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ABSTRACT

Adversarial attacks pose a threat to deep learning models. However,
research on adversarial detection methods, especially in the multi-
modal domain, is very limited. In this work, we propose an efficient
and straightforward detection method based on the temporal corre-
lation between audio and video streams. The main idea is that the
correlation between audio and video in adversarial examples will
be lower than benign examples due to added adversarial noise. We
use the synchronisation confidence score as a proxy for audiovisual
correlation and based on it we can detect adversarial attacks. To
the best of our knowledge, this is the first work on detection of ad-
versarial attacks on audiovisual speech recognition models. We ap-
ply recent adversarial attacks on two audiovisual speech recognition
models trained on the GRID and LRW datasets. The experimental
results demonstrate that the proposed approach is an effective way
for detecting such attacks.

Index Terms— Audiovisual Speech Recognition, Adversarial
Attack Detection, Audiovisual Synchronisation

1. INTRODUCTION

Deep networks achieve state-of-the-art performance on several tasks
such as image classification, image segmentation and face recogni-
tion. However, recent studies [1, 2] show that such networks are
susceptible to adversarial attacks. Given any input x and a classi-
fier f(·), an adversary tries to carefully construct a sample xadv that
is similar to x but f(x) 6= f(xadv). The adversarial examples are
indistinguishable from the original ones but can easily degrade the
performance of deep classifiers.

Existing studies on adversarial attacks have mainly focused in
the image domain [2, 3, 4, 5]. Recently, adversarial attacks in the au-
dio domain have also been presented [6, 7]. One of the most promi-
nent studies is the iterative optimisation-based attack [7], which di-
rectly operates on an audio clip and enables it to be transcribed to any
phrase when a perturbation is added. Works on defense approaches
against adversarial attacks can be divided into three categories: ad-
versarial training [2], gradient masking [8] and input transforma-
tion [9]. The first one adds adversarial examples in the training set
whereas the second one builds a model which does not have useful
gradients. Both of them require the model to be retrained, which can
be computationally expensive. In contrast, the latter one attempts to
defend adversarial attacks by transforming the input.

On the other hand, work on how to detect adversarial attacks is
very limited. To the best of our knowledge, the only work in the
audio domain was proposed by Yang et al. [10] and exploits the
inherent temporal dependency in audio samples to detect adversarial
examples. The main idea is that the transcribed results from an audio
sequence and segments extracted from it are consistent in benign
examples but not in adversarial ones. In other words, the temporal
dependency is not preserved in adversarial sequences.

Inspired by the idea of using temporal dependency to detect
audio adversarial examples, we propose a simple and efficient de-
tection method against audiovisual adversarial attacks. To the best
of our knowledge, this is the first work which presents a detec-
tion method of adversarial attacks on audiovisual speech recogni-
tion. The key idea is that the audio stream is highly correlated with
the video of the face (and especially the mouth region). In case of an
adversarial example, the added noise on the audio and video streams
is expected to weaken the audiovisual correlation. Hence, we pro-
pose the use of audiovisual synchronisation as a proxy to correlation.
In other words, we expect higher synchronisation scores for benign
examples and lower scores for adversarial examples. 1

The proposed detection method is tested on speech recognition
attacks on models trained on the Lip Reading in the Wild (LRW)
[11] and GRID datasets [12]. Our results show that we can detect
audiovisual adversarial attacks with high accuracy.

2. DATABASES

For the purposes of this study, we use two audiovisual datasets, the
LRW [11] and GRID [12] datasets. The LRW dataset is a large-
scale audiovisual dataset consisting of clips from BBC programs.
The dataset has 500 isolated words from more than 1000 speakers
and contains 488766, 25000, and 25000 examples in the training,
validation and test sets, respectively. Each utterance is a short seg-
ment with a length of 29 frames (1.16 seconds), where target words
are centred in the segment of utterances.

