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ABSTRACT

Most speech separation methods, trying to separate all channel
sources simultaneously, are still far from having enough general-
ization capabilities for real scenarios where the number of input
sounds is usually uncertain and even dynamic. In this work, we
employ ideas from auditory attention with two ears and propose a
speaker and direction inferred speech separation network (dubbed
SDNet) to solve the cocktail party problem. Specifically, our SDNet
first parses out the respective perceptual representations with their
speaker and direction characteristics from the mixture of the scene
in a sequential manner. Then, the perceptual representations are
utilized to attend to each corresponding speech. Our model gener-
ates more precise perceptual representations with the help of spatial
features and successfully deals with the problem of the unknown
number of sources and the selection of outputs. The experiments
on standard fully-overlapped speech separation benchmarks, WSJ0-
2mix, WSJ0-3mix, and WSJ0-2&3mix, show the effectiveness, and
our method achieves SDR improvements of 25.31 dB, 17.26 dB,
and 21.56 dB under anechoic settings. Our codes will be released
at https://github.com/aispeech-lab/SDNet.

Index Terms— dual-channel speech separation, speaker and
direction-inferred separation, cocktail party problem.

1. INTRODUCTION

In many environments, the auditory scene is composed of several
concurrent speech streams with their spectral features overlapping
both in space and time. Human auditory system exhibits a remark-
able ability to parse these complex scenes. However, background
noise, overlapping speech, and reverberation damage the quality and
degrade the performance of speech recognition.

Recently, some researchers attempt to alleviate the problem and
pay extensive attention to neural network-based speech separation.
In the single-channel-based separation task, many methods have
achieved state-of-the-art (SOTA) performance, such as frequency
domain-based DPCL [1], DANet [2], PIT [3], Chimera++ [4],
CBLDNN-GAT [5], SPNet [6], Deep CASA [7] and time domain-
based TasNet [8], FurcaPa [9], DPRNN [10]. These methods design
the model structure from different perspectives and follow different
training strategies, where the factors affecting performances are
investigated in depth. However, these methods meet several chal-
lenges: an unknown number of sources in the mixture, permutation
problem, and selection from multiple outputs.

In order to deal with the situation that the number of sources in
mixed speech is unknown, paper [11] incorporates DPCL into the
masking-based beamforming and performs separation. OR-PIT [12]
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separates only one speaker from a mixture at a time, and the resid-
ual signal is sent to the separation model for the recursion to sepa-
rate the next speaker. An iteration termination criterion is proposed
to identify the number of speakers accurately. A speaker-inferred
model [13] uses the Seq2Seq-based method [14, 15] to infer speak-
ers. Speaker information is also appended to the output. Auxiliary
autoencoding PIT [16] is proposed to further improve the perfor-
mance across various numbers of speakers.

Speaker-aware-based networks [17–21] try to deal with the
problem of permutation and selection from outputs. These methods
are interested in recovering a single target speaker while reducing
noise and the effect of interfering speakers. The reference speech
from the target speaker should be given in advance.

In addition to the single-channel-based methods, multi-channel-
based methods can extract additional direction features to further
improve the performance, and some methods are proposed to solve
the problems of permutation and output selection. Similar to the
speaker-aware-based networks, Li et al. [22] use fixed beamformers
to transfer the multi-channel mixture into single-channel signals. An
attention network is designed to identify the direction of the target
speaker and combine the beamformed signals. SpeakerBeam [18] is
then applied to separating the enhanced signal. The direction-aware-
based method [23] focuses on the target source in a specific direction
by using a time domain-based network.

PIT-based methods [3,5,6,8–10] need prior knowledge about the
number of speakers and meet the permutation problem. These meth-
ods have some shortcomings in real environments. In the existing
methods account for identifying the number of outputs, [12] requires
iterative operations, which increases system complexity. [11,12] still
can not solve the problem of the selection of outputs. Speaker-aware-
based methods need to know the target speaker in advance. The
speech of other speakers cannot be separated. Besides, in single-
channel-based methods, speakers with similar pitch are difficult to
be separated. By extending it to multi-channel-based methods, an
additional direction feature can be acquired by the network.

