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ABSTRACT

Federated learning (FL) allows to train a massive amount of
data privately due to its decentralized structure. Stochastic
gradient descent (SGD) is commonly used for FL due to its
good empirical performance, but sensitive user information
can still be inferred from weight updates shared during FL
iterations. We consider Gaussian mechanisms to preserve lo-
cal differential privacy (LDP) of user data in the FL model
with SGD. The trade-offs between user privacy, global utility,
and transmission rate are proved by defining appropriate met-
rics for FL with LDP. Compared to existing results, the query
sensitivity used in LDP is defined as a variable and a tighter
privacy accounting method is applied. The proposed utility
bound allows heterogeneous parameters over all users. Our
bounds characterize how much utility decreases and trans-
mission rate increases if a stronger privacy regime is targeted.
Furthermore, given a target privacy level, our results guaran-
tee a significantly larger utility and a smaller transmission rate
as compared to existing privacy accounting methods.

Index Terms— federated learning (FL), local differential
privacy (LDP), stochastic gradient descent (SGD), Gaussian
randomization, composition theorems.

1. INTRODUCTION

Differential privacy (DP) is widely used due to its strong pri-
vacy guarantees. DP tackles the privacy leakage about single
data belonging to an individual in a dataset when some in-
formation from the dataset is publicly available. Common
DP mechanisms add an independent random noise compo-
nent to available data to provide privacy, which can be pro-
vided by using local sources of randomness such as physical
unclonable functions (PUFs) [1]. Applied to machine learn-
ing (ML), preserving DP of a training dataset is studied, e.g.,
in [2–6]. Among various ML models, federated learning (FL)
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is a promising option due to its decentralized structure [7–9].
Since user data are not collected by an aggregator in FL, lo-
cal differential privacy (LDP) [10] of an FL model is stud-
ied in the literature to guarantee individual user privacy, e.g.,
for a wireless multiple-access channel [11], by using split-
ting/shuffling [12], dimension selection [13], with experimen-
tal evaluations [14], and with a communication-efficient al-
gorithm [15]. Due to the iterative process in ML algorithms,
the violation of LDP after multiple rounds of weight updates
needs to be addressed. It can be done by using privacy ac-
counting methods of DP such as the sequential composition
theorem (SC) [16], the advanced composition theorem (AC1)
[5, 17], an improved advanced composition theorem (AC2)
[18], and the moments accountant (MA) [3]. Unlike the com-
position theorems that directly compose the DP parameters,
the MA approach circumvents the composition by converting
DP into Rényi-differential privacy (RDP), whose composition
has a simple linear form. The MA is shown to outperform the
AC1 and the AC2 when a Gaussian noise mechanism is used
[3]. The MA is further improved by using the optimal conver-
sion from parameters of RDP to DP [19]. An FL model with
stochastic gradient descent (FedSGD) with LDP is not yet in-
vestigated with a comprehensive theoretical analysis that con-
siders privacy, utility, and communication jointly. This paper
focuses on trade-offs between privacy, utility, and transmis-
sion rate, where LDP is provided to the FedSGD model by
using a Gaussian mechanism. In [11], the trade-offs between
those three metrics are analyzed for the non-stochastic gra-
dient descent algorithm for learning. Most of related studies
consider the SC [12–14], the AC1 [11], and the MA [15] for
privacy accounting, all of which can be improved by using the
privacy accounting method proposed in [19].

One main contribution of this paper is the privacy analysis
for the FedSGD model by using an enhanced MA suggested
in [19]. Furthermore, we propose a generic utility metric that
considers the query sensitivity as a varying parameter, unlike
in the literature, and we provide a lower bound on the utility
metric. Our utility bound considers system heterogeneity by
allowing users to have distinct dataset sizes, data sampling
probabilities, and target privacy levels. The transmission rate
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is considered as the differential entropy of the noisy gradients
for lossless communications. We illustrate significant gains
from our bounds in terms of the required noise power, the
utility metric, and the transmission rate as compared to the
existing methods.

2. SYSTEM MODEL

2.1. Federated SGD (FedSGD)

Consider that the FedSGD method consists of a central server
and K users. The K users are assumed to have their own
neural networks with the same structure. At each time step t
such that t ∈ {1, 2, . . . , T}, the server distributes the aggre-
gated weight values w(t) ∈ Rd to all users and the K users’
networks are initialized with those weight values. Then, user
k randomly samples a dataset J (t)

k from its whole dataset Dk
with probability qk and calculates the gradient g(t)

k from J (t)
k .

