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ABSTRACT
We propose two-stage adaptive pooling schemes, 2-STAP and
2-STAMP, for detecting COVID-19 using real-time reverse
transcription quantitative polymerase chain reaction (RT-
qPCR) test kits. Similar to the Tapestry scheme of Ghosh et
al., the proposed schemes leverage soft information from the
RT-qPCR process about the total viral load in the pool. This
is in contrast to conventional group testing schemes where the
measurements are Boolean. The proposed schemes provide
higher testing throughput than the popularly used Dorfman’s
scheme. They also provide higher testing throughput, sen-
sitivity and specificity than the state-of-the-art non-adaptive
Tapestry scheme. The number of pipetting operations is
lower than the Tapestry scheme, and is higher than that for
the Dorfman’s scheme. The proposed schemes can work with
substantially smaller group sizes than non-adaptive schemes
and are simple to describe. Monte-Carlo simulations using
the statistical model in the work of Ghosh et al. (Tapestry)
show that 10 infected people in a population of size 961 can
be identified with 70.86 tests on the average with a sensi-
tivity of 99.50% and specificity of 99.62%. This is 13.5x,
4.24x, and 1.3x the testing throughput of individual testing,
Dorfman’s testing, and the Tapestry scheme, respectively.

1. INTRODUCTION

There is broad consensus among epidemiologists, economists
and policy makers that wide-scale testing of asymptomatic
patients is the key for reopening the economy. While the ben-
efits of testing are obvious, shortage of testing kits, reagents
and the ensuing low-throughput of individual testing proto-
cols has prevented deployment of wide-scale testing. Group
testing or, pooling is an alternative way to substantially in-
crease the testing throughput.

The idea of group testing was introduced by Dorfman [1]
during World War II for testing soldiers for syphilis without
having to test each soldier individually. Dorfman’s scheme
consists of two stages (or rounds). In the first stage, the set
of people to be tested is split into disjoint pools and a test is
performed on each pool. If a pool tested negative, everyone
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in that pool will be identified as non-infected. Otherwise, if a
pool tested positive, we proceed to the second stage where all
people in a positive pool will be tested individually, and then
identified as infected or non-infected accordingly.

Dorfman-style testing has been implemented in the past
in screening for many diseases including HIV [2], Chlamydia
and Gonorrhea [3], and influenza [4]. For COVID-19, sev-
eral experimental results have confirmed the feasibility of us-
ing Dorfman-style pooling [5], [6], [7], [8]. While Dorfman-
style pooling is easy to implement, it is not optimal. Over
the past 75 years, more sophisticated group testing schemes
that provide higher testing throughput have been designed.
The literature on group testing is too vast to review in de-
tail and an overview of the techniques can be found in [9]
and [10]. Group testing is also related to compressed sensing
and insights from compressed sensing have been used to de-
sign group testing schemes. An important difference between
the two problems is that in group testing, the measurements
are Boolean (test result is either positive or negative) and they
correspond to non-linear functions of the unknown vector.

The vast majority of the work using group testing with
real-time reverse transcription quantitative polymerase chain
reaction (RT-qPCR) has only considered Boolean measure-
ments even though the RT-qPCR process can produce more
fine-grained information (soft information) about the total vi-
ral load in the pool. It is well-known in information the-
ory that such soft information can potentially be used to in-
crease testing throughput substantially. However, group test-
ing schemes that leverage soft information from the RT-qPCR
process remain largely unexplored.