In real environments, a source signal has a unique speaker and
direction information. We propose a speaker and direction-inferred
dual-channel speech separation network (SDNet), which can infer
speaker and direction information first and use them as cues to sep-
arate speech. Our contributions are listed as follows: (1) We expand
single-channel to multi-channel time domain-based separation based
on [13]. Spectral and spatial features are fully utilized. (2) Instead
of manually extracting channel differences in [25, 26], the channel
differences are extracted by the network and can be optimized end-
to-end. (3) This network can simultaneously infer speaker and direc-
tion information, and the information is fused as a source mask for
separation. By dynamically estimating the number of source masks,
the network can cope with the problem of the unknown number of
outputs. (4) After separation, speaker and direction information are

ar
X

iv
:2

10
2.

04
05

6v
1 

 [
cs

.S
D

] 
 8

 F
eb

 2
02

1

https://github.com/aispeech-lab/SDNet


CH2

CH1Spk 1

Spk 2

Spk 3

Three-talker Mixture Scene

1
-d

 C
o
n
v
 E

n
co

d
er

1E

2E

IAC

IA
C

Concat

Feature Extraction Module

Conv

DConv

SConv

Conv

DConv

SConv

Conv

DConv

SConv

...

B
L

S
T

M

Attentive Speaker Decoder

Attentive Direction Decoder

 Separation Module

Feature 

Fusion

sigmod

1
-d

 C
o
n
v
 D

ec
o
d
er

Output

In
fe

re
n

ce

M
o
d

u
le

Spk1
Spk2
Spk3

<
E

O
S

>
<

E
O

S
>

Fig. 1: The model architecture of SDNet. In the separation module, SConv and DConv represent the depth-wise separable convolution [24].

appended to the separated speech. This information can be used in
subsequent tasks. The network can deal with the problem of the se-
lection of outputs.

Scale-invariant signal-to-noise ratio (SISNR) [8] and signal-to-
distortion ratio (SDR) [27] improvements are used to evaluate the
performance. Experimental results show that SDNet can effectively
perform separation both on the anechoic and reverberant settings.

2. SYSTEM OVERVIEW

The illustration of our model is shown in Fig. 1. Our network is
composed of three components: (1) The feature extraction module
processes features from each channel and extracts the channel dif-
ferences; (2) The inference module parses out the speakers and di-
rections from the mixture and generates source masks; (3) The sepa-
ration network processes features and integrates the source masks to
generate the separated outputs.

2.1. Feature extraction module

2.1.1. convolutional encoder

The encoder transforms the mixture waveforms into an intermediate
feature space. In detail, the input segment is transformed into the
representation by using a one-dimensional (1D) convolutional layer.

Ei = Conv1d(CHi), i = 1, 2, (1)

where E indicates the encoder, and CHi represents the waveform of
i-th channel.

2.1.2. inter-channel attention correlation

Compared with the single-channel-based models, dual-channel-
based models can use both spatial and spectral information. This
is conducive to the improvement of performance. The time differ-
ence between the channels can be obtained by end-to-end training
or manually-designed features [25, 26]. We directly calculate the
correlation among the channels and integrate it into the network as
an additional feature. In detail, similar to the self-attention [28],
we calculate the attention correlation between channels. By setting
channel 1 as the reference, the inter-channel attention correlation
(IAC) is as follows:

IAC = softmax(E1E
T
2 ), (2)

where E1 and E2 represent the output of encoder 1 and encoder 2,
respectively. Channel differences may contribute to the inference
module. The feature extraction module has two different outputs,
and the outputs are:

F = [E1 ,E2 ], Fo = [IAC ,E1 ,E2 ], (3)

where Fo is sent to the inference module, and F is fed into the sep-
aration module.

