
ADAPTIVE QUANTIZATION OF MODEL UPDATES
FOR COMMUNICATION-EFFICIENT FEDERATED LEARNING

Divyansh Jhunjhunwala? Advait Gadhikar? Gauri Joshi? Yonina C. Eldar†

? Carnegie Mellon University, Pittsburgh, USA, {djhunjhu, agadhika, gaurij}@andrew.cmu.edu
† Weizmann Institute of Science, Rehovot, Israel, {yonina.eldar@weizmann.ac.il}

ABSTRACT

Communication of model updates between client nodes
and the central aggregating server is a major bottleneck in
federated learning, especially in bandwidth-limited settings
and high-dimensional models. Gradient quantization is an ef-
fective way of reducing the number of bits required to com-
municate each model update, albeit at the cost of having a
higher error floor due to the higher variance of the stochastic
gradients. In this work, we propose an adaptive quantization
strategy called AdaQuantFL that aims to achieve communi-
cation efficiency as well as a low error floor by changing the
number of quantization levels during the course of training.
Experiments on training deep neural networks show that our
method can converge in much fewer communicated bits as
compared to fixed quantization level setups, with little or no
impact on training and test accuracy.

Index Terms— distributed optimization, federated learn-
ing, adaptive quantization

1. INTRODUCTION

Distributed machine learning training, which was typically
done in the data center setting, is rapidly transitioning to the
Federated Learning (FL) setting [1] [2], where data is spread
across a large number of mobile client devices. Due to privacy
concerns, the FL clients perform on-device training and only
share model updates with a central server. A major challenge
in FL is the communication bottleneck due to the limited up-
link bandwidth available to the clients.

Recent work tackling this problem has taken two major
directions. The first approach reduces the load on the com-
munication channel by allowing each client to perform mul-
tiple local updates [1, 3, 4, 5, 6], thus reducing the com-
munication frequency between clients and server. However,
this optimization may not be enough due to the large size
of model updates for high dimensional models, like neural
networks. The second approach deals with this problem by
using compression methods to reduce the size of the model
update being communicated by the clients at an update step
[7, 8, 9, 10, 11, 12, 13]. However, such compression meth-
ods usually add to the error floor of the training objective as

they increase the variance of the updates. Thus, one needs to
carefully choose the number of quantization levels in order to
strike the best error-communication trade-off.

In this work we propose AdaQuantFL, a strategy to auto-
matically adapt the number of quantization levels used to rep-
resent a model update and achieve a low error floor as well as
communication efficiency. The key idea behind our approach
is that we bound the convergence of training error in terms
of the number of bits communicated, unlike traditional ap-
proaches which bound error with respect to number of train-
ing rounds (see Fig. 1). We use this convergence analysis to
adapt the number of quantization levels during training based
on the current training loss. Our approach can be considered
orthogonal to other proposed methods of adaptive compres-
sion such as varying the spacing between quantization levels
[14] and reusing outdated gradients [15]. In [16], the authors
propose an adaptive method for tuning the number of local up-
dates or the communication frequency. AdaQuantFL is a sim-
ilar strategy, but for tuning the number of bits communicated
per round. Our experiments on distributed training of deep
neural networks verify that AdaQuantFL is able to achieve a
given target training loss using much fewer bits compared to
fixed quantization methods.

2. SYSTEM MODEL

Consider a system of n clients and a central aggregating
server. Each client i has a dataset Di of size mi consisting
of labeled samples ξ(i)j = (x

(i)
j , y

(i)
j ) for j = 1, . . . ,mi.

The goal is to train a common global model, represented by
the parameter vector w ∈ Rd, by minimizing the following
objective function:

min
w∈Rd

f(w) =

n∑
i=1

pifi(w) =

n∑
i=1

pi
1

mi

mi∑
j=1

`(w; ξ
(i)
j )

 ,
(1)

where pi = mi∑n
i=1mi

is the fraction of data held at the i-th
client and fi(w) is the empirical risk at the i-th client for a
possibly non-convex loss function `(w; ξ

(i)
j ).
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Fig. 1: Viewing training in terms of bits communicated.

