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Abstract—Known for their capacity-achieving abilities, 

polar codes have been selected as the control channel 

coding scheme for 5G communications. To satisfy the 

needs of high throughput and low latency, belief 

propagation (BP) is chosen as the decoding algorithm. 

However, in general, the error performance of BP is worse 

than that of enhanced successive cancellation (SC). 

Recently, critical-set bit-flipping (CS-BF) is applied to BP 

decoding to lower the error rate. However, its trial and 

error process result in even longer latency. In this work, 

we propose a convolutional neural network-assisted bit-

flipping (CNN-BF) mechanism to further enhance BP 

decoding of polar codes. With carefully designed input 

data and model architecture, our proposed CNN-BF can 

achieve much higher prediction accuracy and better error 

correction capability than CS-BF but with only half 

latency. It also achieves a lower block error rate (BLER) 

than SC list (SCL). 
 

Index Terms—Polar codes, belief propagation, bit-

flipping, convolutional neural network 

I. INTRODUCTION 

Polar code is a type of block channel code proven to 

achieve channel capacity first proposed by Arikan [1]. In 

recent years, it has received intensive attention due to its 

adoption as the enhanced mobile broadband (eMBB) control 

channel coding scheme for 5G New Radio (NR) by 3GPP [2].   

The main two algorithms for polar decoding are successive 

cancellation (SC) and belief propagation (BP). Compared with 

BP decoding, SC decoding can fulfill the channel-capacity 

ability and achieve a lower block error rate (BLER) through 

enhanced SC algorithm [3]-[4]. However, SC suffers from low 

throughput due to its sequential processing nature, while BP 

algorithm excels in architectural parallelization, thus has 

lower decoding latency [5]. Recently, considerable efforts 

have been put into improving the error performance of BP to 

achieve that of SC, while still maintaining its advantages. One 

method for BP performance optimization is the inclusion of 

neural networks to assist with BP decoding process [6]-[9]. In 

[6]-[9], the BP algorithm is enhanced through the scaling of 

messages from trainable weights. It reduces the total number 

of iterations before convergence and overall complexity, but 

does not address the lacking error correction performance. 

In order to lower the BLER of decoders, in general, bit-

flipping (BF) decoders can be utilized to minimize error 

propagation, by performing error corrections on incorrectly 

decoded bits during decoding iterations [10]-[15]. In [10]-[14], 

although BF has been successively applied to SC, it still 

inherently suffers from longer decoding latency. On the other 

hand, with the aid of BF, BLER of BP-based decoding can be 

comparable with that of SC-based algorithms [15]. However, 

two issues should be addressed: 

1) Increase in decoding latency: The principle of BF is to 

generate many probable candidates, and perform 

iterations until a condition is satisfied as shown in Fig. 

1(a). Therefore, the latency is directly correlated to the 

number of cases that fail. This trial-and-error method is 

especially problematic in worst-case scenarios, where the 

latency is significantly greater than the non-BF approach, 

by a factor of the number of tries. 

2) Sub-optimal search space: As described in [15], the 

critical set (CS), a subset of high-risk information bits, is 

adopted to perform BF operation. Although it can 

effectively limit the search space, it also leads to some 

uncorrectable errors, thus degrading the error correction 

capability of BF. 

In this paper, by taking advantage of the emerging deep 

learning (DL) techniques, we propose a novel convolutional 

neural network-aided bit-flipping (CNN-BF) polar decoder as 

shown in Fig. 1(b), which provides a flexible adjustment 

between decoding performance and latency. Our main 

contributions are summarized as below: 

1) The process of bit-flipping candidate selection is replaced 

by the CNN model to exploit the variation of BP decoding 

process and dynamically identifies the erroneous bit. It 

can achieve the same BLER but with only half flipping 

attempts compared with the state-of-the-art critical-set bit-

flipping (CS-BP) algorithm [15]. 

2) The input data for the CNN model is carefully designed, 

which is transformed from the metadata of the BP 

decoding process. Furthermore, domain-specific data 

pre-processing is adopted to reduce model complexity 

and increase prediction accuracy. 