2.2. Inference module

In the inference module, the Seq2Seq-based mechanism [14, 15] is
applied to inferring the speakers and directions in a sequence man-
ner. First, the features are mapped into high-level vectors by using
stacked bi-directional long short term memory (BLSTM) layers. The
specific equation is:

h = BLSTM (Fo), (4)
where h is the hidden state, and Fo represents the input feature of
the inference module.

We use two independent decoding networks to infer the speakers
and the directions, respectively. Considering not all speech features
make contributions to infer the speakers and directions equally at
each step, the attention mechanisms are utilized to produce context
vectors by focusing on different portions of the sequence and aggre-
gating the hidden representations. Two attentive decoding networks
have similar procedures. Here we formulate the speaker-inferred de-
coder as follows:

αti = softmax(tanh(W1 st−1 +U1hi)), (5)

ct =

T∑
i=1

αtihi , (6)

where W1, U1 are weights, and st−1 is the hidden state of the de-
coder at time-step t− 1. ct is the context vector at time-step t.

For the decoding networks, a global embedding strategy is in-
troduced to alleviate the problem of exposure bias [15], and the em-
bedding feature at t is calculated as follows:

eat =

N∑
j=1

yjt−1ej , (7)



g = sigmoid(W2 et +U2 e
a
t ), (8)

est = g � et + (1 − g)� ea
t , (9)

where N is the number of speakers. yjt−1 is the j-th element of
yt−1 and ej is the embedding vector of the j-th speaker. eat denotes
the weighted average embedding at time t. W2 and U2 are weight
matrices. est represents the speaker embedding at time t. � denotes
element-wise multiplication. The hidden state st of the decoder at
time-step t is computed as follows:

st = LSTM(st−1 , [est ; ct ]). (10)

The final output is calculated as:

yt = softmax(W3 f (W4 st +W5 ct)), (11)

whereW3,W4, andW5 are weights. yt represents the inferred prob-
ability distribution of the inferred speaker at time-step t. In each
time step, rather than selecting the final output yt, the speaker em-
bedding, est , is selected as the speaker mask. When the inferred yt
corresponds to an<EOS> (End-of-Sequence), the decoding process
is stopped.

The inference process of direction mask, edt , is the same as the
equations above. The source mask can be obtained as follows:

smt = est + edt , (12)

where smt means the t-th source mask inferred by the inference
module. In the inference module, these two attentive decoders run
simultaneously. If one decoder infers an <EOS>, the two decoders
are stopped. In the test, the beam search algorithm [29] is applied to
finding the top-ranked inference.

2.3. Separation module

Temporal convolutional networks (TCN) [30] effectively memorize
long-term dependencies. Dilation rate [30] is used to continuously
expand the receptive field. The separation module is the same as the
separation module in TasNet [8]. In detail, the streamline of the sep-
aration module consists of four convolutional blocks. In each block,
for expanding receptive fields, dilated convolutional operations are
repeat R times with 1,2,4,..., and 2R−1 dilation rates. A sigmoid
activation then scales the output.

To generate separated outputs, the decoding process is the in-
verse process of the encoding layer. It decodes the feature represen-
tation to speech samples. Specifically, we use 1D transposed convo-
lution to implement the decoding process:

Zi = F � TCNo � smi , i = 1 , ...,n,

D(Z )i = TransposedConv(Zi), i = 1 , ...,n,
(13)

where TCNo denotes the output of TCN layers. Zi represents the
high-level feature representatives of i-th inferred source. n is the
number of source masks infered in this mixture. D(·)i represents
the i-th separated output.

2.4. Loss function

End-to-end training is performed, and three kinds of loss are
adopted: raw-waveform-based SiSNR separation loss, cross-entropy-
based speaker-inferred loss, and cross-entropy-based direction-
inferred loss. The detailed loss function is formulated as:

L = −LSiSNR−SS + λ× (LCE−Spk + LCE−Dir ), (14)

Table 1: The effect of SNet-time in single-channel anechoic datasets
and comparison of different methods on SDR improvement (dB).