The GRID dataset consists of 33 speakers and 33000 utterances
(1000 per speaker). Each utterance is composed of six words taken
from the combination of the following components: <command:
4><colour: 4><preposition: 4><letter: 25><digit: 10><ad-
verb: 4>, where the number of choices for each component is indi-
cated in the angle brackets. In this work, we follow the evaluation
protocol from [13] where 16, 7 and 10 subjects are used for training,
validation and testing, respectively.

3. BACKGROUND

3.1. Attacks

In this study, we consider two attack methods, Fast Gradient Sign
Method (FGSM) [2] and the iterative optimisation-based attack [7].
FGSM, which is suitable for attacks on classification models, com-
putes the gradient with respect to the benign input and each pixel can
be updated to maximise the loss. Basic Iterative Method (BIM) [14]
is an extended version of FGSM by applying it multiple times with a
small step size. Specifically, given a loss function J(·, ·) for training
the classification model f(·), the adversarial noise xadv is generated

1Generated adversarial samples can be seen at https://mpc001.
github.io/av_adversarial_examples.html
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Fig. 1. An overview of our proposed detection method. (a) A video and an audio clip are fed to the end-to-end audiovisual speech recognition
model. They are also fed to the synchronisation network (b) which estimates a synchronisation confidence score which is used for determining
if the audiovisual model has been attacked or not (c). The confidence distribution of 300 adversarial and benign examples from the GRID
dataset is shown in (d).

as follows:

xadv
0 = x

xadv
N+1 = Clipx,ε{x

adv
N + αsign(∇xJ(f(x

adv
N ), ytrue)} (1)

where α is the step size, xadv
N is the adversarial example after N -

steps of the iterative attack and ytrue is the true label. After each
step, pixel values in the adversarial images xadv are clamped to the
range [x − ε,x + ε], where ε is the maximum change in each pixel
value. This method was proposed for adversarial attacks on images
but can also be applied to audio clips by crafting perturbation to the
audio input.

The second type of attack [7] has been recently proposed and is
suitable for attacks on continuous speech recognition models. Audio
adversarial examples can be generated, which can be transcribed to
any phrase but sound similar to the benign one. Specifically, the
goal of this targeted attack is to seek an adversary input xadv, which
is very close to the benign input x, but the model decodes it to the
target phrase ztarget. The objective of the attack is the following:

minimize J(f(x+ δ), ztarget)

such that ‖δ‖ < ε (2)

where ε is introduced to limit the maximum change for each audio
sample or pixel and δ is the amount of adversarial noise.

3.2. Audiovisual Speech Recognition Threat Model

The architecture is shown in Fig. 1a. We use the end-to-end audio-
visual model that was proposed in [15]. The video stream consists
of spatiotemporal convolution [16], a modified ResNet18 network
and a 2-layer BGRU network whereas the audio stream consists of
a 5-layer CNN and a 2-layer BGRU network. These two streams
are used for feature extraction from raw modalities. The top two-
layer BGRU network further models the temporal dynamics of the
concatenated feature.

According to the problem type, two different loss functions are
applied for training. The multi-class cross entropy loss, where each

input sequence is assigned a single class, is suitable for word-level
speech recognition. The CTC loss is used for sentence-level clas-
sification. This loss transcribes directly from sequence to sequence
when the alignment between inputs and target outputs is unknown.
Given an input sequence x = (x1, ..., xT ), CTC sums over the prob-
ability of all possible alignments to obtain the posterior of the target
sequence.

4. SYNCHRONISATION-BASED DETECTION METHOD

Chung et al. [17, 18] introduced the SyncNet model, which is able to
predict the synchronisation error when raw audio and video streams
are given. This error is quantified by the synchronisation offset and
confidence score. A sliding window approach is used to determine
the audiovisual offset. For each 5-frame video window, the offset is
found when the distance between the visual features and all audio
features in a ± 1 second range is minimised. The confidence score
for a particular offset is defined as the difference between the mini-
mum and the median of the Euclidean distances (computed over all
windows). Audio and video are considered perfectly matched if the
offset approaches to zero with a high level of confidence score.