The rest of this paper is organized as follows. Section II 

briefly reviews BP and CS-BF decoders. Section III illustrates 

the input data with the proposed CNN architecture and its 

integration into the BF process. The numerical experiments 

and analyses are shown in Section IV. Finally, Section V 

concludes our work.  

 

Fig. 1. The mechanisms of bit-flipping for polar decoder: (a) critical set bit-

flipping (CS-BF) [15], and (b) proposed convolutional neural network-aided 

bit-flipping (CNN-BF). 
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II. POLAR CODES AND PRIOR WORKS 

A. Polar Codes with Belief Propagation Decoding 

To construct an (𝑁 𝐾) polar codes, the 𝑁-bit message 𝒖𝑁 

is recursively constructed from a 2 × 2  polarizing 

transformation 𝑭 = [
1 0
1 1

]  by log2𝑁  times to exploit the 

channel polarization [1].  As 𝑁 → ∞, the synthesized channels 

tend to two extremes: the noisy channels (unreliable) and 

noiseless channels (reliable). Therefore, the 𝐾  information 

bits are first assigned to the 𝐾 most reliable bits in 𝒖𝑁 and the 

remaining (𝑁 − 𝐾) bits are referred to as frozen bits with the 

assignment of zeros. Then, the 𝑁-bit transmitted codeword  𝑁 

can be generated by multiplying 𝒖𝑁 with generator matrix 𝑮𝑁 

as follows: 

𝑭⊗𝑛 is the 𝑛-th Kronecker power of 𝑭 and 𝑩𝑁 represents the 

bit-reversal permutation matrix. 

 Belief propagation (BP) is a widely used message passing 

algorithm for decoding, such as low-density parity-check 

(LDPC) codes and polar codes. The decoding process of polar 

codes is to iteratively apply BP algorithm over the 

corresponding factor graph as shown in Fig. 2. For an (𝑁 𝐾) 
polar codes, there are 𝑛 = log2𝑁 stages and total 𝑁 × (𝑛 +
1) nodes on the factor graph. Each node (𝑖 𝑗) represents 𝑗-th 

node at the 𝑖-th stage in the factor graph. It has two types of log 

likelihood ratios (LLRs), namely left-to-right message 𝑅𝑖 𝑗
(𝑡)

 

and right-to-left message 𝐿𝑖 𝑗
(𝑡)

, where 𝑡  represents the 𝑡 -th 

iteration. Before beginning iterative propagation and the 

updating of node values, their LLR values are first initialized 

as: 

where 𝐴 and 𝐴𝑐 are the set of information bits and the set of 

frozen bits, respectively. 

Then, the iterative decoding procedure with the updating of 

𝑅𝑖 𝑗
(𝑡)

 and 𝐿𝑖 𝑗
(𝑡)

 is given by: 

{
  
 

  
 𝐿𝑖 𝑗

(𝑡) = 𝑔 (𝐿𝑖+1 𝑗
(𝑡)  𝐿

𝑖+1 𝑗+𝑁/2𝑖
(𝑡)

+ 𝑅
𝑖 𝑗+𝑁/2𝑖
(𝑡)

)  

𝐿
𝑖 𝑗+𝑁/2𝑖
(𝑡)

= 𝑔(𝑅𝑖 𝑗
(𝑡) 𝐿𝑖+1 𝑗

(𝑡) ) + 𝐿
𝑖+1 𝑗+𝑁/2𝑖 
(𝑡)

 

𝑅𝑖+1 𝑗
(𝑡) = 𝑔 (𝑅𝑖 𝑗

(𝑡) 𝐿
𝑖+1 𝑗+𝑁/2𝑖
(𝑡−1)

+ 𝑅
𝑖 𝑗+𝑁/2𝑖
(𝑡)

)  

𝑅
𝑖+1 𝑗+𝑁/2𝑖
(𝑡)

= 𝑔(𝑅𝑖 𝑗
(𝑡) 𝐿𝑖+1 𝑗

(𝑡−1)) + 𝑅
𝑖 𝑗+𝑁/2𝑖
(𝑡)

 

 (3) 

where 𝑔(𝑥 𝑦) ≈ sign(𝑥)sign(𝑦)min(|𝑥| |𝑦|) is the min-sum 

approximation introduced to reduce complexity. Finally, after 

𝑇 iterations, the estimation of 𝒖 𝑁 is decided by: 