Quantized Local SGD. The model is trained iteratively using
the local stochastic gradient descent (local SGD) algorithm,
proposed in [6, 3]. In local SGD, the entire training process
is divided into rounds consisting of τ local updates at each
client. At the beginning of the k-th round, each client reads
the current global model wk from the central server and up-
dates it by performing τ local SGD steps for t = 0, · · · , τ −1
as follows:

w
(i)
k,t+1 = w

(i)
k,t − ηgi(w

(i)
k,t, ξ

(i)), (2)

where w(i)
k,0 = wk and gi(w

(i)
k,t, ξ

(i)) is the stochastic gradient
computed using a mini-batch ξ(i) sampled uniformly at ran-
dom from the i-th client local dataset Di. After completing τ
steps of local SGD, each client sends its update for the k-th
round denoted by ∆w

(i)
k = w

(i)
k,τ−w

(i)
k,0, to the central server.

In order to save on bits communicated over the bandwidth-
limited uplink channel, each client only sends a quantized
update Q(∆w

(i)
k ), where Q(·) represents a stochastic quan-

tization operator over Rd. Once the server has received the
quantized updates from all the clients, the global model is up-
dated as follows.

wk+1 = wk +

n∑
i=1

piQ(∆w
(i)
k ). (3)

Stochastic Uniform Quantizer. In this work we consider the
commonly used [7, 17, 18] stochastic uniform quantization
operator Qs(w), which is parameterized by the number of
quantization levels s ∈ N = {1, 2, . . . }. For each dimension
of a d-dimensional parameter vector w = [w1, . . . , wd],

Qs(wi) = ‖w‖2sign(wi)ζi(w, s), (4)

where ζi(w, s) is a random variable given as,

ζi(w, s) =

{
l+1
s with probability |wi|

‖w‖2 s− l
l
s otherwise.

(5)

Here, l ∈ {0, 1, 2, ..s − 1} is an integer such that |wi|
‖w‖2 ∈

[ ls ,
l+1
s ). For w = 0, we define Qs(w) = 0.

Given Qs(wi), we need 1 bit to represent sign(wi) and
dlog2(s + 1)e bits to represent ζi(w, s). The scalar ‖w‖2
is usually represented with full precision, which we assume
to be 32 bits. Thus, the number of bits communicated by a
client to the central server per round, which we denote by Cs,
is given by

Cs = ddlog2(s+ 1)e+ d+ 32. (6)

It can be shown from the work of [7, 18] that whileQs(w) re-
mains unbiased for all s, i.e., E[Qs(w)|w] = w, the variance
of Qs(w) decreases with s because of the following variance
upper bound:

E[‖Qs(w)−w‖22|w] ≤ d

s2
‖w‖22. (7)

From (6) and (7), we see that varying s results in a trade-
off between the total number of bits communicatedCs and the
variance upper bound – Cs increases with s while the vari-
ance upper bound in (7) decreases with s. Building on this
observation, in the next section, we analyze the effect of s on
the error convergence speed and use it to design a strategy to
adapt s during the course of training.

3. TRADE-OFF BETWEEN ERROR AND THE
NUMBER OF BITS COMMUNICATED

The motivation behind adapting the number of quantization
levels s during training can be understood through the illus-
tration in Fig. 1. In the left plot, we see that a smaller s, that is,
coarser quantization, results in worse convergence of training
loss versus the number of training rounds. However, a smaller
s reduces the number of bits Cs communicated per round. To
account for this communication reduction, we change the x-
axis to the number of bits communicated in the right plot of
Fig. 1. This plot reveals that smaller s enables us to perform
more rounds for the same number of bits communicated, lead-
ing to a faster initial drop in training loss. The intuition be-
hind our adaptive algorithm is to start with a small s and then
gradually increase s as training progresses to reach a lower er-
ror floor. To formalize this, we provide below a convergence
bound on the training loss versus the number of bits commu-
nicated for any given s.

Convergence Bound in terms of Error versus Number of
Bits Communicated. For a non-convex objective function
f(w), it is common to look at the expected squared norm
of the gradient of the objective function as the error metric
we want to bound [19]. We analyze this quantity under the
following standard assumptions.