In this work, we aim to explore if such synchronisation is af-
fected by adversarial noise. The detection method is shown in Fig.
1b and 1c. In the detection model, we measure the temporal consis-
tency between the audio and video streams via a model trained for
audiovisual synchronisation. For benign audio and video streams,
the confidence score should be relatively high since audio and video
are aligned and therefore highly synchronised. However, for adver-
sarial audio and video examples, the confidence score is expected
to be lower. The added perturbation, which aims to alter the model
toward the target transcription, reduces the correlation between the
two streams, hence they are less synchronous. Fig. 1d. shows the
confidence distribution of 300 benign and adversarial examples from
the GRID dataset.
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Fig. 2. One example using basic iterative attack on the LRW dataset. Benign examples, adversarial noise examples, and adversarial examples
are illustrated from top to bottom. (a) Raw images (εV =4, εV =8), (b) audio waveforms (εA=256, εA=512), and (c) audio log-spectrum
(εA=256, εA=512) are presented from left to right. It is noted that the adversarial visual noise has been scaled with a ratio of 64 for a better
illustration since the maximum distortion (εV =8) is 2 pixels.

5. EXPERIMENTAL SETUP

5.1. Attacks

We evaluate our proposed method using two adversarial attacks on
both modalities. We assume a white-box scenario, where the param-
eters of models are known to the attacker.

Attacks against Word-level Classification: Attacks such as
FGSM and BIM are suitable for word recognition models trained on
the LRW dataset. For FGSM, we consider three values for εA used
in the audio stream (256, 512, 1024) and three values for εV for the
video stream (4, 8, 16)2. For BIM, the step size αV was set to 1 in
the image domain, which means the value of each pixel is changed
by 1 at each iteration. The step size αA in the audio domain is set
to 64. We follow the number of iterations setting suggested by [14],
which is selected to be min(εV + 4, 1.25εV ).

Attacks against Continuous Speech Recognition: For attacking
a speech recognition model trained on GRID we use a recently pro-
posed targeted attack [7]. The maximum distortion allowed as de-
fined by ε (see Eq. 2) is limited in {256, 512, 1024}, {4, 8, 16} for
audio and video, respectively, and is reduced during iterative optimi-
sation. We implement the attack with 800 iterations. In our studies,
10 random utterances are selected as target utterances. 300 adversar-
ial examples are randomly selected for each target utterance.

5.2. Evaluation Metrics

We use the Euclidean distance (L2) for measuring the similarity be-
tween two images. We also use the L∞ norm to measure the maxi-
mum change per pixel. For audio samples we follow [7] and convert
the L∞ norm to the scale of Decibels (dB): dB(x) = max

i
20 ·

log10(xi), where xi is an arbitrary audio sample point from the au-
dio clip x. The audio distortion is specified as the relative loudness
to the benign audio, which can be defined as dBx(δ) = dB(δ) −
dB(x).

The Area Under the Curve (AUC) score is used for evaluating
the detection approach. We compute the synchronisation confidence

2Pixel values are in the range of [0, 255]. Audio samples are in the range
of [-32768, 32767].

Table 1. Results for the proposed adversarial attack detection ap-
proach on word recognition models trained on the LRW dataset.LV∞
is 1, 2 and 4 pixels when εV is 4, 8 and 16, respectively.

Attacks Top-1 Distortion Measures
(Configuration) Acc. LV2 LA∞(dB) AUC F1

FGSM (εA=1024, εV =16) 10.40% 3.46 -19.26 0.99 0.95
FGSM (εA=512, εV =16) 21.87% 3.46 -25.28 0.96 0.89
FGSM (εA=256, εV =16) 32.80% 3.46 -31.30 0.90 0.82
FGSM (εA=1024, εV =8) 12.40% 1.73 -19.26 0.98 0.94
FGSM (εA=512, εV =8) 24.40% 1.73 -25.28 0.94 0.86
FGSM (εA=256, εV =8) 34.73% 1.73 -31.30 0.86 0.78
FGSM (εA=1024, εV =4) 15.20% 0.87 -19.26 0.98 0.93
FGSM (εA=512, εV =4) 27.53% 0.87 -25.28 0.93 0.85
FGSM (εA=256, εV =4) 38.27% 0.87 -31.30 0.83 0.76

