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ABSTRACT

Classical portfolio optimization methods typically determine an op-
timal capital allocation through the implicit, yet critical, assumption
of statistical time-invariance. Such models are inadequate for real-
world markets as they employ standard time-averaging based estima-
tors which suffer significant information loss if the market observ-
ables are non-stationary. To this end, we reformulate the portfolio
optimization problem in the spectral domain to cater for the nonsta-
tionarity inherent to asset price movements and, in this way, allow
for optimal capital allocations to be time-varying. Unlike existing
spectral portfolio techniques, the proposed framework employs aug-
mented complex statistics in order to exploit the interactions between
the real and imaginary parts of the complex spectral variables, which
in turn allows for the modelling of both harmonics and cyclostation-
arity in the time domain. The advantages of the proposed framework
over traditional methods are demonstrated through numerical simu-
lations using real-world price data.

Index Terms— Financial signal processing, portfolio optimiza-
tion, spectral analysis, augmented complex statistics, nonstationary

1. INTRODUCTION

The principle of diversification has become the cornerstone of
decision-making in finance and economics ever since the introduc-
tion of modern portfolio theory (MPT) by Harry Markowitz in 1952
[1]. The MPT suggests an optimal strategy for the investment, based
on the first- and second-order moments of the asset price returns,
which can be formulated as a quadratic optimization task commonly
referred to as the mean-variance optimization (MVO).

Consider the vector, x(t) ∈ RN , which contains the returns of
N assets at a time t, the i-th entry of which is given by

xi(t) =
pi(t)− pi(t− 1)

pi(t− 1)
(1)

where pi(t) denotes the value of the i-th asset at a time t. The MVO
asserts that the optimal vector of asset holdings, w ∈ RN , is ob-
tained through the following optimization problem

max
w
{wTm− λwTRw} (2)

where m = E {x} ∈ RN is a vector of expected future returns,
R = cov {x} ∈ RN×N is the covariance matrix of returns, and λ is
a Lagrange multiplier, also referred to as the risk aversion parameter.
In practice, it is usually necessary to impose additional constraints
on the values of w, for instance, to constrain the portfolio leverage.

The increasing availability of computational power has naturally
made MVO a ubiquitous tool for financial practitioners, however, the

validity of its underlying theory remains perhaps the most debated
topic in the field to date. Among issues that make MVO unreliable in
practice, a major caveat is the notorious challenge of estimating the
moments, m and R, of nonstationary asset price movements. It has
been shown that standard time-averaging based estimators of m and
R typically yield portfolios that are far from truly optimal, and hence
exhibit poor out-of-sample performance [2, 3, 4, 5, 6]. Moreover,
this issue is further amplified by the well-established sensitivity of
MVO to perturbations of the estimates, m and R, whereby small
changes in the inputs may generate portfolio holdings with vastly
different compositions [7, 8, 9, 10, 11].

The information loss incurred by sample estimators in nonsta-
tionary environments can be demonstrated using von Neumann’s
mean ergodic theorem [12] and Koopman’s operator theory [13].
Consider an idealised case whereby the asset price returns evolve in
time according to x(t) = Sx(t − 1), with S : CN 7→ CN denot-
ing the unitary shift operator in a Hilbert space. The mean ergodic
theorem asserts that the sample mean approaches the orthogonal sub-
space of x(t), that is

lim
T→∞

1

T

T−1∑
t=0

x(t) = lim
T→∞

1

T

T−1∑
t=0

St(x(0)) = lim
T→∞

1

T

T−1∑
t=0

Px(0)

(3)
with the boundedness property governed by ‖Px(t)‖2 ≤ ‖x(t)‖2,
which arises from the Cauchy-Schwarz inequality.

To overcome the limitations of MVO in the presence of non-
stationarity, there has been an increasing interest in the use of spec-
tral analysis techniques. While spectral analysis has a long history
in econometrics [14, 15, 16], with applications ranging from busi-
ness cycle analysis [17], option valuation [18], empirical analysis
[19, 20, 21, 22, 23, 24], through to causality analysis [25], its appli-
cation in portfolio optimization has been rather sparse. To this end,
spectral portfolio theory [26, 27, 28] was recently introduced with
the aim to enhance portfolio performance by allowing the investors
to benefit from diversifying not only across assets but also across
frequencies, whereby the cyclical components of the variance and
covariance of asset returns are accounted for respectively by using
the periodogram and cross-spectra [15].

