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ABSTRACT

In this paper, we consider the problem of acoustic source localization

by acoustic sensor networks (ASNs) using a promising, learning-

based technique that adapts to the acoustic environment. In particu-

lar, we look at the scenario when a node in the ASN is displaced from

its position during training. As the mismatch between the ASN used

for learning the localization model and the one after a node displace-

ment leads to erroneous position estimates, a displacement has to be

detected and the displaced nodes need to be identified. We propose

a method that considers the disparity in position estimates made by

leave-one-node-out (LONO) sub-networks and uses a Markov ran-

dom field (MRF) framework to infer the probability of each LONO

position estimate being aligned, misaligned or unreliable while ac-

counting for the noise inherent to the estimator. This probabilistic

approach is advantageous over naı̈ve detection methods, as it out-

puts a normalized value that encapsulates conditional information

provided by each LONO sub-network on whether the reading is in

misalignment with the overall network. Experimental results con-

firm that the performance of the proposed method is consistent in

identifying compromised nodes in various acoustic conditions.

Index Terms— Acoustic manifold learning, failure detection,

Gaussian process, Markov random fields, sound source localization.

1. INTRODUCTION

Sound source localization is a topic that has been covered in great

detail and remains a burgeoning field of study [1–10], see [11] for an

overview of the state of the art. Especially, smart-home technology

drove the need for robust and efficient localization methods in acous-

tic sensor networks (ASNs) [12,13]. While in the past, traditional lo-

calization methods typically relied on physics-based models [2–4],

there has been a growing interest in localizing acoustic sources us-

ing learning-based methods whereby position estimates are obtained

directly from previously learned knowledge about a given acoustic

environment. These methods have been shown to be effective, par-

ticularly in adverse acoustic conditions [1, 5–7, 10, 14] as long as

the parameters used for training remain static. For example, when

localizing sources in a smart-home environment, many of the under-

lying characteristics of the room remain essentially unchanged (e.g.,

the room dimensions and reverberation time). This means the vari-

ability regarding the acoustic transfer functions, which are typically

This work was partially funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 282835863 – within the Re-
search Unit FOR2457 “Acoustic Sensor Networks” and from the European
Union’s Horizon 2020 Research and Innovation Programme, Grant Agree-
ment No. -871245.

represented in a high-dimensional feature space, can be mostly at-

tributed to the source position. This lends credibility to the use of

learning-based methods where these static qualities can be captured

during a training phase.

Due to the difficulty in acquiring labelled data, a semi-supervised

method based on a small labelled and a large unlabelled data set is

generally employed. Unlabelled data, which are easy to obtain,

are used together with a few labelled ‘anchors’ to train models

for acoustic source localization [9]. In [15], a semi-supervised ap-

proach was employed for source localization using a relative transfer

function (RTF)-based feature vector, which measures the relation

between the acoustic paths from a sound source to two different

microphones. Thus, by leveraging unlabelled data, a more robust lo-

calizer is achieved. In this study the scenario considered was limited

to a single microphone system in a static environment with white

Gaussian noise input. Subsequently, in [10], the semi-supervised

inference approach, based on Gaussian process (SSGP) on multiple

manifolds, was further developed and adapted to localize a speech

source using a multi-microphone system, again based on a dense

grid of RTFs [10, 16, 17].

However, if the array constellation, e.g., the position of one or

more nodes, changes relative to the training stage, the usefulness

of the learned model becomes uncertain. In our work, we adopt

the SSGP method and consider the scenario where any given mi-

crophone node can be moved. The detrimental effect of an array

movement on the localization error can be observed in Fig. 1, where

the error almost doubles with only a small shift of a random node

in the network. We are thus posed with the problem of determin-

ing if a node is moving, and specifically determining which of the

nodes is moving. In order to address both issues, we consider a

technique recently introduced in the field of robotics for recognizing

sensor misalignment [18]. The authors in [18] utilize Markov ran-

dom fields (MRFs) with fully connected latent variables (FCLVs) to

measure the probability of misalignment of a sensor network based

on individual sensor readings and a ground truth mapping of a given

room [19, 20]. Recognition of misalignment is needed in [18] to

determine whether differences in measurements sampled over time

should be attributed to actual changes or due to inherent noise.