In particular, we use a loss function `(w(t), x) defined for
each data sample x and given weights w(t), and we represent
the local (per user) loss Lk(w(t),J (t)

k ) ∈ R as

Lk(w(t),J (t)
k ) :=

1

|J (t)
k |

∑
x∈J (t)

k

`(w(t), x) (1)

where |J (t)
k | denotes the size of a set J (t)

k . Suppose the dif-
ference between the true loss and an empirical loss can be
made negligible by using a sufficiently large dataset. Each
user’s local gradient g(t)

k is then represented as

g
(t)
k (J (t)

k )=∇wLk(w(t),J (t)
k )=

1

|J (t)
k |

∑
x∈J (t)

k

∇w`(w
(t), x)

where ∇w represents the gradient along the weight vector
w = (w1, w2, . . . , wd), i.e.,∇w = ( ∂

∂w1
, ∂
∂w2

, . . . , ∂
∂wd

).
Let ‖x‖ denote the `2-norm of a d-dimensional vector

x = (x1, x2, . . . , xd), i.e., ‖x‖ =
√∑d

i=1 x
2
i . Assume

that G is the maximum `2-norm value of all possible gradi-
ents for any given weight vector wk and sampled dataset Jk,
i.e., G = supwk∈Rd,Jk∈Dk

E[‖gk(Jk)‖]. Each user clips its
local gradient by a clipping threshold value C ∈ (0, G] as

ḡ
(t)
k = g

(t)
k

/
max

{
1,
∥∥∥g(t)

k

∥∥∥ /C}. (2)

The clipped gradients {ḡ(t)
k }Kk=1 are sent to the server and ag-

gregated to obtain the updated weight vector w(t+1). Suppose
we use a learning rate ηt, then the weight update is

w(t+1) = w(t) − ηt ·
K∑
k=1

|J (t)
k |
|J (t)|

ḡ
(t)
k (3)

where J (t) = ∪Kk=1J
(t)
k . The global loss of the FL system is

L(w(t),J (t)) =
∑

x∈J (t)

1

|J (t)|
`(w(t), x)

=

K∑
k=1

|J (t)
k |
|J (t)|

Lk(w(t),J (t)
k ) (4)

which can be obtained by taking a weighted sum of the lo-
cal losses defined in (1). Thus, the weighted average of local
gradients is equivalent to the gradient of the global loss cal-
culated with the whole sampled data, i.e., we have

∇wL(w(t),J (t)) =
1

|J (t)|
∑

x∈J (t)

∇w`(w
(t), x)

=

K∑
k=1

|J (t)
k |
|J (t)|

∑
x∈J (t)

k

1

|J (t)
k |
∇w`(w

(t), x)

=

K∑
k=1

|J (t)
k |
|J (t)|

g
(t)
k (w(t),J (t)

k ). (5)

This implies that such an FL model results in the same weight
update as the centralized model, so one global loss optimiza-
tion problem can be divided into multiple local problems [7].

2.2. Local differential privacy (LDP)

FL guarantees a certain level of privacy since the users do
not directly send their data to the central server publicly [7].
However, a certain amount of information can still be inferred
from the shared information of the local networks, so a pri-
vacy mechanism is still necessary to protect user data. We
consider LDP to guarantee individual user privacy. A mech-
anismMk is (εk, δk)−LDP w.r.t. the user k’s dataset Dk, if
any two neighboring datasets D ∼ D′ ⊆ Dk satisfy for any
S ⊆ range(Mk) that

Pr [Mk,D(gk) ∈ S]

≤ eεk · Pr [Mk,D′(gk) ∈ S] + δk. (6)

We assume that the local gradients g
(t)
k are clipped and then

LDP is satisfied by adding a Gaussian noise component Zk.
Suppose the Gaussian noise variance of each dimension is
proportional to C2, i.e., Zk ∼ N (0, C2σ2

kId) for some σ2
k >

0, where Id is the d×d identity matrix. Denote the noisy gra-
dients as g̃(t)

k , so the Gaussian LDP mechanism can be repre-
sented as g̃(t)

k =Mk(ḡ
(t)
k ) = ḡ

(t)
k +Zk ∼ N (ḡ

(t)
k , C2σ2

kId).
With such an LDP mechanism, the weight update equation (3)
can be used by replacing ḡ

(t)
k with g̃

(t)
k for all t = 1, 2, . . . , T .

3. TRADE-OFFS BETWEEN PRIVACY, UTILITY,
AND TRANSMISSION RATE

We next characterize the Gaussian noise variance required to
guarantee a target LDP level after T rounds of weight updates



for FL with LDP, i.e., T -fold composition. Furthermore, we
analyze the effects of the Gaussian noise on the utility and
the transmission rate, given a target LDP level. With an ex-
ample we illustrate that a tighter privacy composition bound
can yield a significantly larger utility and smaller transmission
rate for the same target LDP level.