Despite mathematical elegance and physical intuition, there re-
main issues that need to be addressed prior to a more widespread
application of spectral analysis to portfolio optimization. For exam-
ple, spectral estimation is an inherently complex-valued task, how-
ever, spectral measures such as the power spectral density (PSD)
employed in [27] are magnitude-only based and hence cannot ac-
count for the information within the phase spectrum. From the max-
imum entropy viewpoint [29, 30, 31, 32], such models make an
implicit, yet fundamental, assumption that the phase information,
which is intrinsic to complex-valued spectral data, is uniform and
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thus not informative. Mathematically, this is equivalent to assert-
ing that the variable is wide-sense stationary in the time domain
[33]. Furthermore, spectral measures such as the PSD are absolute
(or non-centred) spectral moments and hence cannot distinguish be-
tween the information attributed by the spectral mean from that by
the spectral covariance, yet these designate respectively the harmon-
ics and cyclostationarity in the time domain.

To this end, we formulate a spectral portfolio theory using a
class of spectral estimators for nonstationary signals, whereby the
harmonic and cyclostationary time-domain signal properties are des-
ignated respectively by the mean and covariance of the associated
spectral representation. Unlike existing methods, the proposed spec-
tral portfolio framework is intrinsically complex-valued and thus
benefits from augmented complex statistics [34, 35, 33] in order to
allow for a precise description of the interaction between the real
and imaginary parts of complex spectral variables, and thus of the
time-phase alignment. In this way, the proposed approach is shown
to enable creation of time-varying capital allocation schemes. The
advantages of the proposed framework over traditional methods are
demonstrated through simulations based on real-world price data.

2. A CLASS OF NONSTATIONARY SIGNALS

We begin by consider a real-valued signal, x(t) ∈ RN , which admits
the following time-frequency expansion [36, 35]

x(t) =

∫ ∞
−∞

eωtx(t, ω) dω (4)

where x(t, ω) ∈ CN is the realisation of a random spectral process
at an angular frequency, ω, and time instant, t. The Hermitian sym-
metry, x∗(t, ω) = x(t,−ω), holds so that x(t) is real-valued.

To cater for a broad variety of deterministic and stochastic time-
domain signals, the spectral process is assumed to be multivariate
general complex Gaussian distributed [37], i.e. x(t, ω) follows the
linear model

x(t, ω) = m(ω) + s(t, ω) (5)

where s(t, ω) ∈ CN is a zero-mean stochastic process, while the
spectral mean, m(ω) ∈ CN , defined as

m(ω) = E {x(t, ω)} (6)

is time-invariant. The spectral covariance and spectral pseudo-
covariance are also time-invariant and defined respectively as

R(ω) = cov {x(t, ω)} = E
¶
s(t, ω)sH(t, ω)

©
(7)

P(ω) = pcov {x(t, ω)} = E
¶
s(t, ω)sT(t, ω)

©
(8)

where the bound ‖P(ω)‖2 ≤ ‖R(ω)‖2 holds, by virtue of the
Cauchy-Schwarz inequality.

As with multivariate complex variables in general, the spectral
process admits a compact augmented representation of the form

x(t, ω) =

ï
x(t, ω)
x∗(t, ω)

ò
∈ C2N (9)

which compactly parametrizes the pdf of x(t, ω) as follows [37]

p(x, t, ω)=
exp
î
− 1

2
(x(t, ω)−m(ω))HR−1(ω)(x(t, ω)−m(ω))

ó
πNdet

1
2 (R(ω))

(10)

with

m(ω) = E {x(t, ω)} =

ï
m(ω)
m∗(ω)

ò
(11)

R(ω) = cov {x(t, ω)} =
ï
R(ω) P(ω)
P∗(ω) R∗(ω)

