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ABSTRACT

One-bit quantization has recently become an attractive option for
data acquisition in cutting edge applications, due to the increasing
demand for low power and higher sampling rates. Subsequently, the
rejuvenated one-bit array processing field is now receiving more at-
tention, as “classical” array processing techniques are adapted / mod-
ified accordingly. However, array calibration, often an instrumental
preliminary stage in array processing, has so far received little atten-
tion in its one-bit form. In this paper, we present a novel solution
approach for the blind calibration problem, namely, without using
known calibration signals. In order to extract information within the
second-order statistics of the quantized measurements, we propose
to estimate the unknown sensors’ gains and phases offsets according
to a Kullback-Leibler Divergence (KLD) covariance fitting criterion.
We then provide a quasi-Newton solution algorithm, with a consis-
tent initial estimate, and demonstrate the improved accuracy of our
KLD-based estimates in simulations.

Index Terms— Blind calibration, uniform linear arrays, one-bit
quantization, Kullback-Leibler divergence.

1. INTRODUCTION

While high-resolution quantization of analog signals is obviously
preferable to low-resolution in terms of accuracy (for signal recov-
ery, feature extraction, etc.), other, practical considerations are of-
ten at a higher priority. For example, the power consumption of
an Analog-to-Digital Converter (ADC) increases exponentially with
the number of bits [1]. Other important considerations are the high
cost of high-resolution devices [2], and their operational sampling
rates, which are increasingly becoming insufficient for various ap-
plications, such as cognitive radio and radar [3–5].

As a remedy, one-bit quantization has been gradually receiving
more attention in recent years [6–11]. Being essentially the most
basic form of quantization, it offers the advantages of low cost and
low complexity implementation, which allows for higher sampling
rates. These benefits come at the cost of greater loss of information
per sample, thus giving rise to the necessity of new, 1-bit-adapted
digital signal processing algorithms.

In the context of passive array processing, one important prob-
lem, which nevertheless has so far received little attention in the
literature in its 1-bit form [12], is calibration of the array. This
inevitable problem is due to the fact that, in practice, the array sen-
sors generally have different gain and phase responses for various
possible reasons (e.g., imperfect manufacturing). Without proper
compensation of these relative gain and phase offsets, the accuracy
of most (if not all) array-based processing estimation tasks could
severely deteriorate. This specific problem is the focus of this work.

While calibration using a known, user-controlled signal is some-
times a viable option, blind calibration is typically more desirable,
yet more challenging. In this paper, we consider this challenging
problem for Uniform Linear Arrays (ULAs), based on one-bit mea-
surements of narrowband Gaussian signals. We propose a statisti-
cally enhanced blind calibration scheme, which exploits “hidden”
Second-Order Statistics (SOS) information via the Kullback-Leibler
Divergence (KLD) covariance fitting criterion. The resulting en-
hanced calibration leads to considerably higher accuracy in subse-
quent estimation tasks, as demonstrated in a simulation experiment.

2. PROBLEM FORMULATION
Consider a ULA ofN sensors, each with unknown deterministic gain
and phase offsets, denoted ψ ∈ RN×1

+ and φ ∈ [−π, π)N×1, where
ψn and φn are the unknown gain and phase offsets of the n-th sen-
sor, resp. Further, consider the presence of an unknown number M
of unknown, “far field” narrowband sources, centered around some
common carrier frequency with wavelength λ.

The noisy vector of sampled, baseband-converted signals from
all N sensors is given by

r(t) =ΨΦ
(
A(α)s(t)+v(t)

)
+w(t),ΨΦx(t)+w(t) ∈CN×1,

(1)
for all t ∈ [T ], where [N ] , {1, . . . , N} for any N ∈ N, and

(i) Ψ , Diag(ψ) ∈ RN×N+ , Φ , Diag
(
eφ

)
∈ CN×N ;

(ii) s(t), [s1(t) · · · sM (t)]T ∈CM×1 denotes the sources, emit-
ted from unknown azimuth angles α , [α1 · · · αM ]T ∈
RM×1;

(iii) A(α) , [a(α1) · · · a(αM )] ∈ CN×M denotes the nomi-
nal array manifold matrix, with the steering vectors a(αm) ,î
1 e