Assumption 1. The stochastic quantization operator Q(.) is
unbiased and its variance is at most some positive constant
q times the squared `2 norm of its argument, i.e. ∀ w ∈ Rd,
E[Q(w)|w] = w and E[‖Q(w)−w‖22|w] ≤ q‖w‖22.



Assumption 2. The local objective functions fi areL−smooth,
i.e. ∀ w,w′ ∈ Rd, ‖∇fi(w)−∇fi(w′)‖2 ≤ L‖w −w′‖2.
Assumption 3. The stochastic gradients computed at the
clients are unbiased and their variance is bounded, that is, for
all w ∈ Rd, E[gi(w, ξ

(i))] = ∇fi(w) and E[‖gi(w, ξ(i)) −
∇fi(w)‖22] ≤ σ2.

Assumption 4. Each client i has a dataset Di of m samples
drawn independently from the same distribution (i.i.d data).

Under these assumptions, the authors in [17] recently
derived a convergence bound for the FL setup described
in Section 2 for non-convex `(·; ·). We use this result for
AdaQuantFL, however in practice our algorithm can also be
successfully applied without Assumption 4 (non-i.i.d data) as
seen in our experiments Section 5. Also while the existing
result [17] studies the error convergence with respect to the
number of training rounds, we bound the same error in terms
of number of bits communicated, defined as follows.

Definition 1 (Number of Bits Communicated, B). The total
number of bits that have been communicated by a client to the
central server until a given time instant is denoted by B.

Since all clients participate in a training round and follow
the same quantization protocol, B is same for all clients at
any instant. We also note that the stochastic uniform quantizer
having s quantization levels, satisfies Assumption 1 with q =
d
s2 [7, 18]. Now using this definition of B and our earlier
definition of Cs in (6) we get the following theorem:

Theorem 1. Under Assumptions 1-4, take Q(.) to be the
stochastic uniform quantizer with s quantization levels. If the
learning rate satisfies 1−ηL(1+ dτ

s2n )−2η2L2τ(τ −1) ≥ 0,
then we have the following error upper bound in terms of B:

Cs
Bτ

(B/Cs)−1∑
k=0

τ−1∑
t=0

E[‖f(w̄k,t)‖22] ≤

A1 log2(4s) +
A2

s2
+A3. (8)

Here, w̄k,t = 1
n

∑n
i=1 w

(i)
k,t denotes the averaged model

across all clients at each step, and

A1 =
2(f(w0)− f∗)d

ηBτ
, A2 =

ηLdσ2

n
,

A3 =
η2σ2(τ − 1)L2(n+ 1)

n
+
ηLσ2

n
+A1

d+ 32

d
, (9)

and w0 is a random point of initialization and f∗ is the mini-
mum value of our objective.

The proof of Theorem 1 is deferred to Appendix A. This
error bound allows us to see the trade-off between coarse and
aggressive quantization seen in Section 3, for different values
of s. As we decrease s, the value of the first term in our
error bound (A1 log2(4s)) decreases but it also adds to the
variance of our quantized updates which increases the second
term (A2/s

2).

4. PROPOSED ADAQUANTFL STRATEGY

Our proposed algorithm aims at adaptively changing the num-
ber of quantization levels s in the stochastic uniform quantizer
such that the error upper bound in Theorem 1 is minimized at
every value B. To do so, we discretize the entire training pro-
cess into uniform communication intervals, where in each in-
terval we communicate B0 bits (see Fig. 1). We now discuss
how to find the optimal s for each such interval.

Finding optimal s for each communication interval. We
propose selecting an s at any B (assuming w0 as the point
of initialization) by setting the derivative of our error upper
bound in (8) to zero. Doing so, we get a closed form solution
of an optimal s as:

s∗ =

√
η2Lσ2τB loge(2)

n(f(w0)− f∗)
. (10)

Now at the beginning of the k-th communication interval
clients can be viewed as restarting training at a new initializa-
tion point w0 = wk. Using (10) we see that the optimal s for
communicating the next B0 bits is given by,

s∗k =

√
η2Lσ2τB0 loge(2)

n(f(wk)− f∗)
(11)