System WSJ0-2mix WSJ0-3mix WSJ0-2&3mix
SNet-time 12.35 9.87 10.81
SNet [13] 7.52 5.14 7.05

DPCL++ [31] 10.3 7.1 8.8
uPIT-BLSTM [3] 10.0 7.7 8.9

TasNet [8] 15.0 12.8 −
OR-PIT [12] 15.0 12.9 −

where λ is a hyper-parameter. For the inference module, speaker in-
dexes act as the speaker labels, which are 101 in this experiment. 37
directions are chosen as the direction labels, which are distributed
from 0 degrees to 180 degrees with a 5-degree interval. The labels
of direction are generated during the data simulation. Meanwhile,
<BOS> (Begin-of-Sequence) and <EOS> are also added to the
speaker and direction label sets. For each sample, <BOS> is placed
at the top of the labels, and <EOS> is placed at the end. <BOS>
means that the network starts to infer. <EOS> is used for the net-
work to determine the end of decoding.

3. EXPERIMENTS

3.1. Experimental setup

The proposed methods are evaluated on 8k Hz single and dual-
channel WSJ0-2mix, WSJ0-3mix, and WSJ0-2&3mix datasets [1].
For both single-channel and stereo datasets, WSJ0-2mix and WSJ0-
3mix contain 30 hours of training data, 10 hours of development
data, and 5 hours of test data. The mixing signal-to-noise ratio,
pairs, dataset partition are exactly coincident with paper [1]. WSJ0-
2&3mix is the union of WSJ0-2mix and WSJ0-3mix. Anechoic and
reverberant stereo datasets are generated by convolving the clean
speech with the room impulse responses [32, 33]. For reverberant
datasets, the reverberation time is uniformly sampled from 40 ms
to 200 ms. We place 2 microphones at the center of the room. The
distance between microphones is 10 cm. Sound sources are ran-
domly placed in the room. The training set and the test set contain
101 and 18 speakers, respectively. The speakers in the test set are
different from the speakers in the training set and the development
set. During training, the label order in the inference module is sorted
in descending order according to speech energy.

In (inChannel, outChannel, kernel, stride)-format, for the en-
coder in the feature extraction module, 1D convolution has (1, 256,
40, 20)-kernel with no pooling. This corresponds to a frame length
of 5 ms and a 2.5 ms shift. In the inference module, BLSTM layers
have 3 layers with 256 nodes in each direction. Two LSTM-based
decoders both run with 3 layers with 512 nodes. The dimension of
the speaker and the direction embedding is 256. In the separation
module, TCN runs with four convolution blocks and R = 8 in each
block. Transposed convolution runs with (256, 1, 40, 20)-kernel. For
loss, λ = 5. For SDNet, the input is raw-waveform, and it outputs
raw-waveform.

3.2. Baselines

In our experiments, we build several baselines. SNet [13] acts as
the baseline and is performed in the frequency domain. SNet-2ch
represents the dual-channel version of SNet. We also build a dual-
channel TasNet, named TasNet-2ch, whose channel differences are



Table 2: The effect of different configurations on dual-channel datasets and comparisons on SISNR and SDR improvement (dB).

System Domain Data Type WSJ0-2mix WSJ0-3mix WSJ0-2&3mix
SISNRi SDRi SISNRi SDRi SISNRi SDRi

SNet-2ch Freq. Anechoic 14.62 14.25 10.31 10.03 11.12 11.02
SNet-time-2ch Time Anechoic 20.88 20.61 14.32 14.11 17.43 17.31

SNet-time-2ch+IAC Time Anechoic 21.13 20.89 15.41 15.02 18.65 18.11
SDNet Time Anechoic 25.71 25.31 17.46 17.26 21.92 21.56

TasNet-2ch Time Anechoic 25.21 25.08 17.31 17.06 − −
SNet-2ch Freq. Reverberant 7.32 7.28 5.53 5.15 6.53 6.33

SNet-time-2ch Time Reverberant 8.43 8.35 6.62 6.41 7.32 7.30
SNet-time-2ch+IAC Time Reverberant 8.76 8.59 6.93 6.86 7.88 7.64

SDNet Time Reverberant 10.57 10.64 8.49 8.55 9.91 9.08
TasNet-2ch Time Reverberant 10.78 10.83 9.08 9.32 − −

learned in an end-to-end manner. These models are trained with the
same datasets as our models.