2π
λ
d cos(αm) · · · e

2π
λ

(N−1)d cos(αm)
óT
∈ CN×1 as its

columns, where d ∈ R+ is the inter-element spacing;
(iv) v(t) ∈ CN×1 denotes additive, ambient noise or “inter-

fering” signals, modeled as spatially and temporally inde-
pendent, identically distributed (i.i.d.) zero-mean circu-
lar Complex Normal (CN) [13] with a covariance matrix
Rv , E

[
v(t)v(t)H

]
= σ2

vIN , where σ2
v is unknown;

(v) w(t) ∈ CN×1 denotes additive internal (e.g., thermal) receiver
noise, unaffected by the gain and phase offsets, modeled as
spatially and temporally i.i.d. zero-mean circular CN with a
covariance matrix Rw , E

[
w(t)w(t)H

]
= σ2

wIN , where
σ2
w is known; and

(vi) x(t) denotes the signal that would have been received in the
absence of gain or phase offsets and internal noise, namely
with Ψ = Φ = IN and σ2

w = 0.
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We also assume that the sources are mutually uncorrelated. In
particular, we assume that s(t) is a (temporally) i.i.d. zero-mean cir-
cular CN vector process with an unknown diagonal covariance ma-
trix Rs , E

[
s(t)s(t)H

]
. In addition, we assume s(t),v(t) and

w(t) are all mutually statistically independent. As a result we get

r(t) ∼ CN (0N ,R) , ∀t ∈ [T ], (2)

where

R , E
î
r(t)r(t)H

ó
= ΨΦCΦ∗Ψ + σ2

wIN ∈ CN×N , (3)

C,E
î
x(t)x(t)H

ó
=A(α)RsAH(α) + σ2

vIN ∈ CN×N , (4)

and we have used ΨH = Ψ and ΦH = Φ∗.
In this work, rather than assuming access to the discrete-time

signal (1) measured by an ideal receiver with an∞-bit ADC, we as-
sume access only to a “coarse” quantized version thereof, obtained
by a 1-bit ADC low-complexity receiver. Specifically, the 1-bit
quantized vector of signals from all N sensors at time t is given by

y(t) , Q
(
r(t)

)
∈
{
e(

π
4
+πk

2 ) : 0 ≤ k ≤ 3
}N×1

, (5)

where the complex-valued 1-bit quantization operator is defined as

Q(z) , 1√
2
·
[
sign (<{z}) +  · sign (={z})

]
, ∀z ∈ C,

and, with slight abuse of notations,Q(·) operates elementwise in (5).
The one-bit blind calibration problem can now be formulated

as follows. Given the quantized measurements {y(t)}Tt=1 as in
(5), estimate the unknown gain and phase offsets {ψ,φ}.

3. THE ARCSINE LAW AND THE IMPLIED
SOS-IDENTIFIABILITY

Before we present our proposed solution approach, it is instructive
to study the SOS of the one-bit measurements (5), and the implied
identifiability conditions. To this end, following [9,12,14], which all
rely on the extension [15] of Van Vleck and Middleton’s pioneering
work [16], due to (2), by the arcsine law we have

Ry , E
î
y(t)y(t)H

ó
=

2

π
sine−1 (R) ∈ CN×N , (6)

whereR is the normalized covariance matrix of r(t), defined as

R , Ddiag(R)−
1
2RDdiag(R)−

1
2 ,D−

1
2RD−

1
2 , (7)

where Ddiag(R) denotes a diagonal matrix with the same diagonal
elements asR, such that

∣∣∣Rij∣∣∣ ≤ 1 for all i, j ∈ [N ],Rii = 1 for all

i ∈ [N ], and sine−1(z) , sin−1(<{z})+  · sin−1(={z}) operates
elementwise.