BIM (εA=1024, εV =16) 0.00% 1.66 -19.26 0.90 0.82
BIM (εA=512, εV =16) 0.00% 1.66 -25.28 0.89 0.81
BIM (εA=256, εV =16) 0.00% 1.70 -31.30 0.84 0.76
BIM (εA=1024, εV =8) 0.00% 1.07 -23.34 0.85 0.77
BIM (εA=512, εV =8) 0.00% 1.07 -25.28 0.85 0.77
BIM (εA=256, εV =8) 0.00% 1.08 -31.30 0.81 0.74
BIM (εA=1024, εV =4) 0.07% 0.67 -29.36 0.78 0.72
BIM (εA=512, εV =4) 0.07% 0.67 -29.36 0.78 0.72
BIM (εA=256, εV =4) 0.07% 0.67 -31.30 0.77 0.71

score in benign and adversarial examples and by varying the thresh-
old we compute the Receiver Operating Characteristic (ROC) curve.

Finally, in order to compare how this approach would work in
a real scenario, we select the threshold (from Fig. 1c) which max-
imises the average F1 score of adversarial and benign classes on the
validation set. Then we use this threshold to compute the average F1

score on the test set.

6. RESULTS

6.1. Word-level Speech Recognition

Detection results for attacks on word-level speech recognition are
shown in Table 1. In the presence of adversarial noise, the Top-1



Table 2. Average results over 10 utterances of the proposed audio-
visual synchronisation detection on partially targeted adversarial at-
tacks on continuous speech recognition models trained on GRID.
The success rate is the proportion of adversarial examples with WER
less than 50%. (εA ∈ {256, 512, 1024}, εV ∈ {4, 8})

Threshold Success Distortion Measures
εA εV Rate LV2 LV∞ LA∞(dB) AUC F1

1024 8 100% 3.14 0.019 -43.34 0.84 0.75
512 8 94% 3.38 0.021 -43.93 0.84 0.75
256 8 67% 3.63 0.022 -46.77 0.83 0.75

1024 4 99% 1.54 0.010 -40.14 0.79 0.71
512 4 78% 0.82 0.010 -41.14 0.78 0.71
256 4 42% 1.98 0.012 -45.63 0.74 0.68

Accuracy drops from 97.20% 3 to below 40% using FGSM. As εA

and εV increase the accuracy drops (from 38.27% for the lowest
levels of noise to 10.40% for the highest noise levels). On the other
hand, the AUC and F1 scores increase, since the highest levels of
noise make detection easier. Similar conclusions can be drawn when
BIM is used. Accuracy varies between 0% and 7% depending on
the noise level, the AUC varies between 0.77 and 0.90 and the F1
scores between 0.71 and 0.82. We should also mention that although
adversarial noise is imperceptible for all values of εV it becomes
more and more perceptible as εA increases.

It is clear from Table 1 that for both types of attacks the dis-
tortion is smaller when εA and εV decrease and as a consequence
detection becomes harder, both AUC and F1 scores go down. How-
ever, such attacks are less successful since the classification rate goes
up.

We also notice that when the attack is stronger, e.g., BIM is used
instead of FSGM, the classification rate goes down, i.e., the attack is
more successful, and at the same time the distortion (LV2 ) becomes
smaller. Consequently, detection becomes more difficult and this is
reflected to the lower AUC and F1 scores for BIM than FGSM.

6.2. Sentence-level Speech Recognition

In this section we consider two types of attacks on continuous speech
recognition: 1) partially targeted attacks, where the WER between
the transcribed result and target phrase is up to 50%, and 2) fully tar-
gets attacks where the goal of the attack is that the transcribed result
is the same as the desired target phrase (WER = 0%). We also limit
the values of εV to 4 and 8 since εV = 16 results in very perceptible
adversarial examples especially in the case of fully targeted attacks.