Rather than taking each sensor signal independently, for our

scenario we look at the so-called leave-one-node-out (LONO) sub-

network position estimates (with each sub-network containing all but

one node) obtained via the SSGP method. We then use the differ-

ences between the position estimates before and after movement of

a single node as input to the MRF model (note, for our considera-

tions in this paper the sound source is static). Eventually our model

outputs posterior probabilities per LONO sub-network for belonging

to one of the following latent states: aligned, misaligned or unreli-
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Fig. 1. Mean error of the SSGP localizer for different reverbera-

tion times T60, comparing scenarios without node movement (dot-

ted lines) to scenarios when one node in the network moved (random

node shifted from its learned position) as can be seen in solid lines.

able. These posteriors are used to indicate both the probability of

movement in the network, and also allows for inference of which

node moved.

2. REVIEW OF THE SSGP SOURCE LOCALIZATION

TECHNIQUE

We now briefly review the SSGP source localization method

(see [10] for details) and consider a speech signal in the Short-

Time Fourier Transform (STFT) domain, S (τ, k), at frame index

τ , frequency index k, received at a given node m, and emitted from

position q. We then model the signal received at node m as follows:

Y
m
i (τ, k) = A

m
i (τ, k,q)S (τ, k) + U

m
i (τ, k) (1)

with i specifying the ith microphone in the mth node. Addition-

ally, Am
i (τ, k,q) is the acoustic transfer function (ATF) relating the

sound source originating at position q to the ith microphone, and

Um
i (τ, k) is the STFT-domain representation of an additive noise

signal which corrupts the measurement. Obviously, the spatial in-

formation required for localizing a source at position q is embedded

in the ATF, and is independent of the source signal. Rather than

extracting the ATF we use the aforementioned RTF feature vector,

hm (defined as the ratio of two ATFs [21]) as it is easier to acquire

in practice and is equally informative for the proposed localization

method.

In order to determine the position of an unknown source, we

first define qt = [qt,x, qt,y, qt,z]
⊤

as the unknown ‘test’ position

to be inferred given some unknown RTF sample, hm
t , which relates

the unknown source position qt to node m, assuming that each of

the M network nodes has only two microphones. For training the

SSGP estimator, a set of nD sound sources is used where nD is

the number of training points, from which nU are measured RTFs

and nL are measured RTFs with associated source positions serv-

ing as labels (nL + nU = nD). Each Cartesian coordinate pd,a,

a ∈ {x, y, z} of a training position, pd ∈ R
3×1, is said to be the

output of some target function, fm
a (hm

d ) which relates the training

position, pd, to node m via an RTF sample hm
d . Moreover, we as-

sume that the coordinates of all nD labelled and unlabelled training

positions captured by vectors pD,a =
[

p1,a . . . , pnD ,a

]⊤
, are each

jointly Gaussian, and the target functions, fm
a , can be alternatively

defined as the posterior mean function of corresponding Gaussian

distributions. We will now discuss how we utilize the RTF training

samples {hm
d }nD

d=1

(

∀m ∈ {1, . . . ,M}
)

in order to identify the po-

sition of an unknown source from its corresponding RTF hm
t . We

will omit the dependency on the coordinate a ∈ {x, y, z} in the

following for conciseness.

In order to localize a sound source, RTFs obtained at each node

are compared to those obtained at every other node in the ASN.