�̂�𝑗
𝑁 = {

0 𝑖𝑓 𝐿0 𝑗
(𝑇) + 𝑅0 𝑗

(𝑇) ≥ 0 

1 𝑖𝑓 𝐿0 𝑗
(𝑇) + 𝑅0 𝑗

(𝑇) < 0.
 (4) 

 

B. Prior Work: Critical Set Bit-Flipping (CS-BF) Belief 

Propagation Decoder [15]  

Bit-flipping (BF) is an assistive mechanism to the decoding 

process, where a possibly incorrectly decoded bit is guessed 

and flipped prior to the restarted decoding process. Thus, 

precise BF can effectively improve the block error rate (BLER) 

performance for polar codes. Due to the message passing 

algorithm of BP decoding, the incorrect decoding of 

information bits may result in error propagation and thus 

negatively affect the reliability and accuracy of many other bits. 

To address the issue of error propagation, the mechanism of 

BF flips the value of previous estimated �̂�𝑗
𝑁 , and sets the a 

priori knowledge of 𝑢𝑗
𝑁  to infinity as if it is a frozen bit. 

Therefore, the initialized values of  0 in (2) are revised as: 

𝑅0 𝑗
(1) = {

0                           𝑖𝑓 𝑗 ∈ {𝐴\𝐹}

∞ × (2�̂�𝑗
𝑁 − 1) 𝑖𝑓 𝑗 ∈ 𝐹         

+∞                         𝑖𝑓 𝑗 ∈ 𝐴𝑐          

  (5) 

where 𝐹  is the set of flipping positions. By doing so, the a 

priori knowledge of flipped bits is expected to correct the other 

wrongly propagated messages in the previously failed BP 

decoding. 

According to the algorithm detailed above, the decoding 

latency of BF corresponds to the required number of flipping 

attempts, which is dominated by the correction of flipped bits. 

Therefore, critical set (CS), consisting most of the error-prone 

bits, was proposed in [10]-[15]. Now only the bits in CS are 

considered for flipping. The critical set is constructed based on 

the structure of polar code, where the first nodes in subtrees of 

all information bits are high risk, and thus are included in the 

set. By only selecting bits for BF from CS, it results in less 

flipping attempts and achieves lower latency. 

With the established CS, the conventional BP decoding 

process can commence. If BP fails to decode successively, 

checked by a cyclic redundancy check (CRC), a candidate bit 

from the critical set is selected for flipping according to Eq. (5) 

as shown in Fig. 1(a). After bit-flipping, BP decoding is 

performed again. If the result satisfies CRC, the decoding 

process is completed. Otherwise, the other candidates in the 

critical set are attempted until CRC is successfully passed. In 

this work, we mainly focus on 1-bit correctable codewords, 

which can be successfully decoded with only one correct BF. 

This is the same case for 𝜔 = 1 as in [15]. For more details 

about bit-flipping and critical set, please refer to [10]-[15]. 

III. PROPOSED CONVOLUTIONAL NEURAL NETWORK-

AIDED BIT-FLIPPING DECODER 

A. BP Metadata with Pre-Processing of Input Data  

Although the proposed CS-BF in [15] can reduce the 

number of flipping attempts and the decoding latency, two 

issues need to be addressed. Firstly, this mechanism is 

essentially still a process of trial-and-error to attempt all the 

bits in critical set. As the search space in critical set grows up 

with block length 𝑁 , it still results in intolerable decoding 

latency. Secondly, though the critical set can effectively limit 

 𝑁 = 𝒖𝑁𝑮𝑁 = 𝒖𝑁𝑭⊗𝑛𝑩𝑁  𝑛 = log2𝑁. (1) 

𝑅0 𝑗
(1) = {

0         𝑖𝑓 𝑗 ∈ 𝐴

+∞       𝑖𝑓 𝑗 ∈ 𝐴𝑐

𝐿𝑛 𝑗
(1) = ln

𝑃(𝑦𝑗|𝑥𝑗 = 0)

𝑃(𝑦𝑗|𝑥𝑗 = 1)

   (2) 

 

Fig. 2. Factor graph of polar codes with 𝑁 = 8. 𝐴 = {3 5 6 7} and 𝐴𝑐 =
{0 1 2 4}. 
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the search space from all information bits to a smaller subset, 

it does not include error bits outside the critical set, thus 

degrading the error correction capability of BF. Therefore, we 

propose a model-based approach to predict the flipping 

position, which results in less flipping attempts and achieves 

better error correction capacity.  