Very recently, Ghosh et al. in [11] developed a statis-
tical model relating the soft information from the RT-qPCR
to the total viral load in the pool. They designed a scheme
called Tapestry, which uses non-adaptive group testing using
Kirkman triples and they considered several decoding algo-
rithms that use the soft information. They showed substantial
gains in testing throughput over Dorfman’s scheme and to the
best of our knowledge, this scheme is the state of the art non-
adaptive group testing scheme that works with RT-qPCR. A
compressed-sensing based non-adaptive scheme that uses the
soft information from RT-qPCR was also recently proposed
in [12] for a different model than the one in [11].
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Here, we propose two simple and effective two-stage
adaptive pooling schemes that use the soft information from
the RT-qPCR process and provide several advantages over
Dorfman’s scheme and the Tapestry scheme. Although adap-
tive schemes have been extensively studied for Boolean mea-
surements, to the best of our knowledge this work is among
the first to design adaptive schemes that leverage the soft
information from RT-qPCR. The proposed algorithms are
referred to as the Two-stage Adaptive Pooling (2-STAP)
and the Two-stage Adaptive Mixed Pooling (2-STAMP)
schemes/algorithms. The proposed schemes provide substan-
tially higher throughput than Dorfman-style testing. Com-
pared to the Tapestry scheme in [11], 2-STAP and 2-STAMP
have higher testing throughput and under the statistical model
developed in [11], for all tested cases, our algorithms have
higher sensitivity and higher specificity. The proposed algo-
rithms require fewer pipetting operations than Tapestry, but
require more pipetting operations than Dorfman’s scheme.
Finally, 2-STAP and 2-STAMP work with much smaller pool
sizes and population sizes than the Tapestry algorithm and
hence, is easy to describe and implement in the lab. Monte-
Carlo simulations using the statistical model in the work of
Ghosh et al. [11], show that 10 infected people in a population
of size 961 can be identified with 70.86 tests on the average
with a sensitivity of 99.50% and specificity of 99.62% with
a pool size of 31. This is 13.5x, 4.24x, and 1.3x the testing
throughput of individual testing, Dorfman’s testing, and the
Tapestry scheme, respectively. Unlike Tapestry, which is a
non-adaptive scheme, 2-STAP and 2-STAMP require storage
of the swab samples and their accessibility for the second
round of testing—similar to that of Dorfman’s scheme.

2. PROBLEM SETUP

Consider a population of n people, labeled 1, . . . , n, that are
to be tested for COVID-19. The vector of viral loads of these
people can be modeled by a signal x = [x1, . . . , xn]T, x j ∈
R≥0, where the jth coordinate of x represents the viral load
of the jth person. If the jth person is infected, then x j is a
nonzero value; otherwise, if the jth person is not infected,
then x j is zero. We assume that every coordinate in x is
nonzero with probability p (or zero with probability 1− p),
independently from other coordinates, and every nonzero co-
ordinate takes a value from R>0 according to a fixed and
known probability distribution px. Note that the sparsity pa-
rameter p, which is known as prevalence in this context, may
or may not be known. We denote by S(x) the support set of
x, i.e., the index set of all nonzero coordinates in x.

The ith binary linear measurement yi of x is defined as
a linear combination of the coordinates x j’s according to
the coefficients ai j’s that are elements from {0, 1}. That
is, yi = ai · x = ∑

n
j=1 ai, jx j, where ai = [ai,1, . . . , ai,n],

ai, j ∈ {0, 1}. Any coordinate x j such that ai, j = 1 is referred
to as an active coordinate in the measurement yi.

Suppose we sense the signal x by making the measure-
ments y1, y2, . . . , and observe noisy versions of y1, y2, . . . ,
denoted by z1, z2, . . . . The ith measurement yi and the noisy
measurement zi are given by yi = ∑

n
j=1 ai, jx j and zi = yiεi,

respectively, where εi’s are independent realizations of a ran-
dom variable ε—taking values from R>0 according to a fixed
and known probability distribution pε. A detailed explanation
about this noise model can be found in [13].

We refer to the process of generating the measurements
of x as sensing, and refer to the process of estimating the
set of infected people (i.e., S(x)) from the noisy measure-
ments as recovery. Given a sensing algorithm and a recovery
algorithm, the average fraction of infected people that have
been identified as non-infected is referred to as the condi-
tional false negative rate (denoted by rk

−), and the average
fraction of non-infected people that have been identified as
infected is referred to as the conditional false positive rate
(denoted by rk

+), where both averages are taken over all pop-
ulations of size n that contain k infected people. (Here, the
term “conditional” reflects that the averages are taken over
all populations with a fixed number of infected people.) The
quantities 1− rk

− and 1− rk
+ are referred to as the conditional

sensitivity and the conditional specificity, respectively.
Our goal is to design a sensing algorithm and a recovery

algorithm such that the total number of measurements is min-
imized while the (conditional) false negative/positive rate re-
main below some target thresholds (e.g., below 1%), or equiv-
alently, the (conditional) sensitivity/specificity remain above
some target thresholds (e.g., above 99%).