3.1. Theoretical Analysis

We define utility U(T ) after T iterations as the multiplicative
inverse of the convergence rate, i.e., we have

U(T ) =
1

E[L(w(T ),J (T ))]− L(w∗)
(7)

where w∗ is the optimal weight vector that minimizes the
global loss, i.e., w∗ = arg minw∈RdL(w,∪Kk=1Dk). This
utility metric is used instead of accuracy to track the learning
performance analytically. Consider that the transmission of a
noisy gradient is lossless, and define the user k’s transmission
rate Rtr,k by the differential entropy of its noisy gradient, i.e.,
Rtr,k = h(g̃

(t)
k ) for t = 1, 2, . . . , T . The transmission rate is

measured by a differential entropy term for simplicity, which
can be extended by allowing distortion. We remark that the
transmission rate can be further reduced with quantization, as
suggested, e.g., in [20].

The following theorem provides the trade-offs between
LDP parameters, utility, and the transmission rate for the as-
sumed FL model; see Appendix A for its proof.
Theorem 1. User k’s Gaussian mechanismMk, where k =
1, 2, . . . ,K, with noise variance of each dimension C2σ2

k is
(εk, δk)-LDP after T rounds of weight updates for

εk > 2 log(δ−1
k ) max(δk,

1

σ2
k ln( 1

qkσk
)
), (8)

qk <
1

16σk
, and σk ≥ 1 (9)

if we have

σ2
k≥

4q2
kT

1− qk

[
2

ε2k
log

1

δk
+

1

εk
− 2

ε2k

(
log(2 log δ−1

k )+1−log εk

)]
+O

(
log2(log δ−1

k )

log δ−1
k

)
. (10)

For a µ-smooth and λ-strongly convex loss L(w,S) with re-
spect to a d-dimensional weight vector w ∈ Rd given an ar-
bitrary subset S of D such that S ⊆ D and for a learning
rate ηt = G

Cλt , the utility of the noisy FedSGD model after T
iterations is bounded as

U(T ) ≥ λ2T

µG2
min

{
1

2
,

1

1 + dσ2

}
(11)

where σ2 =
∑K

k=1(|Dk|qkσk)2

(
∑K

k=1 |Dk|qk)2
, and G is the maximum value

of the gradient. The transmission rate Rtr,k of user k with the
noise power of each dimension C2σ2

k can be bounded as

Rtr,k ≤ d log(2πeC2σk/
√
d). (12)

Table 1: Noise variance lower bounds used for comparisons.
Composition Lower Bound of

Method σ2
k

Proposed (10)

MA [3]
4q2
kT

1− qk

( 2

ε2k
log

1

δk
+

1

εk
+O(log δ−1

k )
)

AC1 [5, 17] (13)

AC2 [18]
4q2
k

1− qk
8T log(e+ εk

δk
)

ε2k

Proof Sketch. The noise variance bound (10) follows by
extending [19, Theorem 5], where a generalized RDP-DP
conversion is applied, to allow random sampling from each
dataset with probability qk and a query sensitivity of 2C by
using the proof of [3, Lemma 3]. The utility bound (11)
is obtained by extending [21, Lemma 1] with an additional
assumption of noisy SGD algorithm on the FL model. In par-
ticular, we introduce an adaptive learning rate ηt that depends
on the clipping threshold C to bound the utility when the gra-
dients are aggregated from K users, where the noisy gradient
of each user is obtained by randomly sampling the data, clip-
ping the gradients, and adding Gaussian noise to the clipped
gradients. It is followed by the transmission rate bound de-
rived from the upper bound on the differential entropy when
the random vector’s covariance is upper-bounded.

Theorem 1 illustrates the trade-offs between three met-
rics. If, e.g., the noise variance σ2 is increased to guaran-
tee stronger privacy, the utility is lower bounded by a smaller
value and the transmission rate upper bound increases. For a
sufficiently small δk, the term in big O notation in (10) be-
comes negligible as compared to the other terms. In that case,
the noise variance σ2 is increasing linearly with T . With this
choice of noise variance σ2 ∝ T , the denominator of the util-
ity bound (11) increases linearly with T . Thus, the utility
bound converges to a constant even if T tends to infinity. This
implies that with a Gaussian noise mechanism used for LDP,
the utility lower bound can be finite even when T tends to in-
finity, and the achievement of the minimum loss L(w∗) is not
guaranteed. For this case, the maximum difference between
the achieved loss and the optimal loss, which is not necessar-
ily zero, is upper bounded.

