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ABSTRACT
Speech emotion recognition (SER) is a key technology to

enable more natural human-machine communication. How-
ever, SER has long suffered from a lack of public large-scale
labeled datasets. To circumvent this problem, we investi-
gate how unsupervised representation learning on unlabeled
datasets can benefit SER. We show that the contrastive pre-
dictive coding (CPC) method can learn salient representations
from unlabeled datasets, which improves emotion recogni-
tion performance. In our experiments, this method achieved
state-of-the-art concordance correlation coefficient (CCC)
performance for all emotion primitives (activation, valence,
and dominance) on IEMOCAP. Additionally, on the MSP-
Podcast dataset, our method obtained considerable perfor-
mance improvements compared to baselines.

Index Terms— Speech emotion recognition, Contrastive
predictive coding, Unsupervised pre-training.

1. INTRODUCTION

Speech emotion recognition (SER) aims at discerning the
emotional state of a speaker, thus enabling more human-like
interactions between human and machines. An agent can
understand the command of a human better if it is able to in-
terpret the emotional state of the speaker as well. Moreover,
a digital assistant can prove to be a human-like companion
when equipped with the capability of recognizing emotions.
These fascinating applications provide key motivations un-
derpinning the fast growing research interest in this area
[1, 2]

Despite the substantial interest from both academia and
industry, SER has not found many real-world applications.
One possible reason is the unsatisfactory performance of ex-
isting systems. The difficulty is caused by, and contributes to,
relatively small public data sets [3, 4] in this domain. The lack
of large scale emotion annotated data hinders the application
of deep learning methods, from which many other speech-
related tasks (e.g automatic speech recognition [5]) have ben-
efited greatly.

In order to circumvent the data sparsity issue of SER,
we investigate the use of unsupervised pre-training. Unsu-
pervised pre-training techniques have received increased at-
tention over the last few years. The research interest in this
direction is well-motivated: while deep-learning (DL) based
methods achieve state-of-the-art results across multiple do-
mains, these methods tend to be data-intensive. Training a
large and deep neutral network usually requires very large la-
beled datasets. The cost of data labeling has since become a
major obstacle for applying DL techniques to real-world ap-
plications, and SER is no exception. Motivated by recent de-
velopments in unsupervised representation learning, we lever-
age an unsupervised pre-training approach for SER.

The proposed method shows great performance improve-
ment on two widely used public benchmarks. The improve-
ments on recognizing valence (positivity/negativity of the
tone of voice) are particularly encouraging, as valence is
known to be very hard to predict from speech data alone, see
e.g. [6, 7]. Furthermore, our analysis implies, even without
explicit supervision in training, emotion clusters emerge in
the embedding space of the pre-trained model, confirming the
suitability of unsupervised pre-training for SER.

2. RELATED WORK

Recent studies on unsupervised representation learning have
achieved great success in natural language processing [8, 9]
and computer vision [10, 11]. While leveraging unsupervised
learning for SER has been investigated relatively little, pre-
vious attempts using autoencoders have been successful [12,
13]. More recently, it has been shown that learning to pre-
dict future information in a time series is a useful pre-training
mechanism [14].

Unsupervised methods based on contrastive learning have
established strong and feasible baselines in many domains, re-
cently. For instance, contrastive predictive coding (CPC) [11]
is able to extract useful representations from sequential data
and achieves competitive performance on various tasks, in-
cluding phone and speaker classification in speech. Our work
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relies on the use of a CPC network for learning acoustic rep-
resentations from large unlabeled speech datasets.

3. BACKGROUND

The primary goal of this study is to learn representations that
encode emotional attributes shared across frames of speech
audios without supervision. We start by reviewing relevant
concepts in emotion representation, then we give a brief re-
view of the contrastive predictive coding (CPC) method.

3.1. Emotion representation

In general, there are two widely used approaches to represent
emotion: by emotion categories (happiness, sadness, anger,
etc.) or by dimensional emotion metrics (aka emotion prim-
itives) [3, 4, 15]. Albeit intuitive, the categories-based rep-
resentation may miss the subtleties of emotion “strength”,
e.g. annoyance versus rage. The dimensional emotion met-
rics often include activation (aka arousal, very calm versus
very active) , valence (level of positivity or negativity) and
dominance (very weak versus very strong). In this work, we
mainly focus on predicting dimensional emotion metrics from
speech. Since emotion representation is an active research
topic, we refer the interested readers to [15, 16].