ò
(12)

being respectively the augmented spectral mean and covariance.
Therefore, x(t, ω) is said to be distributed according to

x(t, ω) ∼ CN (m(ω),R(ω)) (13)

Furthermore, if the time-frequency representations exhibit non-
orthogonal bin-to-bin increments, then it is necessary to also con-
sider the following dual-frequency statistics (for ω 6= ν)

R(ω, ν) = cov {x(t, ω), x(t, ν)} =E
¶
s(t, ω)sH(t, ν)

©
(14)

P(ω, ν) = pcov {x(t, ω), x(t, ν)}=E
¶
s(t, ω)sT(t, ν)

©
(15)

which are referred to respectively as the dual-frequency spectral co-
variance and dual-frequency spectral pseudo-covariance. These ex-
hibit the following properties

R(ω, ν) = R
∗(ν, ω) (16)

P(ω, ν) = P(ν, ω) (17)
‖P(ω, ν)‖2 ≤ ‖R(ω, ν)‖2 ≤ ‖R(ω)‖2‖R(ν)‖2 (18)

owing to the Cauchy-Schwarz inequality [35].

Remark 1. Notice that the spectral moments in (6)-(8) are centred,
which contrasts the usual spectral statistics based on the absolute or
non-centred moments as in [27]. It is therefore possible to express
the standard PSD, denoted by R̃(ω), in terms of the spectral mean
and covariances as follows

R̃(ω) = E
¶
x(t, ω)xH(t, ω)

©
= m(ω)mH(ω) + R(ω) (19)

This shows that the mean and covariance information become entan-
gled when employing the absolute (non-centred) spectral statistics.
This result also highlights that the power spectrum is inadequate for
detecting harmonics in low signal-to-noise ratio environments, since
‖R(ω)‖ � ‖m(ω)‖2. The PSD of the harmonics would therefore be
dominated by the power associated with the noise, thereby rendering
the harmonic indistinguishable from the noise.

The linearity property of the Fourier transform in (4) dictates
that if the spectral processes are multivariate complex Gaussian
distributed, that is, x(t, ω) ∼ CN (m(ω),R(ω)), then their time-
domain counterpart, x(t), is also multivariate Gaussian distributed,
since a linear function of Gaussian random variables is also Gaussian
distributed. The signal, x(t), is thus distributed according to

x(t) ∼ N (m(t),R(t)) (20)

where m(t) ∈ RN and R(t) ∈ RN×N are the time-varying mean
vector and covariance matrix, defined respectively as

m(t) = E {x(t)} (21)
R(t) = cov {x(t)} (22)

which are a function of the introduced spectral statistics, as is shown
next.



2.1. Mean

From (21), consider a statistical expectation of the spectral expan-
sion of x(t), as in (4), to yield

m(t)=E {x(t)}=
∫ ∞
−∞
eωtE {x(t, ω)} dω=

∫ ∞
−∞
eωtm(ω)dω

(23)
Therefore, the time-varying mean of x(t) is a multivariate real-
valued harmonic signal. Notice that for ω = 0, the signal reduces to
a multivariate DC component.

2.2. Covariance

Following from the relation in (22), and upon introducing the centred
signal, s(t) = x(t) −m(t), consider the covariance of the spectral
expansion of x(t), as in (4), to obtain

R(t) = cov {x(t)} = E
¶
s(t)sT(t)

©
=

∫ ∞
−∞

∫ ∞
−∞
e(ω−ν)tR(ω, ν) + e(ω+ν)tP(ω, ν) dωdν (24)

Therefore, the time-varying covariance of x(t) consists of a sum
of cyclostationary components, each modulated at an angular fre-
quency, ω.