Since the array manifold matrix of a ULA is a Vandermonde
matrix (e.g., [17]) and all the signals involved are uncorrelated, the
covariance matrix C (4) is a Toeplitz matrix [18], thus we denote
Cij , c|i−j|+1, so the (i, j)-th element ofR can be expressed as

Rij =
Rij√
DiiDjj

=
ψiψjc|i−j|+1e

(φi−φj) + δijσ
2
w»

(ψ2
i c1 + σ2

w)(ψ
2
j c1 + σ2

w)
,

where δij denotes the Kronecker delta of i, j ∈ N. Indeed, it is read-
ily verified that Rii = 1 for all i ∈ [N ]. In addition, since both
Rs and σ2

v are unknown, and since all {Rij} are related to {ψi}
and {c|i−j|+1} by the products {ψiψjc|i−j|+1} only, we can set
w.l.o.g. c1 = 1. We will shortly see that the (unknown) Signal-to-
Interference Ratios SIRm , Rsmm/σ

2
v are immaterial to our blind

calibration problem. This is in stark contrast to the Signal-to-Noise

Ratios, SNRn , ψ2
n/σ

2
w, which, after setting c1 = 1, are now ex-

pressed via the sensors’ gains {ψn}, and are also unknown.
To see this, observe that in the limit of high SNR we have

lim
σ2
w→0

Rij =
ψiψjc|i−j|+1e

(φi−φj)»
ψ2
i ψ

2
j

= c|i−j|+1e
(φi−φj),

namely a complete loss of information regarding the sensors’ gains.
Note that [12] addresses (only) this particular case in the context of
blind calibration for sparse arrays, consequently only calibrating the
sensors’ phases. Our signal model (1) therefore offers an extended
framework (cf. [12], Eq. (1)), which allows blind calibration of the
sensors’ gains as well for any finite (even if large) SNR, provided
that the sample size is sufficiently large. Be that as it may, from a
practical point of view, at high SNR the noiseless model still leads
to “good” solutions for phase calibration (only).

Lastly, recall that even with an ideal∞-bit ADC, and therefore
in our case as well, at least two phases and one gain references are
required for calibration of the array in this blind scenario (e.g., [19]).

4. ONE-BIT BLIND CALIBRATION
In light of the discussion above, w.l.o.g., we assume from now on

ψ1 = 1, φ1 = φ2 = 0, c1 = 1. (8)

With these assumptions, we define the underlying vector of unknown
parameters, which fully determinesRy with σ2

w and (8), as

θ ,
î
ψT

[2] φ
T
[3] ρ

T
[2] ι

T
[2]

óT
∈ RKθ×1,

where we use the notationa[k], [ak ak+1 · · · aN ]T∈ R(N−k+1)×1

for any a ∈ RN×1 and k ≤ N , and where c , ρ +  · ι ∈ CN×1,
such that ρ1 = 1 and ι1 = 0 from (8), and Kθ , 4N − 5.

Many of the previously proposed methods for blind calibration
are based on the fact that, theoretically, “Ry

, 1
T

∑T
t=1 y(t)y(t)

H ∈
CN×N can be made arbitrarily close toRy by increasing (appropri-
ately) the sample size T . However, in practice, the available sample
size is always limited and is oftentimes fixed. Hence, rather than
relying on the coarse approximation “Ry

≈ Ry , which typically
leads to coarse, sub-optimal estimates of {ψ,φ}, we propose a
refined approach, which obtains more accurate estimates of ψ and
φ by accounting for information regarding the estimation errors in“Ry

, which are generally correlated [20].
Specifically, for any finite sample size T , we have“Ry

, Ry + E =⇒ “Ryij = Ryij + Eij , ∀i, j ∈ [N ],

where {Eij} denote the estimation errors in the estimation of {Ryij}.
Using (6), it is readily seen that while sine

(
π
2
Ryij
)
= Rij ,

sine
(π
2
“Ryij) = sine

(
sine−1(Rij) +

π

2
Eij
)
, Rij + Ẽij ,

where sine(z) , sin(<{z}) +  · sin(={z}), and {Ẽij} are the im-
plied “transformed” estimation errors. A direct, explicit SOS-based
analytic characterization of Ẽij is rather involved, so we seek an esti-
mate which would implicitly account for correlations among {Eij}.
This leads us to the following solution approach.
4.1. Estimation by KLD Covariance Fitting
We propose to use the KLD of two zero-mean circular CN distri-
butions as a covariance fitting criterion, in order to implicitly ex-
tract more information contained is the SOS. Since the zero-mean
CN distribution is fully characterized by SOS, note that the KLD of
two zero-mean multivariate CN distributions serves as a plausible
criterion for consistent covariance matrix estimation. Indeed, from