3.2. Local Privacy Accounting Method Comparisons

We compare the bounds in Theorem 1 with the results ob-
tained from the MA, AC1, and AC2. We do not consider
the SC for comparison since the AC1 is known to outperform
the SC method. Table 1 lists the noise variance bounds of
those composition methods when they are applied to the as-
sumed model with a data sampling probability qk and a clip-
ping threshold C > 0, i.e., the query sensitivity is 2C.

We obtain the noise bound with the AC1 by using its im-
plicit solution. Consider that each weight update round is
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(c) εk vs. the upper bound on the transmission rate Rtr,k.

Fig. 1: The noise variance σ2
k and utility U(T ) lower bounds

vs. εk for T = 7×104, 7×105 and with parameters δk =
10−4, qk = 10−3 for all k= 1, 2, . . . , 100, d= 104, µ= 1, λ=
1, C=1, and G=5.

(ε0, δ0)−LDP that results in (εk, δk)−LDP after T iterations,

which satisfies εk =
√

2T ln(δ̃−1)ε0 + Tε0(eε0 − 1) and

δk = Tδ0 + δ̃ by [5, Theorem 3.20]. We obtain (ε0, δ0) from
given (εk, δk) by choosing δ̃ = 10−5 and plug it into the noise
bound of a Gaussian mechanism from [5, Theorem 3.22] as

σ2
k ≥

4q2
k

1− qk
2

ε0
log

(
4

5δ0

)
. (13)

The factor 4q2k
1−qk of the noise bounds results from using the

query sensitivity of 2C and randomly sampled datasets with
probability qk. For evaluations, we assume a homogeneous
system consisting of K = 100 users with the same parame-
ters qk, εk, δk, and σk. The aggregated noise variance σ2 is
then obtained as σ2 = 1

Kσ
2
k. We choose the minimum pos-

sible σ2
k for each method and calculate the utility bound by

plugging the noise variance σ2 into (11) with δk=10−4, qk=
10−3, d = 104, µ=1, λ = 1, C = 1, and G=5.

The noise bound, the resulting utility, and the transmis-
sion rate are illustrated in Fig. 1 for parameters that sat-
isfy corresponding constraints of each composition method
for the number of iterations T of 7×104 and 7×105. The ob-
tained noise variance bounds are valid in the region such that
σ2
k < 1/(16qk)2 = 3906.25, represented by the black dashed

lines in Fig. 1a. This condition also limits the utility bounds
at {0.0072, 0.0717} for T = {7, 70}×104, respectively, and
the transmission rate bound at 9.69×103 (bits/symbol), which
correspond to the black dashed lines in Fig. 1b and Fig.
1c, respectively. The noise bounds in Fig. 1a decrease to
1 and then stay constant as the target privacy level εk in-
creases. These conditions are from [3, Lemma 3], which are
required to measure the effect of randomly sampled data on
the noise variance. The utility bound and the transmission
rate bound might be improved if the noise variance bound
does not require the condition σk ≥ 1. We remark that ε val-
ues shown in [19, Fig. 3] seem to be unfortunately wrong;
furthermore, [19, Theorem 5] seems to lack a condition on ε
that follows from [3, Lemma 3], which imposes a condition
on α used in [19, Eq. (80)]. The violation of this condition
makes the range of T values considered in [19, Fig. 3] invalid.

The proposed method requires the smallest noise vari-
ance, followed by MA, AC2, and AC1, for the same εk for
every T considered in Fig. 1a. The required noise variance
of every method increases with T because more iterations de-
teriorate individual privacy and a larger amount of noise is
necessary to meet the same target privacy. Fig. 1b shows the
utility bounds obtained with σ2

k values from Fig. 1a. The
utility bound curves stay constant after they reach their max-
imum values. The maximum value of the utility bound in-
creases with T as the weight vector gradually converges to
the optimum at every iteration even if the noise variance also
increases. Thus, the utility bound is not degraded by the noise
variance if the target privacy εk is large enough and the noise
variance σ2

k is small enough for homogeneous users. If we
target εk = 0.3 after T = 7×104 iterations, for example, the
guaranteed utility bounds are at 25.83, 10.79, 0.22, and 1.40
when the proposed bound, MA, AC1, and AC2 are used, re-
spectively. The corresponding transmission rate bounds are at
{5.81, 6.44, 9.26, 7.91}×103 (bits/symbol). Hence, a signifi-
cantly larger utility bound and a smaller transmission rate can
be achieved for the same privacy constraint εk with a tighter
privacy composition bound.

