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ABSTRACT
Continuous-time Sigma-Delta (CT-ΣΔ) modulators are over-
sampling Analog-to-Digital converters that may provide
higher sampling rates and lower power consumption than
their discrete counterpart. Whereas approximation errors
are established for high-order discrete time ΣΔ modulators,
theoretical analysis of the error between the filtered output
and the input remain scarce. This paper presents a general
framework to study this error: under regularity assumptions
on the input and the filtering kernel, we prove for a second-
order CT-ΣΔ that the error estimate may be in 𝑜(1/𝑁2), where
𝑁 is the oversampling ratio. The whole theory is validated by
numerical experiments.

Index Terms— Sigma-Delta modulator, Continuous,
Analog-to-Digital conversion (ADC), Approximation

1. INTRODUCTION

Introduced by Inose and Yasude [1], Sigma-Delta (ΣΔ) modu-
lators are nowadays widely used Analog-to-Digital converters.
Such 1-bit ADCs operate at many times the Nyquist rate, and
can achieve the same resolution as Nyquist ADCs with suit-
able signal processing [2]. For kth-order discrete-time ΣΔ

modulators, works by Daubechies, Güntürk and al. [3–5] pro-
vide estimates for the error between the filtered output and
the input. Typically, they obtain a mean-squared error esti-
mate in O(1/𝑁 𝑘 ) for a time-varying input, where 𝑁 is the
oversampling ratio, using for example a sinc𝑘+1 filter [6]. But
for continuous-time ΣΔ (CT-ΣΔ) modulators, such general re-
sults remain partial. These CT-ΣΔ modulators deliver more
power-efficient operations than their discrete-time equivalent,
as well as higher sampling rates [2, 7, 8].

Privileged in high performance motor control [9], the ΣΔ

ADC is used to retrieve the phase currents which carry infor-
mation on the rotor position if correctly filtered [10]. Indeed,
the Pulse-Width Modulation (PWM) of the input voltage cre-
ates ripples in the current measurements [11] that we can
extract through a demodulation procedure using linear combi-
nation of iterated moving averages [12]. Therefore, knowing
the error estimate of theΣΔmodulator is of utmost importance
for this type of application.

We present a general technique to study higher-order CT-
ΣΔ modulators. Under regularity assumptions on the input
and the filtering kernel, we prove for a second-order CT-ΣΔ
that the error estimate may be in 𝑜(1/𝑁2).

This paper is organized as follows: we first detail the
required definitions and technical lemmas; then we prove the
error estimate on a specific second-order ΣΔ modulator. The
theory is finally validated on numerical examples.

2. ERROR ESTIMATE FOR A CT-ΣΔ MODULATOR

2.1. Notations, definitions, preliminary results

We consider the second-order CT-ΣΔ modulator depicted in
figure 1; 𝑢 denotes the input of the modulator which varies
in a timescale 1/𝑇pwm, 𝜈 ∈ {0, 1} its output, 𝑇𝑠 its the sam-
pling time, 𝑥1,2 the states of the modulator, 𝑁 := 𝑇pwm/𝑇𝑠 the
oversampling ratio. We assume the stability of the modulator,
which means both 𝑥1 and 𝑥2 are bounded.

The notation O denotes the “big O” of analysis, i.e.
𝑓 (𝑡, 𝜀) = O(𝜀) if there exists 𝐾 > 0 independent of 𝑡 and
𝜀 such that ‖ 𝑓 (𝑡, 𝜀)‖ ≤ 𝐾𝜀. Likewise, the notation 𝑜 is the
“small o” of analysis, i.e. 𝑓 (𝑡, 𝜀) = 𝑜(𝜀) if ‖ 𝑓 (𝑡, 𝜀)‖ ≤ 𝜀𝑔(𝜀)
where lim𝜀→0 𝑔(𝜀) = 0.

The proof in subsection 2.2 relies on the application of a
generalization of the classical Riemann-Lebesgue lemma:

Lemma 1 (Generalized Riemann-Lebesgue lemma [13]). Let
𝛽 ∈ 𝐿∞ [0, +∞) such that 𝛽 has a finite mean value 𝛽, with

𝛽 := lim
𝑇→+∞

1
𝑇

∫ 𝑇

0
𝛽(𝑡) 𝑑𝑡.

Then for every 𝑓 ∈ 𝐿1 [0, +∞),

lim
𝑁→+∞

∫ +∞

0
𝛽(𝑁𝑡) 𝑓 (𝑡) 𝑑𝑡 = 𝛽

∫ +∞

0
𝑓 (𝑡) 𝑑𝑡.

