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ABSTRACT

Speech separation is an important problem in speech pro-
cessing, which targets to separate and generate clean speech
from a mixed audio containing speech from different speak-
ers. Empowered by the deep learning technologies over
sequence-to-sequence domain, recent neural speech sepa-
ration models are now capable of generating highly clean
speech audios. To make these models more practical by re-
ducing the model size and inference time while maintaining
high separation quality, we propose a new transformer-based
speech separation approach, called TransMask. By fully un-
leashing the power of self-attention on long-term dependency
reception, we demonstrate the size of TransMask is more
than 60% smaller and the inference is more than 2 times
faster than state-of-the-art solutions. TransMask fully uti-
lizes the parallelism during inference, and achieves nearly
linear inference time within reasonable input audio lengths.
It also outperforms existing solutions on output speech audio
quality, achieving SDR above 16 over Librimix benchmark.

Index Terms— speech separation, transformer, deep
learning

1. INTRODUCTION

It is usually difficult to separate clean audio speeches from
the audios in the real world. In practice, speech process-
ing systems are supposed to handle noisy audio when back-
ground musics or even speeches from different speakers are
present in the audio clip. It is therefore crucial to separate
the speech from different speakers, before proceeding to fur-
ther processing and analysis, such as ASR (automatic speech
recognition).

With the explosive development of deep learning, recent
neural speech separation models, such as TasNet [1], Conv-
TasNet [2], deep CASA [3] and DPRNN [4], have achieved
significant quality improvement over traditional approaches.
The common strategy used in these approaches is to mask
the time or frequency domain, with the masks coming from a
deep neural network over the audio signals. The clean audios
are then generated by reconstructing the signals based on the
masks corresponding to individual speakers. As two common

types of neural network, both Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) are already em-
ployed in the generation of the masks. Recently, self-attention
models, such as Transformer and its variants [5, 6, 7], are per-
forming particularly well in sequence-to-sequence domains,
in applications such as neural translation and speech recogni-
tion, because of the power of self-attention structure on main-
taining long-term dependency. Such advantages are believed
to be beneficial to speech separation tasks as well, since the
common challenges in speech separation, such as channel
swap, could be dissolved when long-term dependency is well
captured.

Moreover, existing RNN-based speech separation mod-
els do not scale well with audio length in model training and
inference. The theoretical bound of inference time, for ex-
ample, is linear to the length of the audio representations.
CNN-based speech separation models are faster, while the
output quality of these models are outperformed by RNN-
based models because of their limited receptive fields. Trans-
formers, on the other hand, have the potential to overcome
the limitations of both types of models, when 1) self-attention
naturally has the maximal receptive field; and 2) the inference
can be easily paralleled. This means that the cost of sequential
operations is nearly constant with sufficient resources, and the
quality of Transformer-based models is expected to be com-
parable or even better than RNN models.

However, as self-attention does not pose auto-regressive
regularization as RNNs do, it may suffer from the lack of
short-term dependencies. Therefore, it remains difficult to
design a Transformer-based speech separation model meet-
ing all the expectations above. Some attempts of transformer-
based speech separations models [8, 9, 10] try to solve the
problem by either introducing RNN on every transformer lay-
ers or using large transformer model which sacrifice the ef-
ficiency. This motivates us to develop a compact, fast, yet
effective speech separation model with the help of the follow-
ing designs: STRNN, Sandwich-Norm Transformer Layer and
Dual-Temporal Convolutional Encoding. As a summary, the
core contributions of this paper include:

1. We propose a new model, called TransMask, incurring
nearly constant inference time cost;
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2. We design TransMask to be the smallest deep learn-
ing model for speech separation in the literature, 60%
smaller than state-of-the-art solution;

3. We evaluate TransMask on LibriMix benchmark and
demonstrate outstanding SDR performance.

2. RELATED WORK

The speaker permutation problem is a significant problem in
speech separation. Based on the solution to this problem, we
categorize the speech separation neural models into two cat-
egories: deep clustering and permutation invariant training
(PIT). We focus on the prevailing PIT-based models in this
paper.