As f(wk) becomes smaller the value of s∗k increases which
supports our intuition that we should increase s as training
progresses. However, in practice, parameters such as L, σ2

and f∗ are unknown. Hence, in order to obtain a practically
usable schedule for s∗k, we assume f∗ = 0 and divide s∗k by
s∗0 to get the approximate adaptive rule:

s∗k ≈

√
f(w0)

f(wk)
s∗0. (12)

The value of s∗0 can be found via grid search (we found s∗0 = 2
to be a good choice in our experiments).
Variable Learning Rate. Our analysis so far assumed the
existence of a fixed learning rate η. In practice, we may want
to decrease the learning rate as training progresses for bet-
ter convergence. By extending the above analysis, we get an
adaptive schedule of s for a given learning rate schedule:

AdaQuantFL: s∗k ≈

√
η2kf(w0)

η20f(wk)
s∗0. (13)

Here, η0 is the initial learning rate and ηk is the learning rate
in the k-th interval. In terms of the number of bits used to
represent each element in the model update, in the k-th inter-
val, AdaQuantFL uses b∗k = dlog2(s∗k + 1)e bits (excluding
the sign bit).
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(c) ResNet-18 with fixed LR, non-i.i.d data

Fig. 2: AdaQuantFL on ResNet-18 requires a fewer bits to reach a lower loss threshold, in (a) AdaQuantFL reaches a loss of
0.02 in 0.3Gb while the 2-bit method takes 1.8Gb. Here b∗k = dlog2(s∗k + 1)e (defined in Section 4).
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(a) CNN with fixed LR, i.i.d data
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(b) CNN with variable LR, i.i.d data
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(c) CNN with fixed LR, non-i.i.d data

Fig. 3: For the Vanilla CNN, AdaQuantFL is able to achieve the lowest error floor of 0.02 for the non-i.i.d data distribution,
while other methods converge at a higher error floor. Here b∗k = dlog2(s∗k + 1)e (defined in Section 4).

5. EXPERIMENTAL RESULTS

We evaluate the performance of AdaQuantFL against fixed
quantization schemes using b = {2, 4, 8, 16} bits respectively
to represent each element of the model update (excluding the
sign bit) using the stochastic uniform quantizer. The perfor-
mance is measured on classification of the CIFAR-10 [20]
and Fashion MNIST [21] datasets using ResNet-18 [22] and
a Vanilla CNN architecture [1] (referred as CNN here on) re-
spectively. For all our experiments we set the number of local
updates to be τ = 10, η = 0.1 and train our algorithm over
4 clients for the ResNet-18 and 8 clients for the CNN. For
the variable learning rate setting, we reduce the learning rate
by a factor of 0.9 every 100 training rounds. We run our ex-
periments on both i.i.d and non-i.i.d distributions of data over
clients. Our experimental results verify that AdaQuantFL is

able to reach an error floor using much fewer bits in most
cases as seen in Fig. 2 and Fig. 3. Additional details and fig-
ures, including test accuracy plots can be found in Appendix
D.

6. CONCLUSION

In this paper we present AdaQuantFL, a strategy to adapt the
number of quantization levels used to represent compressed
model updates in federated learning. AdaQuantFL is based
on a rigorous error vs bits convergence analysis. Our experi-
ments show that AdaQuantFL requires fewer bits to converge
during training. A natural extension of AdaQuantFL would
be using other quantizers such as the stochastic rotated quan-
tizer [18] and the universal vector quantizer [9].
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APPENDIX
A. PROOF OF THEOREM 1

We first adapt the following result from [17] which states under Assumptions 1-4, for sufficiently small η such that,

1− ηL(1 +
qτ

n
)− 2η2L2τ(τ − 1) ≥ 0

we have after K rounds of training,

1

Kτ

K−1∑
k=0

τ−1∑
t=0

E[‖f(w̄k,t)‖22] ≤ 2(f(w0)− f∗)
ηKτ

+ ηL(1 + q)
σ2

n
+ η2

σ2

n
(n+ 1)(τ − 1)L2

where w̄k,t = 1
n

∑n
i=1 w

(i)
k,t denotes the averaged model across all clients at each step. We note that the above result holds for

any stochastic quantization operator Q() that satisfies Assumption 1 with arbitrary q.
We assume that the stochastic uniform quantizer Qs(w) satisfies Assumption 1 with q = qs. Now by our definition of B, we
can write K = B