The relation between all RTFs are summarized via the kernel-based

covariance matrix, ΣΣΣL, with each element representing a pairwise

affinity between two RTF samples. In particular, we express a given

element in the covariance matrix which relates two labelled source

positions, li and lj as follows:

(ΣΣΣL)li,lj =
1

M2

nD
∑

d=1

M
∑

q=1

M
∑

w=1

kq

(

h
q

li
,h

q

d

)

kw

(

h
w
lj
,h

w
d

)

. (2)

Here, hli , hlj are RTF samples from the set of labelled RTFs HL =
{hli}

nL
i=1, and km(hm

i , hm
j ) is a conventional pairwise Gaussian

kernel function, km : Mm ×Mm → R+ with:

km
(

h
m
i ,h

m
j

)

= exp







−

∥

∥hm
i − hm

j

∥

∥

2

2

εm







(3)

where Mm denotes a manifold corresponding to node m, and εm is

a parameter defining the width of the kernel [22]. Similarly, we can

define an element in the test covariance vector, ΣΣΣLt ∈ R
nL×1, used

for inferring the position of an unknown source element:

(ΣΣΣLt)li =
1

M2

nD
∑

d=1

M
∑

q=1

M
∑

w=1

kq

(

h
q

li
,h

q

d

)

kw
(

h
w
t ,h

w
d

)

. (4)

The unknown position, qt, can thus be estimated coordinate-wise

via the conditional mean with respect to the corresponding multivari-

ate Gaussian distribution, P
(

qt | pL,HL

)

, where pL ∈ R
nL×1 is

the vector containing only a coordinate of the labelled training posi-

tions. The distribution of all source positions (known and unknown)

is defined over the concatenation of all coordinates of the labelled

training positions pL and the coordinate to be estimated qt:

[

pL

qt

] ∣

∣

∣

∣

HL ∽ N



0nL+1
,

[

ΣΣΣL + σ2InL
ΣΣΣLt

ΣΣΣ⊤
Lt Σt

]



 (5)

where Σt is the variance of qt, σ
2 is the variance associated with the

accuracy of the labels, InL
is the nL×nL identity matrix and 0nL+1

is an all-zero vector of length nL+1. Thus, we estimate the position

of an unknown source by the conditional mean associated with (5):

qt = µcond = ΣΣΣ⊤
Lt

(

ΣΣΣL + σ
2
InL

)−1

pL. (6)

An example of the localization scenario is shown in Fig. 2 (detailed

room specifications can be found in Sec. 4.).

3. MISALIGNMENT DETECTION

In our scenario, MRFs are used to determine if a node in an ASN

is displaced, and also determine which node moved. MRFs pro-

vide a convenient and consistent way of modeling context depen-

dent entities and can be implemented in a local and massively par-

allel manner [19, 23]. MRFs are especially useful for inference if

2
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Fig. 2. Misaligned scenario with example of proposed detection

method. Green arrow indicates how the prediction of an acoustic

source changes based on the movement and rotation of a random

node (blue arrow). Values in brackets next to nodes indicate proba-

bility of a LONO sub-network being aligned, misaligned, or unreli-

able where the referenced node is the one left out. Higher probabili-

ties of alignment indicate the node left out is likely compromised.

a priori probability functions are given for the latent variables gov-

erning the observations. The observed quantities we use as input to

the MRF model are the SSGP localization estimates of M LONO

sub-networks. These estimates are compared to the localization es-

timates recorded before movement for the mth LONO sub-network

via the Euclidean distance

em = ‖qm − q̂m‖2. (7)