PIT is to calculate losses over all permutations of the out-
puts for different speakers, and uses the smallest one as the
objective for optimization. There are frame level PIT (tPIT)
and utterance level PIT (uPIT) [11]. uPIT is prevailing since
tPIT is prone to the problem of channel swap.TasNet [1] is
one of the successful models using uPIT. It deploys stacked
LSTM as the separation module. Conv-TasNet [2] adopts a
similar architecture, but it makes use of Temporal Convolu-
tional Net (TCN) instead of RNN. It achieves better perfor-
mance by making the neural network deeper with the help of
TCN. DPRNN [4] uses RNN modules, but with a dual-path
procedure, which helps model to achieve better performance
than Conv-TasNet.

Most of the existing studies of speech separation is based
on the time-frequency representation of the original audios.
Instead, TasNet model and its variants apply a trainable en-
coder and decoder directly over time domain. The encoder
produces a 2D representation from the temporal sequences,
and the decoder convert this time-frequency-like representa-
tion back to temporal sequences. The separation module op-
erates on this 2D representation and produces the masks of
clean sources.

There are also other applications of transformers. DPT-
Net [8] uses similar structure as DPRNN, but replaces the
RNN modules with transformers. Note that the transform-
ers in DPTNet utilize RNN as feed-forward network, which
means that DPTNet is still an auto-regressive model. Thus
the performance improvement of DPTNet may come from the
increased model complexity. Sepformer [9] uses pure trans-
formers but the model size is at least 10 times larger than
TransMask. Conformer [10] adopts the structure which is
proved to be successful in speech recognition. This work
mainly focuses on the Continuous Speech Separation (CSS)
scenario.

3. PRELIMINARIES

Transformer: Original transformer [5] is mainly used in nat-
ural language processing tasks like language model, or neural

machine translation. The core component of transformer is
the self-attention module followed by a feed forward network.
Each element of the sequence attends to all the elements of the
same sequence.

Transformer is able to capture the dependency from ar-
bitrary long distance, due to this self-attention mechanism.
Although it is better than CNN or RNN in capturing long-
term dependencies, it may overlook local dependencies, be-
cause of the lack of positional information. It is therefore im-
portant to introduce positional encoding into Transformer to
help the model enhance with local dependency information,
Given positional encoding, it still needs deep transformer lay-
ers and plenty of training for the model to fully capture the
local dependency. To overcome this drawback, some studies,
e.g., R-transformer [12], inject RNN modules into transform-
ers; others [7, 6] attend only to a local window or elements
from strided distances. Different from such methods, we use
a strided sparse transformer [7] only for handling the long-
term dependencies.
DPRNN: DPRNN [4] is a variant of TasNet [1]. They share
a similar architecture, consisting of an encoder, a separator
and a decoder. The encoder and the decoder can be viewed as
trainable substitute of STFT and inversed-STFT as discussed
in last section. DPRNN uses a dual path process for inte-
grating RNN into the separator. The model first splits the se-
quence into overlapping chunks, and then performs two paths
of RNN. It is done within the chunks first, and across the
chunks later. The input audio with L frames is first padded to
be divisible by P . Let 2P be the length of the chunk (P is the
number of overlapping frames of the two consecutive chunks)
and S is the number of chunks. The intra-chunk RNN is used
for capturing the local dependencies. And it is applied on the
dimension with length 2P . The inter-chunk RNN is used to
handle long-term dependencies. It is applied on the dimen-
sion with length S. After applying this dual-path RNN multi-
ple times, DPRNN gets a promising result on speech separa-
tion tasks. For DPRNN, the inference efficiency depends on
the length of the audio, denoted by N . If the chunk size is
fixed, the time complexity of DPRNN ’s inference is linear to
the audio length, i.e., O(N).