3. 2-STAP: A TWO-STAGE ADAPTIVE POOLING

In this section, we propose a two-stage sensing algorithm and
an associated recovery algorithm which we collectively refer
to as the 2-STAP scheme. The first stage of 2-STAP is the
same as that of Dorfman’s scheme. That is, the signal coor-
dinates are pooled into disjoint groups of equal size, and one
measurement is made for each pool where all coordinates in
the pool are active in the measurement. The second stage of
2-STAP, however, differs from that of Dorfman’s scheme in
that a number of measurements are made on not-necessarily-
singleton subsets of coordinates, in each positive pool.

Given a signal x, we partition the n signal coordinates
x1, . . . , xn into q pools of size s = n/q. We denote by xl
the lth pool of coordinates, i.e., xl = [x(l−1)s+1, . . . , xls]

T.
We denote by m′l and m′′l the number of measurements for
the lth pool in the first and second stage, respectively. Also,
we denote by A′l and A′′l the sensing matrix corresponding
to the lth pool in the first and second stage, respectively, and
denote by Al = [(A′l)

T, (A′′l )
T]T the overall sensing matrix

corresponding to the lth pool. A′l is an m′l× s matrix, A′′l is an
m′′l × s matrix, and Al is an ml × s matrix, where ml = m′l +
m′′l . Let m′ = ∑l∈[q] m′l and m′′ = ∑l∈[q] m′′l be the number
of measurements in the first and second stage, respectively.
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3.1. Sensing Algorithm for First Stage

In the following, we denote by 1t or 0t an all-one or an all-
zero row vector of length t, respectively.

In the first stage, for each pool l ∈ [q], we make one
measurement y′l = 1s · xl . That is, m′l = 1 and A′l = 1s.
Thus, the total number of measurements in the first stage is
m′ = q, and the sensing matrix in the first stage, A′, is a
q× n matrix whose lth row is given by [0(l−1)s, 1s, 0(q−l)s].

3.2. Recovery Algorithm for First Stage

Suppose we observe the noisy measurements z′l = y′lε
′
l for

l ∈ [q]. Let L = {l ∈ [q] : z′l = 0}. Assume, without loss of
generality, that L = [q] \ [t] for some 0 ≤ t ≤ q, i.e., the first
t pools are positive, and the last q− t pools are negative.

3.3. Sensing Algorithm for Second Stage

For any l ∈ [t], we need to make additional measurements
for the lth pool in the second stage, because such a pool con-
tains at least one nonzero coordinate. For any l ∈ [q] \ [t],
the lth pool contains only zero coordinates, and we do not
need to make any additional measurements for any such pool
in the second stage. Intuitively, the larger is m′′l , the smaller
will be the (conditional) false negative/positive rate, but the
larger will be the average number of measurements. Since it
is not known how to theoretically optimize m′′l , we resort to a
heuristic approach to choose m′′l . We present two variants of
the 2-STAP scheme: 2-STAP-I and 2-STAP-II. In 2-STAP-I,
for all positive pools, the number of measurements and the
sensing scheme in the second stage will be the same, regard-
less of the observed measurements for these pools in the first
stage. In 2-STAP-II, for each positive pool, the number of
measurements and the sensing scheme in the second stage
will be chosen based on the number of nonzero coordinates
in xl , denoted by kl . Since kl may not be known a priori, we
compute an estimate k̂l of kl as follows.

Let p(k) be the probability that xl has k nonzero coor-
dinates and s − k zero coordinates, and let p(z′l |k) be the
probability density of z′l = y′lε

′
l where y′l = 1s · xl given

that xl has k nonzero coordinates and s− k zero coordinates.
If the sparsity parameter p is known, for any k, p(k) and
p(z′l |k) can be computed exactly or approximately (depend-
ing on the distribution of values of the nonzero coordinates
and the noise distribution). Given a noisy measurement z′l , a
maximum-a-posteriori (MAP) estimate of kl is then given by
k̂l = argmaxk p(k)p(z′l |k). If p is not known, we compute a
maximum-likelihood (ML) estimate p̂ = 1− (1− t/q)1/s of
p, and use p̂, instead of p, to first compute p(k) and p(z′l |k)
for any k, and then compute a MAP estimate k̂l of kl .

Given m′′l , the optimal design of A′′l is not known. In
this work, for each l ∈ [t], we randomly choose A′′l from the
ensemble of all m′′l × s binary matrices (with distinct rows
and columns) with a pre-specified row/column weight profile.