4. CONCLUSION

Trade-offs between privacy, utility, and transmission rate of
a FedSGD model with a Gaussian LDP mechanism were
proved. We provided a noise variance bound that guarantees
a given LDP level after multiple rounds of weight updates
by using a tight composition theorem. The proposed utility
bound allows distinct parameters for all users and allows the
gradients to be clipped and noisy. The noise variance re-
quired is illustrated to be significantly smaller than the ones
obtained by using existing privacy composition methods MA,
AC1, and AC2. Similarly, our bounds lead to a significantly
larger utility and a smaller transmission rate. In future work,
we will illustrate gains from our bounds as compared to
existing methods for large available datasets used for FL.
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A. PROOF OF THEOREM 1

Clipping gradient norms with C makes the query sensitivity
to be at most 2C because for arbitrary clipped gradients ḡ1

and ḡ2 the following inequality holds:

max
∀ḡ1,ḡ2

√∑
i∈[d]

(ḡ1,i−ḡ2,i)2 =max
∀ḡ1

√∑
i∈[d]

(ḡ1,i−(−ḡ1,i))2≤2C.

The proof of (10) follows mainly from [19, Theorem 5],
which provides the lower bound of noise variance when the
query sensitivity is 1 and the same dataset is repeatedly used
at every iteration. [19, Theorem 5] is obtained by using MA
through the following steps:



• Compute γ(α) such that the Gaussian mechanism is
(α, γ(α))−RDP for a given α.

• Apply the linear composition of RDP [3], i.e., the
model is (α, Tγ(α))−RDP after T iterations.

• Convert (α, Tγ(α))−RDP into (ε(α, δ), δ)−DP for a
given δ.

As compared to [19, Theorem 5], Theorem 1 considers a
randomly sampled dataset due to the SGD and also considers
a fixed but general query sensitivity 2C. We first obtain the
γk(αk) parameter for the Gaussian mechanism of user k for
an arbitrary integer αk when the dataset is obtained by apply-
ing random sampling with probability qk. We then obtain the
noise variance σ2

k bound by using MA. To avoid confusion,
we denote the RDP cost of [19, Theorem 5] by γ0(α) = αk

2σ2
k

and that of Theorem 1 by γk(αk). We obtain γk(αk) by using
the same method used in the proof of [3, Lemma 3].

Suppose we use a Gaussian mechanism Mk(Dk) =
ḡk(Dk) + N (0, C2σ2

kId) for a given dataset Dk and the
corresponding clipped gradient ḡk. Consider a neighboring
dataset D′k to Dk that only differs by a single data Dn, i.e.,
Dk = D′k ∪ {Dn} without loss of generality. Instead of
considering the worst case that ḡk(Dk) = −ḡk(D′k) and
‖ḡk(Dk)‖ = C, we assume ḡk(D′k) = 0 and ḡk(Dk) =
2Ce1 and analyze the Rényi divergence of two perturbed gra-
dients without loss of generality. This assumption makes the
problem one-dimensional because the neighboring datasets
Dk and D′k result in the gradients that have different ele-
ments only in the first dimension. Let µ0 denote the PDF of
N (0, C2σ2

k) and µ1 denote the PDF of N (2C,C2σ2
k). The

noisy gradients of the Gaussian mechanism can be repre-
sented in one dimension as

Mk(D′k) ∼ µ0 (14)
Mk(Dk) ∼ µ := (1− qk)µ0 + qkµ1. (15)

To observe γk for given µ, µ0, and an integer αk, we start
with the definition of RDP:

1

αk
Ez∼µ[(µ(z)/µ0(z))αk ] ≤ γk (16)

1

αk
Ez∼µ0

[(µ0(z)/µ(z))αk ] ≤ γk. (17)

Two inequalities can be shown by the same method, so we
show only the second inequality here. Changing the probabil-
ity that the expectation is taken over from µ0 to µ and using
the binomial expansion, we have

Ez∼µ0 [(µ0(z)/µ(z))αk ] = Ez∼µ[(µ0(z)/µ(z))αk+1]

= Ez∼µ[(1 + (µ0(z)− µ(z))/µ(z))αk+1]

=

αk+1∑
i=0

(
αk + 1

i

)
Ez∼µ[((µ0(z)− µ(z))/µ(z))i]. (18)

The first term of the summation coming from i = 0 simply
becomes 1. The second term when i = 1 is 0 by simple
calculus. The third term with i = 2 can be bounded as

Ez∼µ[((µ0(z)− µ(z))/µ(z))2]

= Ez∼µ[((qkµ0(z)− qkµ1(z))/µ(z))2]