The input data for the model-based approach is important 

since it has a significant impact on prediction accuracy. In our 

case, we make use of the metadata from BP, namely the values 

of LLRs     on the factor graph, as the input data for the 

training and prediction. In each BP decoding iteration, we 

record the values of LLRs on the whole factor graph and map 

the values to an image as shown in Fig. 3(a). Also, due to the 

iterative decoding process, the images, representing different 

iterations, will be jointly integrated as input data. Therefore, 

the adopted model can explore not only the relation between 

connected nodes but also the variation of LLRs among 

different iterations, namely in both spatial and temporal 

dimensions.  

In addition, to further improve the prediction accuracy and 

reduce model complexity, we apply some domain-specific 

signal pre-processing before feeding the input data into the 

model. Two features, the absolute and sign values, are 

extracted from LLRs as shown in Fig. 3(a). By doing so, the 

absolute values represent the reliability of each node and the 

sign values are helpful for the model to further explore the 

variation between different nodes. 

B. Architecture Design of Convolutional Neural Network 

Suppose that the number of iterations for BP is 5, there are 

total 20 images after data pre-processing with each image 

resolution being (𝑛 + 1) × 𝑁, which is consistent with the size 

of the factor graph. For the image-based input data 𝑰 , the 

convolutional neural network (CNN) is employed as it is the 

widely used model for image processing with the ability to 

extract local connectivity and subtle features of the input image. 

The architecture of the proposed CNN model is illustrated in 

Fig. 3(b). It is constructed by three two-dimensional 

convolutional layers, followed by three dense layers. The 

values below the convolutional layer represent the number and 

size of filters, respectively. On the other hand, the values below 

the dense layer represent the number of nodes. Moreover, the 

nonlinear activation function, Rectified Linear Units (ReLUs), 

among each layer is defined as: 

𝑓𝑅𝑒𝐿𝑈(𝑥) = max{0 𝑥}. (6) 

It is helpful for extracting more complex features. Besides, to 

reduce overfitting, the regularization technique of “dropout” 

that avoids updating the weights of part nodes, is also utilized 

to improve the prediction accuracy. 

For the problem of bit-flipping prediction, the output layer 

has 𝐾  nodes, which represents the probability of each bit 

being flipped or not. The labeled data for training is a vector 

with 𝐾 values being 0 or 1 to indicate which bits could be 

flipped to result in successful decoding as shown in Fig. 3(c). 

Note that for some input cases, there could be more than 1 

position to result in successful decoding. Consequently, this is 

a multi-label classification problem and the output must be 

rescaled into the range [0 1] with sigmoid function to indicate 

the probability as below: 

𝑓𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = σ(𝑥) = (1 + 𝑒−𝑥)−1. (7) 

Also, the loss function is cross entropy, is defined as: 

ℒ(𝑩 �̂�) = −
1

𝐾
∑𝐵𝑖log(�̂�𝑖)

𝐾

𝑖=1

+ (1 − 𝐵𝑖)log(1 − �̂�𝑖)  (8) 

where 𝐵𝑖  and �̂�𝑖  denote the labeled data and predicted value 

for the 𝑖-th output, respectively. 

Now, with the well-trained CNN model, the mechanism of 

proposed CNN-aided bit-flipping (CNN-BF) can commence as 

provided in Algorithm 1. The received signal will first go 

through its first round of BP decoding. After a pre-set number 

 
Fig. 3. The detailed overview of the proposed convolutional neural network-aided bit-flipping decoder: (a) illustration of the process of input data pre-processing; 
(b) proposed convolutional neural network architecture; (c) illustration of labeled data and bit-flipping order based on model’s prediction results. 
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Algorithm 1: Proposed Convolutional Neural Network-