Note that, here, qm refers to position estimates recorded by a given

LONO sub-network before movement occurs, and q̂m refers to the

estimate after movement. While in dynamic scenarios with mov-

ing sources these distinctions will not be so clear, in the static sce-

nario assumed here, they are useful for the desired analysis. The

latent variables are given by the errors made by a LONO in a given

acoustic environment, which is dependent on the room itself and,

consequently, on the variability of the SSGP localizer. Therefore,

in practice, the considered MRF model (as detailed in Sections 3.1,

3.2) compares the difference obtained from each LONO sub-network

using a message passing scheme and incorporates prior information

regarding the general localization error distribution. This distribu-

tion is acquired by simulating localization estimates of LONO sub-

networks after a random array in the ASN is shifted in a random

direction with random rotation and comparing it with the ground

truth position of the source. The output of the model is a probability

indicating if the network is in alignment. We assume the latent vari-

ables to be FCLVs to ensure the difference in estimation measured by

each LONO sub-network is compared with the difference measured

by every other LONO sub-network. Additionally, we assume that

only one node in the network is moving at a time, therefore, the sub-

network with the smallest probability of movement as determined

by the MRF model would probably be the one that did not contain

the moved node, thus allowing us to infer which particular node was

moving. For this inference, we consider the posterior probability

output by the MRF that a given LONO sub-network m, is of one of

the following latent classes: aligned, misaligned or unreliable.

3.1. Likelihood distributions of estimation errors

For approximating the latent posterior probabilities, P
(

zm | e
)

,

where zm = [zm,1, zm,2, zm,3]
⊤

is an indicator vector of binary

variables with each variable indicating whether a given LONO sub-

network belongs to a given latent class, and e is the vector containing

the difference in estimates from all LONO sub-networks.

We first define the prior (error) distributions of each latent class,

which were found empirically from observed errors. For the aligned

case, zm = [1, 0, 0], we choose a half-normal distribution with vari-

ance σ2
align [18, 24].

P

(

em | zm = [1, 0, 0] , σ2
align

)

= 2N
(

em; 0, σ2
align

)

, em ≥ 0,

(8)

an exponential distribution with parameter λ for the misaligned case,

zm = [0, 1, 0]

P

(

em | zm = [0, 1, 0] , λ
)

=
λ exp{−λ em}

1− exp{−λ emax}
, (9)

and a uniform distribution for unreliable observations, zm =
[0, 0, 1]

P

(

em | zm = [0, 0, 1]
)

= unif (0, emax) , (10)

where, emax references the maximum localization error. A uniform

distribution is assigned to the unreliable class (analogous to the as-

sumption made in [18]) to reflect the uninformative character of this

class, as we assume that the movement in the network cannot be

predicted.

3.2. Latent class estimation and failure detection

As noted, we make the FCLV assumption which allows us to con-

sider the viewpoint of every LONO sub-network in calculating the

set of latent posterior probabilities for a specific LONO sub-network.

In particular, every set of latent variables associated with a LONO

sub-network receives messages from all other nodes and their corre-

sponding set of variables to initialize the marginal posterior proba-

bilities, which is calculated as

P

(

zm | e
)

=
1

Z
lm ⊙

M
∏

m′=1
m′ 6=m

µµµm′→m (zm) .
(11)

Here, Z is a normalizing factor, ⊙ is the Hadamard product and lm
is a likelihood vector

lm =
[

P

(

em | zm,1

)

,P
(

em | zm,2

)

,P
(

em | zm,3

)

]⊤

. (12)

The message from m′th to the mth LONO sub-network is denoted

as

µµµm′→m (zm) = ψm′,m (zm′ , zm) lm′ . (13)

In this case, ψm′,m (zm′ , zm) is the transition probability from state

m′ to m and is an element of the transition matrix ψψψ ∈ R
3×3
+ . The

matrix is optimized using an iterative proportional fitting procedure

based on empirical localization errors [19, 25].
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Finally, after each node receives initial messages from all other

nodes, messages are continually passed around until convergence to

the maximum likelihood posterior.

With the posteriors for each LONO sub-network, we obtain the

probability of misalignment in the overall network based on the av-

erage posterior probabilities of misalignment for all sub-networks:

pfailure =
1

M

M
∑

m=1

P

(

zm,2 | e
)

. (14)

Then, the criterion pfailure ≥ pthresh with the user-defined threshold

pthresh is used for detecting node movement. A misaligned scenario

is illustrated in Fig. 2 where a node is displaced by one meter. Val-

ues in brackets next to each node indicate the probability of a LONO

sub-network being aligned, misaligned, or unreliable where the ref-

erenced node is the one left out. Higher probabilities of alignment

indicate that the node left out is more probable to have moved.