= q2
k

∫ ∞
−∞

(µ0(z)− µ1(z))2/µ(z)dz

≤ q2
k

1− qk

∫ ∞
−∞

(µ0(z)− µ1(z))2/µ0(z)dz

=
q2
k

1− qk
Ez∼µ0

[((µ0(z)− µ1(z))/µ0(z))2]. (19)

The expected value of the above term can be further simplified
and bounded as below:

Ez∼µ0
[((µ0(z)− µ1(z))/µ0(z))2]

= Ez∼µ0

[(
1− exp

(
−z2 + 4Cz − 4C2 + z2

2C2σ2
k

))2
]

= 1−2Ez∼µ0

[
exp

(
4Cz−4C2

2C2σ2
k

)]
+Ez∼µ0

[
exp

(
8Cz−8C2

2C2σ2
k

)]
= 1−2+exp

(
8C2

2C2σ2
k

)
= exp

(
4

σ2
k

)
−1=4/σ2

k+O
(

1

σ4
k

)
. (20)

The third term with i = 2 eventually becomes(
αk + 1

2

)
Ez∼µ

[(
µ0(z)− µ(z)

µ(z)

)2
]

≤ 4αk(αk + 1)q2
k

2(1− qk)σ2
k

+O
(
q2
kα

2
k

σ4
k

)
. (21)

[3, Lemma 3] shows that the other terms, i.e., (i ≥ 3)

terms, are upper bounded by O
(
q3
kα

3
k

σ3
k

)
. Thus, γk(αk) =

2q2
k

(1− qk)σ2
k

(αk+1)+O(
q3
kα

2
k

σ3
k

). Note that using γk(αk) with

σ2
k is equivalent to using γ0(αk) with (1−qk)αk

4q2k(αk+1)
σ2
k because

γk(αk) =
2q2
k(αk + 1)

(1− qk)σ2
k

=
αk

2
(

(1−qk)αk

4q2k(αk+1)
σ2
k

) . (22)

In accordance with an assumption that αk is optimally chosen
to be αk = 2 log(δ−1

k )/εk from [19, Theorem 5], we obtain
αk/(αk+1) ≈ 1 when δk is sufficiently small. We can obtain
the following inequality by directly using [19, Theorem 5] for



the noise variance associated with γk(αk):

1− qk
4q2
k

σ2
k ≈

(1− qk)αk
4q2
k(αk + 1)

σ2
k

≥ 2T

ε2k
log

1

δk
+
T

εk
− 2T

ε2k

(
log(2 log δ−1

k )+1−log εk
)

+O

(
log2(log δ−1

k )

log δ−1
k

)
. (23)

Dividing both hand sides by the coefficient of σ2
k completes

the proof of (10).
Due to the assumption that L is λ-strongly convex, for all

w,w′ ∈ Rd and any subgradient g of L at w we have

L(w′)− L(w) ≥ 〈g,w′ −w〉+
λ

2
‖w′ −w‖2 (24)

so that we obtain

〈g(t)
k ,w(t) −w∗〉 = −〈g(t)

k ,w∗ −w(t)〉

≥ L(w(t))− L(w∗) +
λ

2

∥∥∥w(t) −w∗
∥∥∥2

≥ 0 (25)

and

L(w(t))− L(w∗) ≥ 〈g∗,w(t) −w∗〉+
λ

2

∥∥∥w(t) −w∗
∥∥∥2

≥ λ

2

∥∥∥w(t) −w∗
∥∥∥2

, (26)

where g∗ is the gradient at the optimum point w∗ calculated
with an arbitrary subset S of D. The µ-smoothness condition
gives

E[L(w(t))− L(w∗)] ≤ E
[
µ

2

∥∥∥w(t) −w∗
∥∥∥2
]
. (27)

We want to next observe how the weight vector w(t) con-
verges to its optimum w∗ by bounding the expected mean
square error E

[∥∥w(t) −w∗
∥∥2
]
. We first obtain a recurrence

formula for
∥∥w(t) −w∗

∥∥2
by using the weight update equa-

tion (3) with ḡ
(t)
k replaced by g̃

(t)
k as follows:

∥∥∥w(t+1) −w∗
∥∥∥2

=

∥∥∥∥∥w(t) −w∗ − ηt ·
K∑
k=1

|J (t)
k |
|J (t)|

g̃
(t)
k

∥∥∥∥∥
2

=
∥∥∥w(t) −w∗

∥∥∥2

+η2
t

∥∥∥∥∥
K∑
k=1

|J (t)
k |
|J (t)|

g̃
(t)
k

∥∥∥∥∥
2

− 2ηt〈w(t) −w∗,

K∑
k=1

|J (t)
k |
|J (t)|

g̃
(t)
k 〉. (28)