The weight profile must be chosen to obtain a good trade-off
between the computational complexity of sensing/recovery
algorithms and the false negative/positive rates. The weight
profiles used in our simulations can be found in [13].

3.4. Recovery Algorithm for Second Stage

For each l ∈ [t], suppose the noisy measurement vector z′′l =

y′′l ε
′′
l is observed, where y′′l = A′′l xl . Let zl = [z′l , (z

′′
l )

T]T

be the overall noisy measurement vector corresponding to the
lth pool. We will estimate the support set Sl of xl using a
recovery algorithm that consists of three steps: COMP de-
coding, MAP decoding, and list generation.

Combinatorial Orthogonal Matching Pursuit (COMP)
Decoding: First, we use the COMP algorithm to find a (su-
perset) estimate Ŝl of Sl from zl given Al . (A detailed
explanation of the COMP algorithm can be found in [13].)
Let Il = {i ∈ [ml ] : (zl)i = 0}, where (zl)i denotes the
ith coordinate in zl . We denote by x∗l the sub-vector of xl

restricted to the coordinates indexed by Ŝl; denote by A∗l the
sub-matrix of Al restricted to the rows indexed by [ml ] \ Il
and the columns indexed by Ŝl; and denote by z∗l the sub-
vector of zl restricted to the coordinates indexed by [ml ] \ Il .
Let m∗l = |Il | and s∗l = |Ŝl |. In the next step, we will
estimate the support set S∗l of x∗l from z∗l , given A∗l .

MAP Decoding: Given the estimate k̂l of kl (the number
of nonzero coordinates in x∗l ), let kmin = max{k̂l − 1, 1}
and kmax = min{k̂l + 1, s∗l }. For any kmin ≤ k ≤ kmax,
and for any k-subset T of Ŝl , we compute

f (T) = max
x̂∗l : support set of x̂∗l is T

p(x̂∗l |z
∗
l )

by finding x̂∗l with support set T such that the conditional
probability density of x̂∗l given z∗l is maximum. Maximiz-
ing p(x̂∗l |z

∗
l ) is equivalent to maximizing p(x̂∗l )p(z∗l |x̂

∗
l ) =

∏ j∈[s∗l ]
p((x̂∗l ) j)∏i∈[m∗l ]

p((z∗l )i|x̂∗l ), where (x̂∗l ) j denotes
the jth coordinate in x̂∗l . For any x̂∗l , p((x̂∗l ) j) = (1 −
p)δ((x̂∗l ) j) + p × px((x̂∗l ) j), where δ(x) is the Dirac delta
function, and p((z∗l )i|x̂∗l ) = pε((z∗l )i/((A∗l )i x̂∗l )), where
(A∗l )i denotes the ith row of A∗l . Thus, if the sparsity pa-
rameter p is known, f (T) (for any T) can be approximated
by solving a (potentially non-linear and/or non-convex) opti-
mization problem (depending on the distributions px and pε)
numerically. (In our simulations, the “fmincon” function in
MATLAB was used to compute an approximation of f (T).)
If p is not known, f (T) can be approximated similarly, except
using the ML estimate p̂ everywhere, instead of p.

List Generation: Let f∗ = maxT f (T) where the max-
imization is over all T defined as above. We find all T, say
T1, T2, . . . , T`, such that f (T) ≥ α f∗ for a given 0 < α ≤ 1,
and use T1 ∪ T2 ∪ . . . ∪ T` as the estimate of the support set
S∗l of x∗l . Note that the larger is the threshold α, the smaller
will be the (conditional) average false negative rate and the
larger will be the (conditional) average false positive rate.
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Table 1. Performance results for the Tapestry scheme [11] and the proposed 2-STAP and 2-STAMP schemes

k mmin mmax mstd mave Pooling Scheme
Conditional
Sensitivity

Conditional
Specificity

5
93 93 0 93

Tapestry + COMP + NN-LASSO [11]
Tapestry + COMP + NN-OMP [11]

Tapestry + COMP + SBL [11]

1.00
1.00
1.00

1.00
1.00
1.00

49 61 2.94 59.08 2-STAP-I 1.00 1.00
47 57 2.26 54.55 2-STAP-II 1.00 1.00
46 55 2.25 52.56 2-STAMP 1.00 1.00

10
93 93 0 93

Tapestry + COMP + NN-LASSO [11]
Tapestry + COMP + NN-OMP [11]