Cs
(assuming B mod Cs = 0). Doing so, we get,

Cs
Bτ

(B/Cs)−1∑
k=0

τ−1∑
t=0

E[‖f(w̄k,t)‖22] ≤ 2(f(w0)− f∗)Cs
ηBτ

+ ηL(1 + qs)
σ2

n
+ η2

σ2

n
(n+ 1)(τ − 1)L2

Now substituting Cs = ddlog2(s+ 1)e+ d+ 32 (using (6)) and qs = d
s2 (using (7)) in RHS of the last inequality we get,

Cs
Bτ

(B/Cs)−1∑
k=0

τ−1∑
t=0

E[‖f(w̄k,t)‖22] ≤ A1dlog2(s+ 1)e+
A2

s2
+A3

≤ A1 log2(4s) +
A2

s2
+A3

where the last inequality follows from the fact that for s ≥ 1 we have dlog2(s+ 1)e ≤ log2(4s). The constant A1, A2 and A3

are defined as follows,

A1 =
2(f(w0)− f∗)d

ηBτ
, A2 =

ηLdσ2

n
,

A3 =
η2σ2(τ − 1)L2(n+ 1)

n
+
ηLσ2

n
+A1

d+ 32

d
, (14)

This completes the proof for Theorem 1.

B. PROOF OF EQN. (10)

Let F (s) be the objective which we want to minimize. We have,

F (s) = A1 log2(4s) +
A2

s2
+A3

Now taking the first derivative we have,

∇F (s) =
Â1

s
− 2A2

s3

where Â1 = A1 log2(e).
Upon setting ∇F (s) = 0 we get s =

√
2A2

Â1
as one of the solutions. We see that for s ∈ (0,

√
2A2

Â1
), F (s) is decreasing as

∇F (s) < 0 and for s ∈ (
√

2A2

Â1
,∞), F (s) is increasing as ∇F (s) > 0. This implies we get a global minima of F (s) at

s =
√

2A2

Â1
. Substituting back the values of Â1 and A2 we get,

s∗ =

√
η2Lσ2Bτ loge(2)

n(f(w0)− f∗)



C. CONVERGENCE GUARANTEE FOR ADAQUANTFL

We now provide a convergence guarantee for AdaQuantFL. In order to do so, we first state the following theorem.

Theorem 2 (Adaptive Quantization and Variable Learning Rate Error Bound). Assuming K to be the total number of training
rounds and ηk, sk to be the values of the learning rate and the quantization level in the k-th training round respectively, if the
following condition is satisfied,

∀ k ∈ {0, · · · ,K − 1} : 1− ηkL
(

1 +
dτ

ns2k

)
− 2η2L2τ(τ − 1) ≥ 0

we have under Assumptions 1-4,

E

[∑K−1
k=0 ηk

∑τ−1
t=0 ‖f(wk,t)‖22∑K−1
k=0 ηk

]

≤ O

(
1∑K−1

k=0 ηk

)
+O

(∑K−1
k=0 η2k∑K−1
k=0 η2k

)
+O

(∑K−1
k=0 η3k∑K−1
k=0 ηk

)
+O

(∑K−1
k=0 η2k(d/s2k)∑K−1

k=0 ηk

)
. (15)

Proof:
We note here that the subscript k refers to the index of the communication round, in contrast to Section 4 where it referred to
the index of the communication interval.
We also note that for the k-th training round the stochastic uniform quantizer with sk levels satisfies Assumption 1 with q = d

s2k
.

We now use the following result from [17] (modified for the stochastic uniform quantizer) which states that under Assumptions
1-4, for the k-th training round if we have,

1− ηkL(1 +
dτ

s2kn
)− 2η2L2τ(τ − 1) ≥ 0 (16)

then,

E[f(wk+1)] ≤ E[f(wk)]− 1

2
ηk

τ−1∑
t=0

E[‖∇f(wk,t)‖22] +
η2kLτσ

2

2n
+
η2k(d/s2k)Lτσ2

2n
+
η3kσ

2(n+ 1)τ(τ − 1)L2

2n
(17)

We now assume (16) holds for all k ∈ {0, · · · ,K − 1}. Summing over all rounds k ∈ {0, · · · ,K − 1} and after minor
rearranging of terms we get,

E

[
1

2

K−1∑
k=0

ηk

τ−1∑
t=0

‖∇f(wk,t)‖22

]
≤ f(w0)−f∗+

Lτσ2
∑K−1
k=0 η2k

2n
+
Lτσ2

∑K−1
k=0 η2k(d/s2k)

2n
+
σ2(n+ 1)τ(τ − 1)L2

∑K−1
k=0 η3k

2n
.