First, the second term can be decomposed into

η2
t

∥∥∥∥∥
K∑
k=1

|J (t)
k |
|J (t)|

g̃
(t)
k

∥∥∥∥∥
2

= η2
t

∥∥∥∥∥
K∑
k=1

|J (t)
k |
|J (t)|

(ḡ
(t)
k + Zk)

∥∥∥∥∥
2

= η2
t

∥∥∥∥∥
K∑
k=1

|J (t)
k |
|J (t)|

ḡ
(t)
k + Z

∥∥∥∥∥
2

(29)

where Z =
∑K
k=1

|J (t)
k |
|J (t)|Zk. The square of the `2-norm can

be expanded as

η2
t

∥∥∥∥∥
K∑
k=1

|J (t)
k |
|J (t)|

ḡ
(t)
k

∥∥∥∥∥
2

+2η2
t

K∑
k=1

|J (t)
k |
|J (t)|

〈ḡ(t),Z〉+ η2
t ‖Z‖

2
.

It is straightforward to show that Z ∼ N (0, C2σ2Id) where

σ2 =
∑K

k=1(|Dk|qkσk)2

(
∑K

k=1 |Dk|qk)2
. The expected value of the second

term can be obtained as follows.

E

η2
t

∥∥∥∥∥
K∑
k=1

|J (t)
k |
|J (t)|

ḡ
(t)
k

∥∥∥∥∥
2
+ E


���

���
���

�:0

2η2
t

K∑
k=1

|J (t)
k |
|J (t)|

〈ḡ,Z〉


+ E[η2

t ‖Z‖
2
]

≤ η2
tC

2 + dη2
tC

2σ2 = η2
tC

2(1 + dσ2) (30)

which follows because every element of Z is a zero-mean
Gaussian, and taking the inner product is a linear transfor-
mation. Next, the third term of (28) can be decomposed into
the inner products that can be locally calculated as

− 2ηt〈w(t) −w∗,
K∑
k=1

|J (t)
k |
|J (t)|

g̃
(t)
k 〉

= −2ηt

K∑
k=1

|J (t)
k |
|J (t)|

〈w(t) −w∗, g̃
(t)
k 〉. (31)

We bound the expected value of each summand in (31) as

E

[
|J (t)
k |
|J (t)|

〈w(t) −w∗, g̃
(t)
k 〉

]

=E

[
|J (t)
k |
|J (t)|

〈w(t)−w∗, ḡ(t)
k 〉

]
+
��

���
���

���:
0

E

[
|J (t)
k |
|J (t)|

〈w(t)−w∗,Zk〉

]

≥ E

[
|J (t)
k |
|J (t)|

C

G
〈w(t) −w∗,g

(t)
k 〉

]
. (32)



And then we bound the expected value of (31) as follows:

− 2ηtE

[
〈w(t) −w∗,

K∑
k=1

|J (t)
k |
|J (t)|

g̃
(t)
k 〉

]

≤ −2ηt

K∑
k=1

E

[
|J (t)
k |
|J (t)|

C

G
〈w(t) −w∗,g

(t)
k 〉

]
(a)

≤ −2ηt
C

G
E
[
L(w(t))− L(w∗) +

λ

2

∥∥∥w(t) −w∗
∥∥∥2
]

(b)

≤ −2ηt
C

G
E
[
λ
∥∥∥w(t) −w∗

∥∥∥2
]

(33)

where (a) follows by (25) and (b) follows by (26). Using (30)
and (33), we can bound the expected value of (28) as

E
[∥∥∥w(t+1) −w∗

∥∥∥2
]

≤E
[∥∥∥w(t) −w∗

∥∥∥2
]

+η2
tC

2(1 + dσ2)

− 2ηt
C

G
λE
[∥∥∥w(t) −w∗

∥∥∥2
]

=(1−2ηt
C

G
λ)E

[∥∥∥w(t)−w∗
∥∥∥2
]

+η2
tC

2(1+dσ2). (34)

Assume a learning rate of ηt = G
Cλt , so we have

E
[∥∥∥w(t+1) −w∗

∥∥∥2
]

≤ (1− 2

t
)E
[∥∥∥w(t) −w∗

∥∥∥2
]

+
G2(1 + dσ2)

λ2t2
. (35)

One can infer the following explicit bound for each term for
some a1 > 0 from the above recurrence relation:

E
[∥∥∥w(t) −w∗

∥∥∥2
]
≤ a1

G2

λ2t
. (36)