3.3. Analysis of the proposed methods

Learned from the experimental results in Table 1 and Table 2, the
proposed methods can effectively separate the mixed speech. In
Table 1, SNet is first transferred into the time domain as SNet-time.
Compared with SNet, SNet-time achieves performance improve-
ment, which attributes to the time-domain-based end-to-end train-
ing. SNet-time-2ch means the dual-channel SNet-time. Compared
with SNet-time, SNet-time-2ch achieves a significant performance
improvement. It means that the spatial information can be utilized
by our network to improve the performance.

IAC is used to extract the differences between channels. The
extracted features are only used in the inference module. The time-
domain-based dual-channel model with IAC is named as SNet-time-
2ch+IAC. As shown in Table 2, the models with IAC have achieved
performance improvement both on the anechoic and reverberant
datasets.

When reverberation is added, performance is degraded. SDNet
has achieved performance improvements both on anechoic and re-
verberant datasets. When separating the mixture, the speaker and
direction can be inferred by SDNet. The inferred speaker and direc-
tion information is conducive to the selection of output. Our final
model, SDNet, can achieve SDR improvements of 25.31 dB, 17.26
dB, and 21.56 dB on the anechoic WSJ0-2mix, WSJ0-3mix, and
WSJ0-2&3mix datasets and 10.64 dB, 8.55 dB, and 9.08 dB on the
reverberant WSJ0-2mix, WSJ0-3mix, and WSJ0-2&3mix datasets,
respectively.

The performances of SNet-time and SNet-time-2ch are worse
than the corresponding TasNets. This is due to the speaker mis-
match between the training set and the test set, resulting in inac-
curate speaker masks generated during the test. The direction in-
ference mechanism in SDNet can effectively alleviate this problem.
Reverberation has a negative impact on direction inference. SDNet
performs similar to TasNet-2ch, but it does not need prior knowledge
of the number of outputs.

3.4. Inference accuracy of sound-source number

The advantage of our proposed model is that it can dynamically es-
timate the number of sound sources. In the WSJ0-2mix and WSJ0-
3mix, the number of speakers mixed in speech is fixed. We find that
the models learn this pattern. In these experiments, the inference

Table 3: Inferring accuracy of source numbers on reverberant
WSJ0-2&3mix dataset.

Model Accuracy (%)
SNet-time 81.75

SNet-time-2ch 85.11
SNet-time-2ch+IAC 86.67

SDNet 89.73

accuracies are close to 100%. Therefore, we construct the WSJ0-
2&3mix dataset and perform experiments on this dataset. The ex-
perimental results are shown in Table 3.

For comparison, SNet-time in Table 3 is performed on the same
reverberant dataset but only on the reference channel. In Table 3,
compared with SNet-time, the inference accuracy of SNet-time-2ch
has been greatly improved, which indicates that the spatial informa-
tion is learned by the model and used to increases the discrimination
of the sound sources. Compared with SNet-time-2ch, SNet-time-
2ch+IAC can infer the number of sound sources more accurately.
This shows that the extracted channel differences are beneficial to
our system. SDNet achieves 89.73%, which indicates the proposed
method can make better use of the spatial information.

4. CONCLUSIONS

We propose a time-domain-based speaker and direction-inferred
dual-channel speech separation network, which first infers the
speaker with direction and then integrates them as a source mask to
separate the mixed speech. Experimental results show that SDNet
effectively separates mixture under anechoic and reverberant condi-
tions and deals with the problem of an unknown number of sources
in the mixture and selection of outputs.
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