In the sequel, we will assume the input 𝑢 to the modulator is
𝐴𝐶1, or possibly only piecewise 𝐴𝐶1, as defined below. This
(rather modest) requirement is motivated by the fact that we
need to use integration by parts on its derivative, see lemma 2.
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Fig. 1. Example of second-order ΣΔ modulator [2]

Definition 1 (𝐴𝐶 𝑝 functions). A function 𝑓 : 𝐼 ⊂ R → R
is 𝐴𝐶 𝑝 on an interval 𝐼 if it is p-times differentiable and its
pth-order derivative 𝑓 (𝑝) is absolutely continuous. It is piece-
wise 𝐴𝐶 𝑝 if 𝑓 is p-times differentiable and 𝑓 (𝑝) is piecewise
absolutely continuous.

Lemma 2 (Integration by parts for piecewise 𝐴𝐶0 functions).
Consider 𝑓 ∈ 𝐿1 [𝑎, 𝑏] with −∞ ≤ 𝑎 < 𝑏 ≤ +∞, 𝐹 a
primitive of 𝑓 , and 𝑔 a piecewise 𝐴𝐶0 function. Set 𝐼 :=
∪0≤𝑖≤𝑚 [𝑥𝑖 , 𝑥𝑖+1], with 𝑎 = 𝑥0 < 𝑥1 < . . . < 𝑥𝑚 = 𝑏, such
that 𝑔 is 𝐴𝐶0 on each [𝑥𝑖 , 𝑥𝑖+1]; as 𝑔 is piecewise 𝐴𝐶0, it is
differentiable almost everywhere, with 𝑔′ as derivative. Then∫ 𝑏

𝑎
𝑓 (𝜎)𝑔(𝜎) 𝑑𝜎 =

𝑚−1∑︁
𝑖=0

[
𝐹 (𝑥−𝑖+1)𝑔(𝑥−𝑖+1) − 𝐹 (𝑥+𝑖 )𝑔(𝑥+𝑖 )

]
−
∫ 𝑏

𝑎
𝐹 (𝜎)𝑔′(𝜎) 𝑑𝜎.

2.2. Second-order CT-ΣΔΣΔΣΔ ADC

We consider the modulator depicted in figure 1. Its behavior
is described by

𝑇𝑠 ¤𝑥1 (𝑡) = 𝑢
(
𝑡/𝑇pwm

) − 𝜈 (𝑡/𝑇𝑠 )
𝑇𝑠 ¤𝑥2 (𝑡) = 𝑥1 (𝑡)
𝑦(𝑡) = 𝑥2 (𝑡) + 3

2𝑥1 (𝑡).

In the normalized time 𝜏 := 𝑡/𝑇pwm, this becomes

1
𝑁
¤𝑥1 (𝜏) = 𝑢(𝜏) − 𝜈(𝑁𝜏) (1a)

1
𝑁
¤𝑥2 (𝜏) = 𝑥1 (𝜏) (1b)

𝑦(𝜏) = 𝑥2 (𝜏) + 3
2𝑥1 (𝜏) (1c)

We first prove that 𝛽(𝑁𝜏) := 𝑢(𝜏) − 𝜈(𝑁𝜏) admits a zero-
mean primitive 𝛽 (−1) , which also has a zero-mean primitive
𝛽 (−2) . Integrating (1a) from 0 to 𝑡 yields

1
𝑁𝑡

(
𝑥1 (𝑡) − 𝑥1 (0)

)
=

1
𝑡

∫ 𝑡

0
𝑢(𝜎) 𝑑𝜎 − 1

𝑡

∫ 𝑡

0
𝜈(𝑁𝜎) 𝑑𝜎.

The modulator is assumed to be stable, so 𝑥1 is bounded; the
left-hand side of the previous equation vanishes when 𝑡 tends
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Fig. 2. Signals 𝑠1, 𝑠2 and 𝑠3

to infinity, and

lim
𝑡→+∞

1
𝑡

∫ 𝑡

0

[
𝑢(𝜎) − 𝜈(𝑁𝜎)] 𝑑𝜎 = 0

i.e., by definition, 𝛽 = 0. Integrating (1b) from 0 to 𝑡 yields

1
𝑁𝑡

(𝑥2 (𝑡) − 𝑥2 (0)) = 1
𝑡

∫ 𝑡

0
𝑥1 (𝜎) 𝑑𝜎

Since 𝑥2 is bounded as we consider the modulator is stable,

𝑥1 = lim
𝑡→+∞

1
𝑡

∫ 𝑡

0
𝑥1 (𝜎) 𝑑𝜎 = 0.