Gibbs’ inequality, the KLD is always non-negative (e.g., [21]), hence

DCNKL

Ä“Σ,Σä , log

Å
detΣ

det“Σã+ Tr
Ä“ΣΣ−1

ä
−N ≥ 0, (9)

DCNKL

Ä“Σ,Σä = 0 ⇐⇒ “Σ = Σ ∈ CN×N . (10)

Moreover, it can be easily shown that minimization of (9) is equiv-
alent to maximization of the likelihood function for CN-distributed
measurements (e.g., [22], Eq. (60)), which, in turn, is asymptoti-
cally equivalent to minimization of the optimally weighted nonlin-
ear Least Squares (LS) objective function (see [22], Eq. (62), and
Appendix E therein for the full details). Specifically, we propose

θ̂KLD , argmin
θ∈RKθ×1

DCNKL

Ä“Ry
,Ry(θ)

ä
. (11)

Thus, due to all of the above, the proposed estimate (11), from which
the KLD-based estimates of ψ[2] and φ[3] are readily extracted, im-
plicitly takes into account cross-correlations between all the estima-
tion errors {Eij} and utilizes “hidden” SOS information, as desired.

4.2. Computation of the Proposed KLD-based Estimate

As mentioned above, since θ̂KLD is equivalent to the maximum like-
lihood estimate for CN-distributed measurements, we propose to use
the respective Fisher’s Scoring Algorithm (FSA, e.g., [23]), pre-
tending that {y(t)}Tt=1 are CN-distributed. Of course, in our case the
FSA would merely serve as a quasi-Newton algorithm (e.g., [24]),
since {y(t)}Tt=1 are obviously far from being CN-distributed.

The update equation of the FSA for the k-th iteration is given by

θ̂
(k)

= θ̂
(k−1)

+ J−1
(
θ̂
(k−1)

)
∇θL|

θ=θ̂
(k−1) , (12)

where θ̂
(k)

denotes the estimate of θ in the k-th iteration,

L(θ) , −T ·DCNKL

Ä“Ry
,Ry(θ)

ä
+ b, (13)

is the associated log-likelihood function (where b ∈ R is constant
w.r.t. θ), and J(θ) ∈ RKθ×Kθ is the associated Fisher Information
Matrix (FIM) under the (false) assumption that {y(t)}Tt=1 are CN,
given by [25] (for all i, j ∈ [Kθ])

Jij(θ) = T · Tr
Ä
(Ry)−1

Ä
∂
∂θi
Ry
ä
(Ry)−1

Ä
∂
∂θj
Ry
ää
. (14)

Hence, in order to carry out the iterations (12) such that they will
successfully converge to θ̂KLD, three ingredients are required: a suffi-

ciently “good” initial solution θ̂
(0)

, and closed-form expressions of
the FIM and the score function, i.e., J(θ) and∇θL ∈ RKθ×1, resp.

Starting with the elements of J(θ), and denoting Rmn ,
R<mn +  ·R=mn for brevity, by the chain rule, we have for every θi

∂Rymn
∂θi

=
2/π»

1−
(
R<mn

)2 ∂R<mn∂θi
+

 · 2/π»
1−

(
R=mn

)2 ∂R=mn∂θi
, (15)

where we have used ∂
∂x

sin−1(x) =
(
1− x2

)− 1
2 . Given (15), all

{ ∂
∂θi
Ry} can now be easily computed using straightforward deriva-

tives, omitted due to lack of space. As a representative example,

∂R<mn
∂φk

=
(
ρ|m−n|+1 sin(φm−φn) + ι|m−n|+1 cos(φm−φn)

)
·

ψmψn√
DmmDnn

(δkm − δkn), ∀m 6= n ∈ [N ], ∀(k − 2) ∈ [N − 2].