4. TRANSMASK

In order to utilize the capability of transformers on handling
long-term dependencies, while keeping the auto-regressive
regularization which provides important local dependency
information, TransMask adopts and enhances the ideas of
strided sparse transformer and the dual-path process from
DPRNN.
STRNN: The mixture audio first goes through a chunk level
process in a bidirectional-LSTM layer, and then it is passed
to a strided transformer structure for an inter-chunk atten-
tion process. This architecture connects each frame of the
sequence to two kinds of contexts: local context and strided



Encoder DecoderChannel: 1

Length: L

Strided Length: L'

Channel: C

Mixture waveform Separated
waveforms

Internal 2D
representation

Masks
Separator

RNN

Transformer
STRNN

Fig. 1. The overall architecture of TransMask: Transformer is run over a group of RNNs in order to better capture both local
and global dependency over the time domain.

context respectively. The local context is processed by RNN,
and the strided context is handled by the transformer. We call
this structure a strided-transformer with RNN, or STRNN in
short. The difference among STRNN, DPRNN and strided
sparse transformer is illustrated in Figure 2. The grey cell in
the graph is the current frame the model is processing. The
orange cells are the frames connected to the current frame
by RNN modules. The green cells are the frames connected
to the current frame by self-attention modules. Figure 2(a)
shows that DPRNN connects the local context and strided
context to the current frame by RNN modules. Figure 2(b)
shows that strided sparse transformers connect the contexts
using only self-attention. In Figure 2(c), our STRNN strategy
works in a different way. It connects the strided contexts us-
ing self-attention while using RNN for local contexts. The
overall architecture is shown in Figure 1, which is similar
to DPRNN except that the separator module is replaced by
a stack of STRNN layers.

Due to transformer’s strong capability on capturing the
dependencies over the whole sequence, the proposed model
is expected to achieve better results than DPRNN while us-
ing fewer parameters. Regarding inference, the self-attention
module of STRNN makes the calculation easily paralleled,
and the RNN module runs over the sequences with a fixed
chunk size. Therefore, the cost of sequential operations
(mainly RNN) of STRNN is O(1), which ensures the promis-
ing inference efficiency of TransMask.
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(a) DPRNN

S

2P

(b) Sparse transformer

S
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Fig. 2. Examples for demonstrating the difference on process-
ing strategies in STRNN of TransMask, DRPNN and Sparse
Transformer.
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Fig. 3. Pre-norm structure used in the proposed model. LN
represents layer normalization, MHA is multihead attention,
and FC is fully connected layers. We use GELU [15] as the
activation function.

Sandwich-Norm Transformer Layer: To train a good
Transformer model, it is important to set up the warm-up
steps carefully, where the learning rate gradually increases.
The number of warm-up steps needs to be tuned, and this
makes transformer hard to train. However, recent work [13]
shows that the warm-up may not be necessary, since a change
of the order of normalization layers could solve this problem.
When using the pre-norm, warm-up steps become unnec-
essary. Our pre-norm transformer layer is shown in Figure
3. An additional layer normalization is added to the end to
avoid the whole transformer layer being by-passed, as [14]
does. We call this a sandwich-norm transformer layer. We
empirically found that this structure significantly improves
the convergence speed.
Dual-Temporal Convolutional Encoding: When using
transformers, the self-attention module treats all the keys
equally, and this attention process is order-agnostic. To
inject position information into the self-attention process,
Transformers concatenate positional encoding into the model
inputs. There are different options for positional encoding,
as listed below: 1) Sinusoid positional encoding: It uses si-
nusoid functions for representing different positions in the
sequence [5]. This encoding can be used for either absolute
position or relative positions. 2) Frame stacking: instead of
using only one frame per position in the input, this method
stacks n contextual frames together and creates a new frame
from it [14]. This is mainly used as a relative positional en-
coding. 3) Convolutional encoding: It uses a convolutional



neural network to encode the input [16]. This is similar to
frame stacking, since after this encoding, each frame contains
the contextual information. The difference is that this scheme
makes the positional encoding trainable. Recent study on
speech recognition with transformer proves that convolu-
tional encoding works better than other two methods [14].
Thus, TransMask chooses the convolutional encoding.

Different from the 2D CNN modules used in [14], our
method does not perform the convolution on the time dimen-
sion and the filter bank dimension. Instead, it splits the input
sequence into overlaped chunks, and performs 2D convolu-
tion over the intra-chunk dimension and inter-chunk dimen-
sion. Since the 2D convolution is performed on the two tem-
poral dimensions, we call this a dual-temporal convolutional
encoding. Each frame of the positional encoding contains not
only the positional information on local contexts, but also the
positional information on strided contexts.
Loss Function: For the training objectives, we use the
SI-SNR with utterance-level Permutation Invariant Training
(uPIT) as used in [4].