So 1
𝑁 𝑥1 (𝜏) has zero mean, and by (1a), it is the primitive

of 𝛽(𝑁𝜏). Thus 𝛽 (−1) (𝑁𝜏) := 1
𝑁 𝑥1 (𝜏) is the zero-mean

primitive of 𝛽(𝑁𝜏). Now integrating equation (1b) from 0 to
𝑡 gives

1
𝑁2

(
𝑥2 (𝑡) − 𝑥2 (0)

)
=

∫ 𝑡

0

1
𝑁
𝑥1 (𝜎) 𝑑𝜎 =

∫ 𝑡

0
𝛽 (−1) (𝑁𝜎) 𝑑𝜎

The left-hand side is bounded, so every primitive of 𝛽 (−1) is
bounded as well. Consequently, 𝛽 (−2) , the zero-mean primi-
tive of 𝛽 (−1) is well-defined.

2.3. Filtering process

Theorem 3 provides an estimate for functions 𝛽 such that 𝛽 (−2)

and 𝛽 (−1) with zero mean exist.

Theorem 3. Consider 𝛽 ∈ 𝐿∞ [0, +∞) such that the zero-
mean primitive 𝛽 (−1) of 𝛽 exists, as well as the zero-mean
primitive 𝛽 (−2) of 𝛽 (−1) . Consider as well 𝐾𝑘 a twice differ-
entiable kernel with support in [0, 𝑘], and such that 𝐾 𝑘 (0) =
𝐾 𝑘 (𝑘) = (𝐾𝑘 ) ′(0) = (𝐾 𝑘 ) ′(𝑘) = 0.

If 𝑠 is 𝐴𝐶1, then for 𝑡 ≥ 0,

𝐼 (𝑡) :=
∫
R
𝛽(𝑁𝜎)𝑠(𝜎)𝐾 𝑘

𝑡 (𝜎) 𝑑𝜎 = 𝑜(1/𝑁2),

with 𝐾 𝑘
𝑡 (𝜎) = 𝐾 𝑘 (𝑡 −𝜎). If 𝑠 is only piecewise 𝐴𝐶1, then for

𝑡 ≥ 0, 𝐼 (𝑡) = O(1/𝑁2).
In other words, the instantaneous difference between the

filtered input and the filtered output is in 𝑜(1/𝑁2) under some
regularity assumptions on the kernel 𝐾 𝑘 and the input 𝑢.
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Proof. If 𝑠 is 𝐴𝐶1 (resp. piecewise 𝐴𝐶1), then 𝑓𝑡 : 𝜎 ↦→
𝑠(𝜎)𝐾𝑘

𝑡 (𝜎) is also 𝐴𝐶1 (resp. piecewise 𝐴𝐶1). In any case,
𝑓𝑡 is differentiable with support [𝑡−𝑘, 𝑡] and a basic integration
by parts gives

𝐼 (𝑡) = 1
𝑁

[
𝛽 (−1) (𝑁𝑡) 𝑓𝑡 (𝑡) − 𝛽 (−1) (𝑁 (𝑡 − 𝑘)) 𝑓𝑡 (𝑡 − 𝑘)

]
− 1
𝑁

∫ 𝑡

𝑡−𝑘
𝛽 (−1) (𝑁𝜎) 𝑓 ′𝑡 (𝜎) 𝑑𝜎,

where the first term is zero since 𝑓𝑡 (𝑡) = 𝑓𝑡 (𝑡 − 𝑘) = 0.
We write 𝑡 − 𝑘 = 𝜎0 < . . . < 𝜎𝑚 = 𝑡 the locations of

the loss of regularity of 𝑠. The integration by parts, given by
lemma 2, yields

𝐼 (𝑡) = − 1
𝑁2

𝑚−1∑︁
𝑖=0

[
𝛽 (−2) (𝑁𝜎−

𝑖+1) 𝑓 ′𝑡 (𝜎−
𝑖+1) − 𝛽 (−2) (𝑁𝜎+

𝑖 ) 𝑓 ′𝑡 (𝜎+
𝑖 )
]

+ 1
𝑁2

∫ 𝑡

𝑡−𝑘
𝛽 (−2) (𝑁𝜎) 𝑓 ′′𝑡 (𝜎) 𝑑𝜎. (2)

The limit of the integral term in (2), by lemma 1, is

lim
𝑡→+∞

∫ +∞

0
𝛽 (−2) (𝑁𝜎) 𝑓 ′′𝑡 (𝜎) 𝑑𝜎 = 𝛽 (−2)