With { ∂
∂θi
Ry}Kθi=1, we readily obtain closed-form expressions for

all of (14). As for∇θL, using the chain rule once again, we have

∂L(θ)
∂θi

=

N∑
m,n=1

∂L (θ)
∂Rymn

∂Rymn
∂θi

= Tr
((
∇RyL

) Ä
∂
∂θi
Ry
äT)

,

for all i ∈ [Kθ], where

∇RyL = −T ·
î
(Ry)−1

Ä
IN − “Ry

(Ry)−1
äóT
∈ CN×N . (16)

Thus, with (16) and the already obtained { ∂
∂θi
Ry}Kθi=1, we now have

a closed-form expression for the score function∇θL as well.
The third ingredient—a “good” initial solution to the iterative

procedure (12)—is instrumental from a practical point of view. In-

deed, generally, the FSA is likely to converge to (11) when θ̂
(0)

is
“close” enough to θ̂KLD, which is the global maximizer of (13).

For this, we propose to use Paulraj and Kailath’s (P-K’s) clas-
sical LS approach [26]. Despite ignoring the estimation errors
{Eij}, P-K’s approach yields simple closed-form expressions for
consistent estimates of {ψ[2],φ[3]}, based on the Toeplitz struc-
ture of C, which can still be exploited under one-bit quantization.
Indeed, φ̂[3],LS can be obtained just as described in [26], using“R , sine

Ä
π
2
“Ryä

. Further, “ψ[2],LS can be obtained as well with the
following, relatively simple modifications. Since C is Toeplitz, due
to (3) and (7), we have (cf. [26], Eq. (11))

µijk` , log

Ç
|Rij |
|Rk`|

å
= βi − βj − βk + β`,

for any four indices satisfying i− j = k − ` 6= 0, where

βn , log

Ç
ψn√

ψ2
n + σ2

w

å
⇐⇒ ψn =

 
e2βnσ2

w

1− e2βn , ∀n ∈ [N ].

(17)
Thus, recalling that σ2

w and ψ1 are known, which means that β1 is

known, the LS estimate β̂[2],LS based on “R is obtained via [26], Eq.
(13) (excluding equations associated with the diagonal elements).
Given β̂[2],LS, the estimates “ψ[2],LS are readily computed from (17).

Once “ψ[2],LS and φ̂[3],LS are obtained, we define the diagonal

matrix “DLS with diagonal entires “Dnn,LS , ψ̂2
n,LS + σ2

w, with which

we further define “RLS , “D 1
2
LS
“R“D 1

2
LS based on (7), and (based on (3))“CLS , “Φ∗LS

“Ψ−1

LS

Ä“RLS − σ2
wIN

ä “Ψ−1

LS
“ΦLS,

ĉ|i−j|+1,LS , “Cij,LS =⇒ ĉLS , ρ̂LS +  · ι̂LS,

where “ΨLS , Diag
Ä“ψLS

ä
,“ΦLS , Diag

Ä
φ̂LS

ä
, ρ̂1,LS = 1 and

ι̂1,LS = 0. Collecting all the respective LS-based estimates into a

(a) (b)

Fig. 1: (a) Percentage of convergent FSA (12) trials; (b) Upon convergence,

average number of iterations to convergence, both vs. T , for θ̂
(0)

= θ̂LS.



Fig. 2: MSEs of the gains and phases offsets estimates vs. T . Though both the LS- and KLD-based estimates exhibit a consistency trend, the KLD are superior.

Fig. 3: Empirical probability of error in detecting the number of sources vs.
T . Clearly, the KLD-based enhanced calibration significantly improves the
accuracy in this post-calibration covariance-based estimation task.

Kθ-dimensional vector, we now have

θ̂LS ,
[“ψT

[2],LS φ̂
T

[3],LS ρ̂
T
[2],LS ι̂

T
[2],LS

]T
, θ̂

(0)
∈ RKθ×1, (18)

which is a consistent estimate of θ (from the consistency of “Ry
),

thus serving as a “good” initial solution, presumably “close” to θ̂KLD.
The complete proposed blind calibration scheme is as follows:

KLD-based One-Bit Blind Calibration: Given {y(t)}Tt=1,

1 Compute “Ry
= 1

T

∑T
t=1 y(t)y(t)

H;

2 Compute and construct θ̂LS as in (18);

3 Set θ̂
(0)

= θ̂LS, and iterate (12) until convergence (e.g.,

until
∥∥∥θ̂(k) − θ̂(k−1)

∥∥∥
2
< ε, for some “small” ε ∈ R+);

4 Calibrate the array using “ψKLD ,
[
1 “ψT

[2],KLD

]T
and

φ̂KLD ,
[
0 0 φ̂

T

[3],KLD

]T
.