3.2. Contrastive predictive coding

As the name suggests, CPC falls into the contrastive learning
paradigm: positive example and negative examples are con-
structed, and the loss function encourages separation of pos-
itive from negative examples. We give a detailed description
of CPC below.

For an audio sequence X = (x1, x2, ..., xn), CPC uses a
nonlinear encoder f to project observation xt ∈ RDx to its
latent representation zt = f(xt), where zt ∈ RDz . Then an
autoregressive model g is adopted to aggregate t consecutive
latent representations from the past into a contextual repre-
sentation ct = g(z≤t), where ct ∈ RDc .

Since ct summarizes the past, it should be able to infer the
latent representation zt+k of future observations xt+k from
ct, for a small k. For this purpose, a prediction function hk
for a specific k takes the context representation as the input to
predict the future representation:

ẑt+k = hk(ct) = hk(g(z≤t)). (1)

To form a contrastive learning problem, some negative sam-
ples (i.e. other observation x) are drawn, either from the same
sequence or other sequences, and their latent representations
(z) are computed.

AssumingN−1 negatives are randomly sampled for each
context representation, then positive and negatives form a set
ofN samples that contains only one positive andN −1 nega-
tives. To guide feature learning, the CPC method proposes to

discriminate the positive from negatives, which boils down to
an N-way classification problem. CPC uses the infoNCE loss
function: for an audio segment and a time step t, the infoNCE
loss is defined as

L = −
k∑

m=1

[
log

exp(ẑ>t+mzt+m)/τ

exp(ẑ>t+mzt+m)/τ +
∑N−1
i=1 exp(ẑ>t+mzi)/τ

]
,

(2)

where τ is a scaling factor (a.k.a temperature) to control the
concentration-level of the feature distribution, k is the upper-
bound on time extrapolation. Notice that the summation over
i assumes that the randomly drawn negative samples are la-
beled as {1, ...N − 1}, and these are different for each zt+m.
In addition, the loss function considers all the future time ex-
trapolation up to k. Clearly, the loss (2) is additive across dif-
ferent audio segments and time steps, hence in training, the
loss (2) is usually computed for batches of audio segments
and all possible time steps in these segments, to utilize the
mini-batch-based Adam [17] optimizer.

Optimizing (2) results in larger inner product between a
latent representation and its predicted counterpart, than any of
the negatives – mismatched latent representation and predic-
tions. Theoretical justification for the optimization objective
function (2) can be found in [11] and [18].

4. PROPOSED METHOD

The proposed method consists of two stages: pre-training a
“feature extractor” model with CPC on a large un-labeled
dataset, and training an emotion recognizer with features
learned in the first stage. In this section, we introduce the
emotion recognizer and training loss function.

4.1. Attention-based emotion recognizer

The output of CPC is a sequence of encoded vectors C =
{c1, c2, ..., cL}, C ∈ RL×Dc . To predict primitive emotions
for a certain speech utterance, an utterance-level embedding
is desired. Since certain parts of an utterance are often more
emotionally salient than others, we adopt a self-attention
mechanism to focus on these periods for utilizing relevant
features. Specifically, a structured self-attention [19] layer
aggregates information from the output of CPC and produces
a fixed-length vector u as the representation of the speech
utterance.

Given C as input of the emotion recognizer, we follow
[19] to compute the scaled dot-product attention representa-
tion H as

H = softmax
(
CWQ(CWK)>/

√
Dattn

)
CWV (3)

where WQ, WK , and WV are trainable parameters, and all
have shape Dc × Dattn. The subscripts Q,K, V stand for
query, key, and value, as defined in [19].



In order to learn an embedding from multiple aspects, we
use a multi-headed mechanism to process the input multiple
times in parallel. The independent attention outputs are sim-
ply concatenated and linearly transformed to get the final em-
bedding U ∈ RDu .

Hj = softmax
(
W j
QC(W

j
KC)

>/
√
Dattn

)
W j
V C (4)

U = Concat(H1, H2, ...,Hn)WO (5)

where WO ∈ RnDattn×Du is another trainable weight ma-
trix, and U ∈ RL×Du is the sequence representation after the
multi-headed attention layer.