Average detection results over 10 utterances for partially tar-
geted attacks on sentence-level speech recognition are shown in Ta-
ble 2. It is clear that the success rate is pretty high, over 90% in
most cases. Only when εA is 256 and εV is 4 then the attack is
much less successful with a success rate of 42%. At the same time
the detection rates are quite high for most combinations of the two
thresholds, varying between 0.74 and 0.84 for AUC and 0.68 to 0.75
for F1 score.

Average detection results over 10 utterances for fully targeted
attacks on sentence-level speech recognition are shown in Table 3. In
this case the success rates are much lower than the partially targeted
attack due to the difficulty of the task. Relatively high success rates
are observed when εV is either 4 or 8 and εA is 1024 which results

3This is the performance of the model trained on the LRW dataset when
benign examples are fed to it.

Table 3. Average results over 10 utterances of the proposed audio-
visual synchronisation detection on fully targeted adversarial attacks
on continuous speech recognition models trained on GRID. The suc-
cess rate is the proportion of adversarial examples with WER = 0%.
(εA ∈ {256, 512, 1024}, εV ∈ {4, 8})

Threshold Success Distortion Measures
εA εV Rate LV2 LV∞ LA∞(dB) AUC F1

1024 8 77% 3.26 0.020 -35.22 0.90 0.82
512 8 36% 3.88 0.024 -39.29 0.89 0.81
256 8 8% 4.15 0.026 -43.37 0.87 0.81
1024 4 66% 1.73 0.011 -34.12 0.87 0.78
512 4 19% 2.13 0.013 -38.08 0.84 0.77
256 4 2% 2.17 0.013 -43.85 0.83 0.77

Table 4. Results of the proposed audiovisual synchronisation detec-
tion on partially targeted adversarial attacks on continuous speech
recognition models trained on GRID. The WER between transcribed
and target phrases is up to 50%. The success rate is the proportion of
adversarial examples with WER less than 50%. (εA = 512, εV = 4)

Target Success Distortion Measures
Phrase Rate LV2 LV∞ LA∞(dB) AUC F1

bbaazp 81% 1.842 0.011 -41.56 0.78 0.71
bwbonn 70% 1.877 0.012 -40.71 0.79 0.72
lgwysa 62% 1.956 0.012 -40.48 0.80 0.72
lraces 78% 1.795 0.011 -41.38 0.77 0.70

pbapoa 91% 1.821 0.011 -41.51 0.78 0.71
prbaos 81% 1.734 0.011 -41.55 0.77 0.72
prbzts 87% 1.673 0.010 -41.87 0.77 0.70
sgifoa 72% 1.791 0.011 -40.97 0.79 0.71
srixfn 76% 1.824 0.011 -40.12 0.80 0.70
swipfn 83% 1.700 0.011 -41.22 0.78 0.71

in more perceptible adversarial examples. In addition the generated
audio and video adversarial examples are more distorted than the
ones generated by the partially targeted attacks. In turn, this leads to
higher AUC scores, between 0.83 and 0.90, and F1 scores, between
0.77 and 0.82.

Results per sentence for the partially targeted attack 4 when εV is
4 and εA is 512 are shown in Table 4. Although the success rates vary
a lot (from 62% to 91%) depending on the sentence the detection
measures AUC and F1 are similar for all sentences. We also observe
that the maximum distortions applied to the audio and video signals
are similar in most cases.

7. CONCLUSION

In this work, we have investigated the use of audiovisual synchroni-
sation as a detection method of adversarial attacks. We hypothesised
that the synchronisation confidence score will be lower in adversar-
ial than benign examples and demonstrated that this can be used for
detecting adversarial attacks. In future work, we would like to inves-
tigate more sophisticated approaches for measuring the correlation
between audio and visual streams.

4bbaazp: bin blue at a zero please, bwbonn: bin white by o nine now,
lgwysa: lay green with y seven again, lraces: lay red at c eight soon, pbapoa;
place blue at p one again, prbaos: place red by a one soon, prbzts: place red
by z two soon, sgifoa: set green in f one again, srixfn: set red in x four now,
swipfn: set white in p five now.
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