Example 1. With reference to Remark 1, we next demonstrate the
benefits of employing the proposed centred spectral moments over
the legacy absolute second-order spectral moments (power spectrum
and complementary spectrum). Consider a single realisation of a
univariate general nonstationary signal in Figure 1(a). The signal
consists of two harmonics at different angular frequencies embed-
ded in general cyclostationary noise (shown in Figure 1(b)). Observe
that the signal constituents are completely identifiable when employ-
ing the centred spectral moments in Figure 1(c), whereby: (i) M(ω)
designates the harmonics; (ii)R(ω) designates the WSS component;
and (iii) P (ω) designates the degree of cyclostationarity. In contrast,
the absolute second-order moment (PSD), R̃(ω), cannot distinguish
between the harmonic and stochastic components, as shown in Fig-
ure 1(d).
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(b) Constituent signals in (a).
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(d) Absolute second-order
moments of the spectrum.

Fig. 1: Spectral analysis of a real-valued nonstationary signal. (a) A
single realisation. (b) The constituents of the signal in (a). (c) The
centred spectral moments. (d) The absolute spectral moments.

3. COMPACT SPECTRAL REPRESENTATION

Consider a nonstationary signal which exhibits a discrete frequency
spectrum, consisting of M frequency bins, ω = [ω1, ..., ωM ]T. The
discrete spectral expansion of x(t) in (4) therefore becomes

x(t) =
1√
2M

M∑
m=1

Ä
eωmtx(t, ωm) + e−ωmtx

∗(t, ωm)
ä

(25)

Remark 2. Unlike the conventional DFT, the normalization by the
constant, 1√

2M
in (25), provides a rigorous mapping of coordinates

from the time-domain to the time-frequency domain through a pure
rotation in the complex plane, thus preserving both the desired or-
thogonality and norm properties [38].

To facilitate the analysis in this work, we express (25) in the
following compact form

x(t) = Φ(t,ω)x(t,ω) (26)

where Φ(t,ω) ∈ CN×2MN is the augmented spectral basis, defined
as

Φ(t,ω) =
[

Φ(t,ω) Φ∗(t,ω)
]

(27)

Φ(t,ω) =
1√
2M

[
eω1tIN · · · eωM tIN

]
(28)

with IN ∈ RN×N being the identity matrix, and x(t,ω) ∈ C2MN

the augmented spectrum representation, given by

x(t,ω) =

ï
x(t,ω)
x∗(t,ω)

ò
, x(t,ω) =

 x(t, ω1)
...

x(t, ωM )

 (29)

With the augmented spectrum representation, x(t,ω) in (29), it is
now possible to jointly consider all of the dual-frequency spectral
covariances in ω through the proposed compact formulation. To see
this, consider the following probabilistic model

x(t,ω) ∼ CN (m(ω),R(ω)) (30)

m(ω) = E {x(t,ω)} , R(ω) = cov {x(t,ω)} (31)

where m(ω) ∈ C2MN denotes the augmented spectral mean, de-
fined as

m(ω) =

ï
m(ω)
m∗(ω)

ò
, m(ω) =

 m(ω1)
...

m(ωN )

 (32)

and R(ω) ∈ C2MN×2MN denotes the augmented spectral covari-
ance, given by

R(ω) =

ï
R(ω) P(ω)
P∗(ω) R∗(ω)

ò
(33)

R(ω) =

 R(ω1) · · · R(ω1, ωM )
...

. . .
...

R(ωM , ω1) · · · R(ωM )

 (34)

P(ω) =

 P(ω1) · · · P(ω1, ωM )
...

. . .
...

P(ωM , ω1) · · · P(ωM )

 (35)



To derive estimators of m(ω) and R(ω), we starting from the
least squares (LS) estimate of x(t,ω) based on (26), that is

x̂(t,ω) = Φ+(t,ω)x(t) ≡ ΦH(t,ω)x(t) (36)

with the symbol (·)+ as the pseudo-inverse operator. Next, since
x̂(t,ω) is stationary in time and hence ergodicity applies, we can
simply approximate the expectation operators in (31) with the time-
averages, to obtain the following method of moment estimators

m̂(ω) =
1

T

T−1∑
t=0

ΦH(t,ω)x(t) (37)

R̂(ω) =
1

T

T−1∑
t=0

ΦH(t,ω)ŝ(t)ŝT(t)Φ(t,ω) (38)

with ŝ(t) = x(t)− m̂(t) = x(t)−Φ(t,ω)m̂(ω).