Aided Bit-Flipping Decoder 

Input:  , 𝐴, 𝑇𝑚𝑎𝑥  

Output: 𝒖 𝑁 

1:  ,  ← initialize the BP decoder using (2) 

2: 𝒖 𝑁,  ,  ← BP decoder( ,  ) 

3: 𝑡 ← 1 

4: if 𝒖 𝑁 does not pass CRC do 

4:     𝑰 ← input data pre-processing( ,  ) 

5:     �̂� ← CNN model(𝑰) 

6: while 𝒖 𝑁 does not pass CRC && 𝑡 ≤ 𝑇𝑚𝑎𝑥  do 

7:      ,  ← initialize the BP decoder using (2) 

8:     𝑖 ← index of the 𝑡-highest value in �̂� and mapped 

          to the corresponding position of information bit 

9:     𝑅0 𝑖
(1) ← ∞× (2�̂�𝑖

𝑁 − 1) 

10:     𝒖 𝑁 ← BP decoder( ,  ) 

11:     𝑡 ← 𝑡 + 1 
 



of iterations for BP, the CRC will be utilized to check whether 

the BP decoding is successful. If not, the mechanism of CNN-

BF takes the transformed metadata from BP as input and 

outputs 𝐾 values to indicate the probability of whether each bit 

should be flipped. Then, the order of priority to attempt BF is 

based on the magnitude of probability as shown in Fig. 3(c). 

Starting from the highest probability, the bits will be attempted 

in order by likelihood until the CRC is passed or the maximum 

trials 𝑇𝑚𝑎𝑥  in bit flipping is reached. 

IV. SIMULATION RESULTS 

In this work, we utilize the recurrent neural network-based 

belief propagation (RNN-BP) algorithm [8] to replace the 

conventional BP decoding algorithms. The RNN-BP can 

dramatically reduce the required number of BP iterations from 

40 to 5, which decreases the additional decoding latency 

caused by each flipping attempt and makes the BF mechanism 

more practical. The simulation setup is summarized in Table I. 

A. Error Correction Capability of CNN-BF and CS-BF 

As mentioned in Section III.A, though critical set can 

effectively reduce the search space for flipping attempt, it also 

excludes error bits outside the critical set, thus degrading the 

error correction capability of BF. The first experiment is to 

evaluate the gap between CS-BF and our proposed CNN-BF. 

Because the search space for CNN-BF is 𝐾, it can cover all 

error bits. On the other hand, the search space for CS-BF is 

limited to |CS|, which is 12 when 𝑁 = 64. The evaluation of 

coverage rate for CS-BF is listed in Table II. From Table II, we 

can observe that though |CS| is far less than 𝐾, it still can cover 

most of the error bits, which demonstrates the benefit of critical 

set for decreasing the search space. However, it also reveals the 

deficiency of CS-BF for degraded error correction capacity, 

especially for low signal to noise ratio (SNR) conditions. 

B. Comparison of Prediction Accuracy between CNN-BF 

and CS-BF 

Next, we evaluate the performance of the proposed CNN-

BF and CS-BF. The training and testing SNR is set from 0 dB 

to 3 dB as listed in Table I. First, we compare the BF selection 

accuracy between both methods. The number of flipping 

attempts is the number of tries until the decoding result passes 

CRC. The accuracy is determined by the number of cumulative 

successful decodings at the number of flipping attempts as a 

percentage of the total samples. The maximum number of 

flipping attempts 𝑇𝑚𝑎𝑥   is set to 12 which is as same as |CS|. 
As seen in Fig. 4, both methods have better prediction 

accuracy as the SNR increases. However, CNN-BF predicts 

the correct bit-flipping condition at a significantly better 

accuracy, especially at earlier number of attempts, as well as 

having a higher ceiling for improvement over numerous bit-

flipping attempts. These outstanding improvements are the 

result of two reasons. First, the well-trained CNN model has a 

more accurate BF selection. Second, CNN-BF can flip bits 

outside of the critical set which achieves better error correction 

capability over CS-BF. Both of the reasons contribute to the 

reduction of 5 flipping attempts for CNN-BF compared to CS-

BF, which can effectively reduce the latency of the decoding 

process caused by bit-flipping. 