5. EXPERIMENTS

Dataset: Existing studies on speech separation usually use
a mixture version of Wall Street Journal (WSJ0), known as
WSJ0-2mix [17]. However, WSJ0 only contains 101 differ-
ent speakers, and 25 hours of training data. The number of
speakers is too small for the evaluation of generalization abil-
ity of the models. LibriMix [18] is recently proposed as a
new benchmark using open source dataset LibriSpeech [19].
It contains 1,172 speakers, and 465 hours of training data. In
this paper, we use the version of Librimix with 2 speakers’
mixtures, Libri2Mix. And we only use the part of train-360
from the LibriSpeech dataset. The codes for mixture gen-
eration are available on github https://github.com/
JorisCos/LibriMix.
Model specifications: We test the proposed model with 4
and 6 layers of STRNN modules, denoted as TransMask-4
and TransMask-6 with learnable time-frequency basis. The
dimension size of the strided transformer is set at 64 for self-
attention. The feed forward network has 256 nodes in the
hidden layer. For the convolutional encoding, it contains 3
layers of blocks, each consisting of a convolutional network
with kernel size 3, global layer normalization and GELU ac-
tivation. The numbers of input channels and output chan-
nels are both 64. The output of the separation module is
passed to sigmoid activation function. The result is multiplied
with the input for getting the learnable basis representation
of the clean source predictions. The code is open-sourced:
https://github.com/Speech-AI/SpeechX. It is
based on the asteroid [20] project.
Experiment results: We compare our model with DPRNN
in three aspects: SDR, model size and inference speed. As
shown in Table 1, TransMask-6 achieves the best SDR at 16.3,

outperforming DPRNN by a significant margin. TransMask-
4 and TransMask-6 is 50% and 40% smaller than DPRNN,
respectively. The inference speed is also at least two times
faster. In the original paper of DPRNN, it claims to achieve
O(

√
N) processing time (N stands for the sequence length)

if it carefully sets the chunk size and the number of chunks
to be close to each other. However, this can only be con-
trolled during training by fixing the length of the input audio.
When inferencing, the length of the input audio is not control-
lable. Since the chunk size is a constant, the inference time
of DPRNN remains O(N) in practice. In comparison, our
proposed model always uses constant time due to the paral-
lel attribute of self-attention, as long as the inference device
has enough resources. The results are reported in Table 2.
They are tested on Ksyun Virtual Senior CPU (ksyun-cpu64-
senior). We use real time factor (rtf) as the metric. We aug-
ment the test dataset by simply repeating the audio multiple
times. As the length of the audio goes to 4 times, DPRNN has
relatively stable rtf, while rtf of TransMask-6 drop linearly
since the inference is in constant time. The ratio shows that, as
the audio lengths increase, the advantage of TransMask gets
more significant. It is even 4 times faster than DPRNN when
we expand the test audios 4 times longer. This phenomenon
continues until the CPU resources reaches its limit for the par-
allel computation, where the audio lengths are expanded to 8
times.

Table 1. Model size and SDR comparison between previous
work and the proposed model

Model size SDR
Conv-TasNet 5.1M 13.5
DPRNN 2.6M 15.6
TransMask-4 1.24M 15.5
TransMask-6 1.62M 16.3

Table 2. The real time factor (rtf) when we expand the length
of the test audio, tested using CPU on Ksyun cloud server

original length 2x 4x 8x
DPRNN 1.08 0.84 0.69 0.70
TransMask-6 0.56 0.31 0.17 0.21
Ratio 51.9% 36.9% 24.6% 30.0%

6. CONCLUSION

In this paper, we combine the strength of Transformer and
RNN into the architecture for better long-term and short-term
dependency handling. We demonstrate that Transformer is
effective on reducing the size of the model, improving the
inference efficiency, and maintaining or even improving the
quality of output speech audio.

https://github.com/JorisCos/LibriMix
https://github.com/JorisCos/LibriMix
https://github.com/Speech-AI/SpeechX
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