Following the multi-headed attention layer, we compute
the mean and standard deviation along the time dimension,
and concatenate them as the sequence representation

u = [ mean (U); std (U)] (6)

Subsequently, two dense layers with ReLU activation are
used. We apply a dropout after these two dense layers with
a small dropout probability. The final output layer is a dense
layer with hidden units of the number of emotion attributes
(e.g. three dimensions corresponding to activation, valence
and dominance respectively).

4.2. Loss function

Following [20], we build a loss function based on the concor-
dance correlation coefficient (CCC, [21]). For two random
variables X and Y , the CCC is defined as

CCC(X,Y ) = ρ
2σXσY

σ2
X + σ2

Y + (µX − µY )2
, (7)

where ρ = σXY

σXσY
is the Pearson correlation coefficient, and

µ and σ are the mean and standard deviation, respectively.
As can be seen from (7), CCC measures alignment of two
random variables. In our setting, model predictions and data
labels assume the role of X and Y in (7).

Since the emotion recognizer predicts at the same time
activation, valence and dominance, we use a loss function that
combines CCCact, CCCval, CCCdom values for activation,
valence, and dominance, respectively

L = 1− αCCCact − βCCCval − γCCCdom (8)

We set the trade-off parameters α = β = γ = 1/3 in all our
experiments.

5. SPEECH CORPORA

For unsupervised pre-training, we train the CPC model on
LibriSpeech dataset [22], which is a large scale corpus origi-
nally created for automatic speech recognition (ASR). It con-
tains 1000 hours of English audiobook reading speech, sam-
pled at 16kHz. In our experiment, due to computational limi-
tations, we use an official subset ”train-clean-100” containing

100 hours of clean speech for unsupervised pre-training. In
this subset, 126 male and 125 female speaker were assigned
to the training set. For each speaker, the amount of speech
was limited to 25 minutes to avoid imbalances in per-speaker
duration.

To evaluate the empirical emotion recognition perfor-
mance, we perform experiments on the widely used MSP-
Podcast dataset [4] and IEMOCAP dataset [3]. MSP-Podcast
is a database of spontaneous emotional speech. In our work,
we used version 1.6 of the corpus, which contains 50,362 ut-
terances amounting to 84 hours of audio recordings. Each ut-
terance contains a single speaker with duration between 2.75s
and 11s. We follow the official partition of the dataset, which
has 34,280, 5,958, and 10,124 utterances in the training, vali-
dation and test sets, respectively. The dataset provides scores
for activation, valence and dominance, as well as categorical
emotion labels.

IEMOCAP is a widely used corpus in SER research. It
has audio-visual recordings from five male and five female
actors. The actors were instructed to either improvise or act
out certain specific emotions. The dataset contains 5,531 ut-
terances grouped into 5 sessions, which amount to about 12
hours of audio. Similar to MSP-Podcast, this dataset provides
categorical and dimensional emotion labels. In this work, we
focus on predicting the dimensional emotion metrics from the
speech data.

6. EXPERIMENT RESULTS

6.1. Setups

Our experiments investigate four different setups:
a). supervised only (Sup): As a simple baseline, an emo-
tion recognizer was trained and tested on 40-dimensional log
filterbank energies (LFBE) features of IEMOCAP and MSP-
Podcast, respectively. LFBE features have been tested in a
wide variety of applications.
b). joint CPC + supervised (jointCPC): JointCPC trained
CPC model and emotion recognizer in an end-to-end man-
ner, where the CPC model aims to learn features from the raw
audios directly, while the Sup setup uses hand-crafted fea-
tures for the supervised task. We included this baseline to test
whether it is possible to learn better features when the feature
extraction part is aware of the downstream task.
c). miniCPC: Compared with jointCPC, miniCPC trains the
CPC model and the emotion recognizer in two separate stages
on the same datasets. In this setup, we can verify whether
CPC model can learn universal representations that can facil-
itate various downstream tasks.
d). CPC pre-train + supervised (preCPC): We first pre-
trained a CPC model with a 100-hour subset of the Lib-
riSpeech dataset. Then an attention-based emotion recog-
nizer will be trained on features that were extracted from the
learned CPC model with MSP-Podcast and IEMOCAP, re-



spectively. Since the training corpus for CPC is much larger
than the labeled datasets, we can test whether introducing a
large out-of-domain dataset for unsupervised pretraining is
useful.