∫ +∞

0
𝑓 ′′𝑡 (𝜎) 𝑑𝜎 = 0,

i.e. 1
𝑁 2

∫ 𝑡

𝑡−𝑘 𝛽
(−2) (𝑁𝜎) 𝑓 ′′𝑡 (𝜎) 𝑑𝜎 = 𝑜(1/𝑁2). If 𝑓 is 𝐴𝐶1,

the sum in (2) is zero since 𝑓 ′𝑡 (𝑡) = 𝑓 ′𝑡 (𝑡 − 𝑘); therefore
𝐼 (𝑡) = 𝑜(1/𝑁2). If 𝑓 is only piecewise 𝐴𝐶1, the sum in (2) is
not necessarily zero, and 𝐼 (𝑡) = O(1/𝑁2), which concludes
the proof. �

3. NUMERICAL RESULTS

The estimates obtained in section 2 are now validated on a
numerical example. We consider the modulator of figure 1,
with 𝑇𝑠 = 5 × 10−3 s. The tests are conducted with three
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Fig. 4. Asymptotic behavior of ‖𝐼 ‖2 as a function of 1/𝑁 for
𝑢1 (blue, slope ' 2), 𝑢2 (orange, slope ' 2.3) and 𝑢3 (green,
slope ' 1)

different inputs 𝑢𝑖 (𝑡) := 𝑧(𝑡)𝑠𝑖 (𝑡), with 𝑧(𝑡) := 0.04 cos
(
𝑡

12
) −

0.06 sin
(

𝑡
4𝜋

)
, and

𝑠1 (𝑡) :=
1√

0.03
(
𝜏1[0,0.6] (𝜏) + 1.5(1 − 𝜏)1]0.6,1] (𝜏) − 0.3

)
,

𝑠2 (𝑡) :=
√

2 cos(2𝜋𝜏), 𝑠3 (𝑡) := 1[0,0.5] (𝜏) − 1]0.5,1] (𝜏),

where 𝜏 = mod(𝑡, 𝑇pwm)/𝑇pwm, 𝑇pwm = 1 and 𝑡 ∈ [0, 250].
Illustrated in figure 2, the 𝑠𝑖’s are respectively piecewise 𝐴𝐶1

(𝑠1), 𝐴𝐶1 (𝑠2) and discontinuous (𝑠3), and such that ‖𝑠𝑖 ‖2 =

1. A kernel satisfying the hypotheses of theorem 3 is the
convolution power of the characteristic function 1[0,1] , 𝐾3 :=
1[0,1]∗1[0,1]∗1[0,1] , as supp𝐾3 = [0, 3] and𝐾3 (0) = 𝐾3 (3) =
(𝐾3) ′(0) = (𝐾3) ′(3) = 0 (see for example [14]); this kernel
corresponds to a triple moving average.

Define 𝑧̂ (resp 𝑧̂ΣΔ) the filtered input (resp. output) as

𝑧̂(𝑡) :=
∫ +∞

0
𝑢(𝜎)𝑠(𝜎)𝐾3 (𝑡 − 𝜎) 𝑑𝜎

𝑧̂ΣΔ (𝑡) :=
∫ +∞

0
𝜈(𝜎)𝑠(𝜎)𝐾3 (𝑡 − 𝜎) 𝑑𝜎,

so that 𝐼 (𝑡) = 𝑧̂(𝑡) − 𝑧̂ΣΔ (𝑡). The estimates 𝑧̂ and 𝑧̂ΣΔ are
illustrated in figure 3, as well as their difference 𝐼 (𝑡) = 𝑧̂− 𝑧̂ΣΔ:
𝐼 (𝑡) is as anticipated small, which shows the commutation of
the filtering process with the ΣΔ modulator.

To confirm the asymptotic behavior described by theo-
rem 3, the same simulation is carried out for each input 𝑢𝑖
and different values of 𝑁; for each experiment the 𝐿2-error
‖𝐼 ‖2 := (

∫ 250
1 𝐼 (𝜎)2 𝑑𝜎))1/2 is computed. Figure 4 shows

these behaviors for the three inputs 𝑢𝑖 and validates the ap-
proximation orders. Indeed, when 𝑠 = 𝑠1 is piecewise 𝐴𝐶1,
the approximation order is in O(1/𝑁2); it is slightly better
when 𝑠 = 𝑠1 is 𝐴𝐶1, with ‖𝐼 ‖2 = O(1/𝑁2.3) = 𝑜(1/𝑁2);
when 𝑠 = 𝑠3 is discontinuous, we only have an estimate in
O(1/𝑁).

4. CONCLUSION

Depending on the regularity of the input, and assuming the
modulator is stable, we proved the error between the filtered



output and filtered input decreases at a rate which is 𝑜(1/𝑁2)
if the input is differentiable with a derivative that is abso-
lutely continuous. Such an approximation error is crucial for
some applications, for instance for current ripple extraction in
sensorless control of electric motors.
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