Tapestry + COMP + SBL [11]

0.98
0.96
0.99

0.99
1.00
0.99

73 91 5.54 82.96 2-STAP-I 1.00 1.00
66 81 4.18 74.98 2-STAP-II 0.99 1.00
63 76 3.74 70.86 2-STAMP 1.00 1.00

15
93 93 0 93

Tapestry + COMP + NN-LASSO [11]
Tapestry + COMP + NN-OMP [11]

Tapestry + COMP + SBL [11]

0.94
0.86
0.98

0.97
0.99
0.97

85 121 7.31 103.30 2-STAP-I 0.98 0.99
78 106 5.65 92.66 2-STAP-II 0.98 0.99
74 99 5.02 86.85 2-STAMP 0.99 0.99

4. 2-STAMP: A TWO-STAGE ADAPTIVE MIXED
POOLING

In this section, we propose a generalization of the 2-STAP
scheme, termed the 2-STAMP scheme. The first stage of the
2-STAMP scheme is the same as that in the 2-STAP scheme,
but in the second stage we make measurements on mixtures of
positive pools together, instead of making measurements on
separate pools only. The details of the sensing and recovery
algorithms in the second stage of the 2-STAMP scheme are
omitted due to the lack of space, and can be found in [13]. In
the following, we briefly explain the main idea behind mixing
pools in the second stage of the 2-STAMP scheme.

Consider two positive pools that we expect to contain a
relatively small number of nonzero coordinates. By mixing
these pools together and sensing the mixed pool altogether,
we can save a few measurements while maintaining the im-
plementation/computational complexity of the scheme afford-
able. The rest of the pools that are expected to contain a rel-
atively large number of nonzero coordinates will be sensed
individually, so as to avoid the scheme to become too com-
plex implementation-wise or computationally.

5. SIMULATION RESULTS

Here, we present our simulation results. As a case study, we
have considered a population of n = 961 people to be tested
for COVID-19 and assumed that the prevalence is p = 0.01.
For both the proposed schemes, we have considered pooling
the population into q = 31 pools, each of size s = n/q = 31,
in the first stage. Three different values of number of infected
people in the population (k), namely k ∈ {5, 10, 15}, have
been considered. For every k, we performed 100 Monte-Carlo
simulations, where the statistical models used for viral load
and measurement noise were obtained from [11].

Table 1 summarizes our results for the proposed 2-STAP
(both variants) and 2-STAMP schemes and the results for the
Tapestry scheme for the same problem model (i.e., the same
population size and the same viral load and noise distribu-
tions). In this table, mmin, mmax, mstd, and mave represent
the minimum, maximum, standard deviation, and the average
of the number of measurements used in 100 simulations, re-
spectively. The sensitivity and specificity results are rounded
to two decimal places, for fair comparison with the results
reported in [11]. More detailed simulation results for the pro-
posed schemes can be found in [13].

Comparing the results of Tapestry and the two variants
of 2-STAP in Table 1, it can be seen that for k ∈ {5, 10},
2-STAP-I requires smaller number of measurements on the
average for the same (or even higher) sensitivity and speci-
ficity. For k = 15, 2-STAP-I uses about 10 more measure-
ments than Tapestry on the average, but it achieves a sub-
stantially higher specificity by about 2% for almost the same
sensitivity. It can also be seen that for all k ∈ {5, 10, 15},
2-STAP-II can provide higher sensitivity and higher speci-
ficity than Tapestry with even smaller (average) number of
measurements. These improvements in the performance are
mainly due to the fact that 2-STAP is an adaptive scheme (al-
though with a very small degree of adaptivity, i.e., using only
one round of feedback), whereas Tapestry is non-adaptive.

As can be seen in Table 1, 2-STAMP can achieve a sen-
sitivity and a specificity higher than those attainable with 2-
STAP-I and 2-STAP-II, with even smaller average number of
measurements. The advantage of 2-STAMP comes from the
saving in the number of measurements in the second stage.
In particular, in 2-STAMP, mixing small groups of pools with
small number of infected people gives rise to an opportunity
for making a smaller number of measurements on the mixed
super-pool without compensating the overall accuracy.
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