(18)

Dividing both sides by
∑K−1
k=0 ηk

2
we have,

E

[∑K−1
k=0 ηk

∑τ−1
t=0 ‖∇f(wk,t)‖22∑K−1
k=0 ηk

]

≤ 2(f(w0)− f∗)∑K−1
k=0 ηk

+
Lτσ2

∑K−1
k=0 η2k

n
∑K−1
k=0 ηk

+
σ2(n+ 1)τ(τ − 1)L2

∑K−1
k=0 η3k

n
∑K−1
k=0 ηk

+
Lτσ2

∑K−1
k=0 η2k(d/s2k)

n
∑K−1
k=0 ηk

(19)

= O

(
1∑K−1

k=0 ηk

)
+O

(∑K−1
k=0 η2k∑K−1
k=0 η2k

)
+O

(∑K−1
k=0 η3k∑K−1
k=0 ηk

)
+O

(∑K−1
k=0 η2k(d/s2k)∑K−1

k=0 ηk

)
. (20)

This completes the proof for Theorem 2.



C.1. Proof of Convergence:

We assume the following conditions hold true,

lim
K→∞

K−1∑
k=0

ηk →∞, lim
K→∞

K−1∑
k=0

η2k <∞, lim
K→∞

K−1∑
k=0

η3k <∞ (21)

Now a sufficient condition for the upper bound in (16) to converge to zero as K →∞ is,

lim
K→∞

K−1∑
k=0

η2k(d/s2k) <∞ (22)

Since the number of quantization levels sk will be greater than or equal to 1 for any training round, we have

lim
K→∞

K−1∑
k=0

η2k(d/s2k) ≤ d lim
K→∞

K−1∑
k=0

η2k <∞. (23)

This implies as K →∞ we have,

E

[∑K−1
k=0 ηk

∑τ−1
t=0 ‖∇f(wk,t)‖22∑K−1
k=0 ηk

]
→ 0 (24)

This completes the proof of convergence.

D. ADDITIONAL RESULTS

In this section, we provide further details of our experiments and some additional results. Figures 4 and 5 show the test accu-
racies for the experiments on the ResNet-18 and CNN that we trained on FMNIST and CIFAR-10 respectively. AdaQuantFL
is able to achieve a test accuracy of 69.12% for the ResNet-18 experiment shown in Fig. 4(a), whereas the 16-bit quantization
method achieves 69.52%. For the CNN experiment shown in Fig. 5(a), AdaQuantFL reaches a test accuracy of 91.15%, while
the 16-bit method reaches 91.01%.
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Fig. 4: Test Accuracy vs the number of bits communicated for ResNet-18 on CIFAR-10

For the non i.i.d settings, each dataset was sorted according to the target class labels and then partitioned equally among clients.
In all experiments we fix B0 = 16d where d is the dimension of our parameter vector. The CNN architecture is inspired
from [1], and consists of 2 convolutional layers with 32 and 64 channels, each followed by a max-pool and ReLU layer. The
convolutional layers are followed by a linear layer of 512 with a ReLU activation and then the output softmax layer. All
experiments were implemented in PyTorch [23] with a ‘gloo’ distributed backend on a NVIDIA TitanX GPU.
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Fig. 5: Test Accuracy vs the number of bits communicated for Vanilla CNN

We observe that in the case of a variable learning rate, AdaQuantFL does well for the ResNet-18 experiment shown in Fig. 2(b)
but cannot do better than the 4-bit setting for the CNN experiment shown in Fig. 3 (b). As observed from (13), a decreasing
learning rate schedule tries to reduce s∗k while the drop in training loss does the opposite. Hence, we recommend using a
conservative learning rate schedule to maximize the advantage of using AdaQuantFL.
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