to the target
domain – for instance excerpts from piano concertos, which
are not included in the “piano” test set.

To investigate our results further, we look at the discrep-
ancy between the source and target domains in the representa-

Fig. 2. Performance of mid-level feature models on non-piano
and piano test sets.
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Fig. 3. Mean discrepancy between piano and non-piano sets.

tion space, since it is known that the performance of a model
on the target domain is bounded by this discrepancy [7]. We
use the method given in [16] to compute the empirical distri-
butional discrepancy between domains for a trained model φ,
which is given as D(S′, T ′;φ) in Eq. 1:

D(S′, T ′;φ) =

∥∥∥∥∥ 1

m

∑
x∈S′

φ(x)− 1

n

∑
x∈T ′

φ(x)

∥∥∥∥∥
2

(1)

where S′ is a population sample of sizem from the source
domain and T ′ is a population sample of size n from the target
domain. We observe that the discrepancy decreases for each
step (Fig.3), justifying our three-step approach and explaining
the improvement in performance.

5. PUTTING IT TO THE TEST

As a final step, we now return to our real target domain of
interest and briefly investigate whether our domain-adapted
models can indeed predict better mid-level features for mod-
elling the expressive descriptor embeddings of the Con
Espressione dataset. We do this by predicting the average
mid-level features (over time) for each performance using
our models and training a simple linear regression model on
these features to fit the four embedding dimensions. Even
though this is a very abstract task, for a variety of reasons
– the noisy and varied nature of the human descriptions; the
weak nature of the numeric dimensions gained from these;
the complex and subjective nature of expressive music per-
formance – it can be seen that the features predicted using
domain-adapted models give comparatively better R2-scores
for all four dimensions.

Taking a closer look at Dimension 1 – the one that came
out most clearly in the statistical analysis of the user responses
and was characterized by descriptions like “hectic” and “agi-
tated” (as opposed to, e.g., “calm” and “tender”; see [2]) – and
looking at the individual mid-level features (see Table 2), we
find that, first of all, the predicted features that show a strong

Dim 1 Dim 2 Dim 3 Dim 4

VGG-ish 0.35 0.10 0.22 0.32
RF-ResNet 0.36 0.07 0.28 0.33

RF-ResNet DA 0.40 0.09 0.29 0.32
RF-ResNet DA+TS 0.35 0.15 0.29 0.34

Table 1. Coefficient of determination (R2-score) of descrip-
tion embedding dimensions of the Con Espressione game us-
ing a linear regressor trained on predicted mid-level features.

RF-ResNet RF-ResNet DA+TS
Feature r Feature r

articulation 0.47 melodiousness − 0.39
rhythmic complexity 0.41 articulation 0.46

rhythmic complexity 0.41
dissonance 0.40

Table 2. Pearson’s correlation (r) for mid-level features with
the first description embedding dimension, with (right) and
without (left) domain adaptation. Features with p < 0.05 and
|r| > 0.20 are selected. This dimension has positive loadings
for words like “hectic”, “irregular”, and negative loadings for
words like “sad”, “gentle”, “tender”.

correlation with this dimension do indeed make sense: one
would expect articulated ways of playing (e.g., with strong
staccato) and rhythmically complex or uneven playing to be
associated with an impression of musical agitation. What is
more, after domain adaptation, the set of explanatory features
grows, now also including perceived dissonance as a positive,
and perceived melodiousness of playing as a negative factor
– which again makes musical sense and testifies to the poten-
tial of domain adaptation for transferring explanatory acoustic
and musical features.

6. CONCLUSION

In this paper, we presented a three-step approach to adapt
mid-level models for recordings of solo piano performances.
We significantly improved the performance of these models
on piano audio by using a receptive field regularised net-
work and performing unsupervised domain adaptation via
a teacher-student training scheme. We also demonstrated
improved prediction of meaningful perceptual features cor-
responding to expressive dimensions. We conclude that this
route of domain adaptation shows potential for a more general
task of adapting models to specific genres or musical styles.
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