According to [21, Lemma 2], the first term E
[∥∥w(1) −w∗

∥∥2
]

can be bounded as E
[∥∥w(1) −w∗

∥∥2
]
≤ 4G2

λ2 . Thus, it is
necessary to have a1 ≥ 4. The next term with t = 2 can
be bounded by using the recurrence relation and the non-
negativity of the mean square error (MSE) as

E
[∥∥∥w(2) −w∗

∥∥∥2
]
≤ −E

[∥∥∥w(1) −w∗
∥∥∥2
]

+
G2(1 + dσ2)

λ2

≤ 2G2(1 + dσ2)

2λ2
. (37)

To include this term, we should satisfy a1 ≥ 2(1 + dσ2).
Similarly, the next term with t = 3 can be bounded as

E
[∥∥∥w(3) −w∗

∥∥∥2
]
≤ G2(1 + dσ2)

4λ2

≤
3
4G

2(1 + dσ2)

3λ2
. (38)

Thus, we should satisfy also a1 ≥ 3
4 (1 + dσ2). For all terms

with t ≥ 3 the coefficient (1− 2/t) is always positive, so the
bound can be shown by mathematical induction. Assume that
(36) is true for t = τ ≥ 3. By the recurrence formula, we can
show that (36) also holds for t = τ + 1 as follows.

E
[∥∥∥w(τ+1) −w∗

∥∥∥2
]
≤ (1− 2

τ
)a1

G2

λ2τ
+
G2(1 + dσ2)

λ2τ2

= a1
G2

λ2(τ + 1)

1

τ2
((τ + 1)(τ − 2) +

τ + 1

a1
(1 + dσ2))

=a1
G2

λ2(τ + 1)
(1− 1

τ
(1− 1 + dσ2

a1
)− 1

τ2
(2− 1 + dσ2

a1
))

(a)

≤ a1
G2

λ2(τ + 1)
(39)

where (a) holds if a1 > 1 + dσ2. Thus, (36) holds for every
time instance if a1 ≥ max{4, 2(1 + dσ2)}, i.e., we have

E
[∥∥∥w(t) −w∗

∥∥∥2
]
≤ max{2, 1 + dσ2}2G2

λ2t
. (40)

Using this bound, a lower bound of the convergence rate can
be obtained with the µ-smoothness condition (27) as follows:

E[L(w(t))− L(w∗)] ≤ µ

2
E
[∥∥∥w(t) −w∗

∥∥∥2
]

(41)

≤ max{2, 1 + dσ2}µG
2

λ2t
. (42)

The lower bound of (11) is obtained by taking the inverse of
the convergence rate bound in each case.

Consider next the transmission rate bound, for which we
denote the noisy gradient as a sum of the clipped gradient and
noise to exploit their boundedness and statistical properties,
respectively, as follows:

h(g̃
(t)
k ) = h(ḡ

(t)
k + Zk) ≤ h(ḡ

(t)
k ) + h(Zk) (43)

such that

h(ḡ
(t)
k ) ≤1

2
log det(2πeK)=

1

2
log
(

(2πe)d det(K)
)

(44)

where K is the covariance matrix of ḡ(t)
k and det(·) represents

the determinant of a matrix. Denote the element of K in i-th
row and j-th column as Ki,j for all i, j = 1, 2, . . . , d. The
determinant of the covariance matrix can be bounded as

det(K)
(a)

≤
d∏
i=1

Ki,i =

d∏
i=1

Var
(
ḡ

(t)
k,i

)
≤

d∏
i=1

E
[
(ḡ

(t)
k,i)

2
]

(45)

where (a) follows from the Hadamard’s inequality since a
covariance matrix is positive-semidefinite. We can further
bound det(K) by using the boundedness of the `2-norm of the
clipped gradient, i.e.,

∑d
i=1 E[(ḡ

(t)
k,i)

2] = E
[∑d

i=1(ḡ
(t)
k,i)

2
]
≤



E[C2] = C2. Using the inequality of arithmetic and geomet-
ric means, the right hand side of (45) can be bounded as

d∏
i=1

E
[
(ḡ

(t)
k,i)

2
]
≤

(
1

d

d∑
i=1

E
[
(ḡ

(t)
k,i)

2
])d
≤
(
C2

d

)d
. (46)

Combining (44)-(46), we obtain

h(ḡ
(t)
k ) ≤ d

2
log
(2πeC2

d

)
. (47)

Furthermore, the differential entropy of the noise Zk ∼
N (0, C2σ2

kI) is

h(Zk) =
1

2
log det(2πeC2σ2

kId) =
d

2
log(2πeC2σ2

k). (48)

Combining (43), (47), and (48), the proof of (12) follows.
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