Remark 3. The estimator of m in (37) is, in essence, the discrete
Fourier transform (DFT) of x(t). Similarly, the estimator of R in
(38) is the power spectrum matrix of the centred variable, s(t).

4. SPECTRAL PORTFOLIO OPTIMIZATION

We next derive a spectral portfolio optimization framework based
on the considered class of nonstationary signals. While the standard
MVO in (2) operates in the time-domain and with a constant capital
allocation, w, we instead consider optimizing the spectral content of
the time-varying capital allocation, w(t). This is made possible by
considering the following spectral decomposition, as in (26)

w(t) = Φ(t,ω)w(ω) (39)

In this way, the spectral MVO is formulated as

max
w(ω)

{wH(ω)m(ω)− λwH(ω)R(ω)w(ω)} (40)

s.t. w
H(ω)R(ω)w(ω) = σ2

0

whereby we maximise the mean portfolio return based on the spec-
tral mean, while constrain the variance of the portfolio to a target
level, σ2

0 , based on the spectral covariance. Upon inspecting the
stationary points of the objective function in (40), we obtain the La-
grangian multiplier

λ =
1

2σ0

»
mH(ω)R−1(ω)m(ω) (41)

which, in turn, yields the optimal augmented spectral weights

wopt(ω) =
1

2λ
R
−1(ω)m(ω) =

σ0 R
−1(ω)m(ω)»

mH(ω)R−1(ω)m(ω)
(42)

The optimal time-varying capital allocation can finally be retrieved
through the augmented spectral basis, as in (26), to yield

wopt(t) = Φ(t,ω)wopt(ω) (43)

Remark 4. In contrast to the standard MVO in (2), the proposed
spectral portfolio framework allows for optimal time-varying capi-
tal allocation schemes. In this way, the investor is better positioned
to exploit seasonal trends of asset prices, designated by the spec-
tral mean, m(ω), and seasonal variations of the correlation between
asset price movements, designated by the spectral covariance, R(ω).

5. SIMULATIONS
The performance of the proposed spectral MVO was investigated
using monthly historical price data comprising of the 23 commod-
ity futures contracts constituting the Bloomberg Commodity Index,
in the period 2010-01-01 to 2020-05-01. The data was split into: (i)
the in-sample dataset (2010-01-01 to 2014-12-31) which was used to
estimate the spectral moments, m(ω) and R(ω), and to compute the
optimal spectral weights, w(ω); and (ii) the out-sample data (2015-
01-01 to 2020-05-01), used to objectively quantify profitability of
the asset allocation strategies. For simplicity, the frequencies chosen
for ω corresponded to periodicities of 1 year (A), 6 months (S) and
3 months (Q) (1 business quarter). The standard equally-weighted
(EW) and MVO (MVO) portfolios were also simulated for compari-
son purposes, with the results displayed in Fig. 2.

Observe from Fig. 2 (a)–(b) that the proposed spectral MVO
consistently delivered greater returns than the standard EW and
MVO portfolios in the out-of-sample dataset, thereby attaining a
higher Sharpe ratio, i.e. the ratio of the mean to the standard devi-
ation of portfolio returns. Fig. 2 (c) illustrates that by accounting
for the augmented spectral information, the portfolio was better
positioned to exploit time-dependent dynamics in the market, which
contrasts classical approaches that assume a constant optimal allo-
cation.
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Fig. 2: Investment performance for the standard MVO and the pro-
posed spectral MVO, with varying frequency spectra, ω. The target
portfolio volatility, σ0, was set to 1% per annum.

6. CONCLUSIONS
A spectral portfolio theory has been introduced which employs aug-
mented complex statistics in order to account for the full interaction
between the real and imaginary parts of the complex spectra of asset
price movements. This has been shown to enable the optimal capi-
tal allocation to be time-varying, which allows for the modelling of
both harmonics and cyclostationarity in asset returns. Simulations
have demonstrated the advantages of the proposed framework over
conventional portfolio techniques, including a full utilization of the
variation of the mean and covariance of asset returns in time.
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