4. EVALUATION

We present a simulation study showing the efficacy of the proposed

method. After describing the experimental setup we discuss the re-

sults obtained from Monte-Carlo simulations.

We consider a room of size 6m×6m×3m with four nodes uni-

formly spaced in a square (see Fig. 2), each comprising two micro-

phones spaced 5 cm apart. The Region of Interest (RoI) was chosen

to be in the center of the node network and within a 2m radius from

the center of the room. In total, we simulated five labelled sources

and 300 unlabelled sources to generate RTFs, whereby each unla-

belled point was randomly chosen from a uniform 2D distribution

within the RoI. White noise convolved with simulated room impulse

responses (RIRs) [26] has been used for training.

The SSGP parameters were optimized via an ML estimation

(see [10] for details) for varying noise levels and T60. This was

done by drawing at random speech signals from a database of En-

glish speakers [27], again convolving them with simulated RIRs,

randomizing the position of the source and comparing the positional

estimates to the ground truth position. The parameters of the MRF

model, σ2
align, λ, and emax were chosen via a random grid search

whereby a room environment was simulated and arrays were ran-

domly shifted [28]. The optimal parameters were then chosen based

on the detector’s ability to recognize movement for a range of prob-

ability thresholds. Care was taken in choosing these thresholds, as

extremely small thresholds result in a high number of false positives

as even a movement occurring with only a small probability will be

declared movement by the MRF model, and without loss of general-

ity, large thresholds result in a large number of false negatives. Thus

the threshold was incremented (from 0 to 1 by increments of 0.05 m)

to balance the range of possible outcomes.

For the results in Fig. 3, the movement detection scenario was

simulated over 100 trials per shift of a randomly chosen node, shifted

in a random direction, and with random rotation, and for a range of

reverberation levels. Obviously, the movement detection probabil-

ity increases with the size of the displacement, and is largely inde-

pendent of the T60 level. We attribute the fact that the curves are

not monotonic to the random rotation of the randomly moved node

(from 0°- 360°).

In order to test the robustness of the proposed algorithm, we

compare it to a naı̈ve detector that uses the LONO positional es-

timates directly as a way of indicating movement. Thus the naı̈ve

detector will indicate movement occurred if the deviation for a

given LONO sub-network is greater than the average of the other
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Fig. 3. Output from the MRF-based detector for incremental shifts

of a random node and varying T60 with 100 trials per shift and T60.

three LONO estimates and this difference exceeds some threshold.

Thereby the thresholds were chosen based on the average difference

between a LONO sub-network excluding the shifted node and the

mean estimates of the other three. We found (as indicated in Ta-

ble 1) that the MRF-based detector performs better for most T60

levels with respect to the area under the curve (AUC) [29]. Note that

the basis of the decision of the naı̈ve detector (i.e., e), is essentially

the input to the MRF-based detector. Thus, for the most part we ob-

serve improvement achieved by incorporating the prior information

regarding the error distributions rather than the mean of the errors.

T60 [s] 0.2 0.4 0.6

Naı̈ve 0.71 0.62 0.78

MRF 0.84 0.82 0.78

Table 1. AUCs reported for the LONO sub-network estimation com-

parison and the MRF-based detector at varying T60.

5. CONCLUSION

In this paper, we proposed a method for consistently identifying sit-

uations where moving sensor network nodes render source localiza-

tion estimates questionable or useless. Specifically we considered

the problem of detecting the movement of a microphone node in a

network. The proposed probabilistic MRF-based algorithm deter-

mines whether a network of nodes is aligned with the previously

learned configuration by leveraging prior information on the error

distribution of an SSGP localization technique. The benefit of the

MRF model was demonstrated by comparison to an estimate that

relied directly on the relative difference in positional estimates by

different sub-networks of nodes. In particular, we showed that the

MRF-based detector outputs a movement indicator that scales com-

mensurate with the size of disruption in the network, and one that is

consistent across varying T60. As of now the algorithm assumes a

static source, and its application to a moving sound source is planned

as future work.
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