We note that even if access to the pre-quantized signals is re-
stricted, so that “ψKLD and φ̂KLD cannot be compensated for prior to
the one-bit quantization, our method nevertheless provides “CKLD—
the KLD-based estimate of C—which is readily constructed from
ρ̂KLD , [1 ρ̂T

[2],KLD]
T and ι̂KLD , [0 ι̂[2],KLD]

T, and can be used
for subsequent post-calibration covariance-based estimation tasks.“CKLD essentially serves as the outcome of implicit KLD-based blind
calibration, applied directly to the one-bit quantized measurements.

5. SIMULATION RESULTS
We consider model (1) with one-bit measurements (5), a half wave-
length inter-element spacing d = λ/2 ULA consisting of N = 7
elements, and M = 4 equal power, zero-mean sources arriving
from angles α = [45◦ 52◦ 9◦ 78◦]T. The sensors’ gains and

phases were set to ψ = [1 0.7 0.9 1.1 1.2 0.8 1.3]T and φ =
[0◦ 0◦ 5◦ 11◦ −8◦ 4◦ 10◦]T, resp., where w.l.o.g. we assume ψ1, φ1

and φ2 are known references. The sources’ (equal) power was set
such that {SIRm = 10}4m=1 and c1 = 1, and σ2

w = 1. All empirical
results were obtained by averaging 104 independent trials.

Figs. 1a and 1b present the empirical percentage of convergent
trials and number of iterations to convergence, resp., of FSA vs. T ,
when initialized by θ̂LS. Here, we say that the iterations (12) con-
verge when the `2-norm of the step size falls below ε = 10−7 before
reaching the maximum number of allowed iteration Kmax = 100.
It is clearly demonstrated that when the sample size is sufficiently
large, the iterations converge with high probability, which is due to
the consistency of θ̂LS. We also emphasize that although the nominal
values of T considered here may seem typically large, the respective
number of bits per unkonwn is both realistic and practical owing
to the high operational rates of low-complexity 1-bit ADCs.

Next, we turn to evaluate the MSEs of the proposed “ψKLD and
φ̂KLD, and their more simple LS-based alternatives “ψLS and φ̂LS, pre-
sented in Fig. 2 vs. T . For a pure (and fair) comparison of the MSEs
(regardless of convergence issues), the average MSEs of the KLD-
based estimates are based only on convergent FSA trials. As seen,
the proposed estimates exhibit enhanced performance, reducing the
MSEs by up to∼6[dB]. For practical considerations, whenever FSA
does not converge, one can resort to calibration by “ψLS and φ̂LS.

Lastly, we demonstrate the implications of our enhanced solu-
tion by a subsequent post-calibration task—blind determination of
the number of sources (e.g., [27]). To this end, we use “CKLD and “CLS

as the post-calibration estimated covariance matrix of the received
signal x(t), where the goal now is to detect the number of sources
M , recalling σ2

v is unknown. We use the second order statistic of the
eigenvalues (SORTE) algorithm [28], which requires only the eigen-
values of the sample covariance matrix (of a calibrated array). Fig.
3, presenting the empirical probability of error in detecting M vs.
T , well demonstrates the considerable performance improvement, a
direct implication of the proposed KLD-based enhanced calibration.

6. CONCLUSION

We presented a blind calibration scheme for ULAs with coarsely
quantized one-bit measurements, using a KLD-based calibration
scheme. The KLD covariance fitting criterion—closely related to
the optimally weighted nonlinear least squares criterion—implicitly
exploit “hidden” SOS information, thus leading to higher accuracy.
We also provided an approximate iterative solution algorithm, along
with an educated initial estimate (consistent in itself). Significant
performance improvements, both in terms of calibration and a post-
calibration estimation task, were demonstrated in simulations.
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