C. Comparison of Block Error Rate between CNN-BF and 

Prior Works  

To further quantify the above results, we realize the 

contribution of successful decoding to the block error rate. The 

simulation results are shown in Fig. 5. In addition to the 

performance of CNN-BF and CS-BF, we also compare the 

performance of RNN-BP without BF mechanism to evaluate 

the improvement. The performance of SCL with list size 𝐿 =
8 is also included [4]. Also, we compare the decoding 

 

Fig. 4. Comparison of prediction accuracy between the proposed CNN-BF 

and CS-BF [15] under the different number of flipping attempts. 
 

 

Fig. 5. Comparison of block error rate between the proposed CNN-BF, CS-
BF [15], RNN-BP [8], and SCL [4] under different SNR. 

 

5 attempts

TABLE I. SIMULATION PARAMETERS 

Encoding Polar code (64,32) 

Decoding Algorithm RNN-BP [8] 

Number of BP Iteration 5 

Signal to Noise Ratio (SNR) 0, 1, 2, 3 

CRC Generator Polynomial 𝑥6 + 𝑥5 + 1 

Training Codeword/SNR 38,400 

Testing Codeword/SNR 153,600 

Validation Ratio 0.2 

Mini-batch Size 500 

Optimizer Adam 

Training and Testing 

Environment 

DL library of Keras with 

NVIDIA RTX 8000 GPU 
 

TABLE II. COVERAGE RATE OF CRITICAL SET 

SNR (dB) 0 1 2 3 

CS-BF [15] 76.68% 79.50% 83.25% 87.81% 

 



performance when 𝑇𝑚𝑎𝑥 = 6  and 𝑇𝑚𝑎𝑥 = 12 , respectively, 

where 𝑇𝑚𝑎𝑥  denotes the maximum trials in bit flipping. From 

Fig. 5, we can observe that SCL has better performance than 

RNN-BP due to the most likely paths are kept to avoid the 

mistakes happened in early stages. However, it suffers from 

high latency and low throughput due to its sequential 

processing nature. On the other hand, both CNN-BF and CS-

BF, based on BP decoding algorithm, also achieve great 

improvement at the sacrifice of slightly longer decoding 

latency, which demonstrates that the BF mechanism can 

provide a compromise for adjustment between decoding 

performance and latency. Furthermore, CNN-BF can even 

outperform SCL when 𝑇𝑚𝑎𝑥 is set to 6, which is half of the 12 

set for CS-BF due to its higher prediction accuracy and better 

error correction capability as shown in Fig. 4. 

D. Comparison of Average Flipping Attempts between CNN-

BF and Prior Works  

Finally, we examine the average flipping attempts between 

different approaches to evaluate the impact of additional 

decoding latency caused by bit-flipping. Besides, 𝑇𝑚𝑎𝑥 = 6 

and 𝑇𝑚𝑎𝑥 = 12 are also compared. From Fig. 6, the average 

flipping attempts decreases rapidly as SNR increases. 

Especially, at SNR = 3dB and 𝑇𝑚𝑎𝑥 = 12 , the flipping 

attempts for CNN-BF and CS-BF are merely 0.21 and 0.32, 

respectively. It represents that the increase in decoding latency 

is small enough. However, it still contributes to significant 

improvement in decoding performance as shown in Fig. 5. 

Besides, under the same decoding performance when 𝑇𝑚𝑎𝑥  is 

6 and 12 for CNN-BF and CS-BF, respectively, the average 

flipping attempts of CNN-BF is also half that of CS-BF in the 

entire SNR range. In summary, compared with CS-BF, the 

proposed CNN-BF not only achieves better decoding 

performance but also reduces the decoding latency due to the 

appropriate input data and well-designed network model. 

V. CONCLUSION 

In this paper, we present a novel convolutional neural 

network-aided bit-flipping decoder. With carefully designed 

input data and domain-specific data pre-processing, our model 

can learn from BP metadata to correctly predict flipping 

position, with more accuracy than the prior critical set method. 

Therefore, it can avoid incorrect bit-flipping attempts with 

reduction in both decoding latency and error rate. Meanwhile, 

it also provides a flexible adjustment between decoding 

performance and latency, which fits into various requirements 

in 5G and future-generation communications. 
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