For the CPC model used in the above settings, we use a
four layer CNN with strides [5, 4, 4, 2], filter-sizes [10, 8,
8, 4] and 128 hidden units with ReLU activations to encode
the 16KHz audio waveform inputs. A unidirectional gated re-
current unit (GRU) network with 256 hidden dimensions is
used as the autoregressive model. For each output of GRU,
we predict 12 timesteps in the future using 50 negative sam-
ples, sampled from the same sequence, in each prediction. We
train the CPC model with fixed length utterances of 10s dura-
tion. Longer utterances are cut at 10s, and shorter ones were
padded by repeating themselves.

For the emotion recognizer, an 8-head attention layer with
512 dimensional hidden states is used. The outputs of atten-
tion layer have the same dimension of the inputs. The two
fully-connected layers have 128 hidden units. The drop out
probability is set to 0.2 for the dropout layers.

Our model was implemented in PyTorch and all methods
were conducted on 8 GPUs each with a minibatch size of 8
examples for CPC pretraining. We use Adam optimizer with
a weight decay of 0.00001 and a learning rate of 0.0002. We
used 50 epochs for training and saved the model that perform
best on validation set for testing.

To evaluate the IEMOCAP dataset, we configured 5-fold
cross-validation to evaluate the model. All experiments were
run five times to produce the means and standard deviations.

6.2. Results

Table 1 and 2 present the performance in terms of CCC for ac-
tivation, valence and dominance on the IEMOCAP and MSP-
Podcast corpora, respectively. As shown in these tables, on
both datasets preCPC consistently outperforms other setups.
preCPC achieves higher CCC values for all metrics than Sup,
which implies that the representations learned by CPC are su-
perior to hand-crafted features for speech emotion recogni-
tion task. Surprisingly, even pre-training the CPC model on
a small dataset, miniCPC still performs better than jointCPC
on both datasets. We hypothesize that this is because unsuper-
vised pre-training learns universal representations that are less
specialized towards solving a certain task. Hence, it produces
representations with better generalization which might facil-
itate various downstream tasks. However, for the jointCPC
method, a trade-off has to be made between emotion predic-
tion capability and representation learning. Also notice that,
preCPC outperforms miniCPC by a large margin. This con-
firms our intuition that exposing the model to more diverse
acoustic conditions and speaker variations is beneficial for
learning robust features.

We also plot the representations extracted by CPC from
IEMOCAP to examine how suitable these representations are

Table 1: CCC scores (mean/std) on the IEMOCAP dataset

Methods CCC avg CCC act CCC val CCC dom

Sup .664 ± .007 .638 ± .017 .718 ± .004 .635 ± .009

jointCPC .562 ± .012 .549 ± .032 .642 ± .013 .491 ± .016

miniCPC .660 ± .005 .673 ± .028 .702 ± .009 .606 ± .019

preCPC .731 ± .003 .752 ± .014 .752 ± .009 .691 ± .009

Table 2: CCC scores (mean/std) on the MSP-Podcast dataset

Methods CCC avg CCC act CCC val CCC dom

Sup .458 ± .005 .596 ± .007 .266 ± .004 .501 ± .013

jointCPC .491 ± .008 .628 ± .006 .280 ± .006 .568 ± .007

miniCPC .549 ± .006 .688 ± .009 .345 ± .005 .615 ± .011

preCPC .571 ± .004 .706 ± .006 .377 ± .008 .639 ± .012
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Fig. 1: Visualization of the learned representations

for emotion. For visualization purposes, we used the categor-
ical emotion labels when making the figure. As can be seen
from Figure 1, the CPC model representation is capable of
separating sadness from anger to a good extent, even though
it is trained without emotion labels.

7. CONCLUSION

Our experiment results demonstrated that CPC can learn use-
ful features from unlabeled speech corpora that benefit emo-
tion recognition. We have also observed significant perfor-
mance improvement on widely used public benchmarks un-
der various experiments setups, compared to baseline meth-
ods. Further, we also present a visualization that confirms the
discriminative nature, with respect to emotion classes, of the
CPC-learned representations.

So far we mainly conducted experiments on LibriSpeech
for pre-training. In the future, it would be interesting to inves-
tigate the impact of other corpora for pre-training. In partic-
ular, corpora that have more varied and expressive emotions
might yield representations that are even more relevant for
SER.
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