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Abstract

Multivariate time series modeling and prediction problems are abundant in many
machine learning application domains. Accurate interpretation of such prediction
outcomes from a machine learning model that explicitly captures temporal correla-
tions can significantly benefit the domain experts. In this context, temporal attention
has been successfully applied to isolate the important time steps for the input time
series. However, in multivariate time series problems, spatial interpretation is also
critical to understand the contributions of different variables on the model outputs.
We propose a novel deep learning architecture, called spatiotemporal attention
mechanism (STAM) for simultaneous learning of the most important time steps
and variables. STAM is a causal (i.e., only depends on past inputs and does not
use future inputs) and scalable (i.e., scales well with an increase in the number
of variables) approach that is comparable to the state-of-the-art models in terms
of computational tractability. We demonstrate our models’ performance on two
popular public datasets and a domain-specific dataset. When compared with the
baseline models, the results show that STAM maintains state-of-the-art prediction
accuracy while offering the benefit of accurate spatiotemporal interpretability. The
learned attention weights are validated from a domain knowledge perspective for
these real-world datasets.

1 Introduction
Multivariate time series analysis, classification, and prediction capabilities are crucial for applica-
tions in different domains such as healthcare [1], financial markets [2], climate science [3, 4] and
performance monitoring of engineering systems [5, 6]. Along with the accuracy of decision-making,
interpretability remains one of the important aspects of many real-life problems to build user trust
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and generate domain insights. Unfortunately, however, we often find a trade-off between the model
complexity, accuracy, and the ability to interpret the outcomes. Therefore, accurate predictive mod-
eling of multivariate time series coupled with interpretability mechanisms is still a hard technical
challenge for the machine learning community.

Long Short Term Memory (LSTM) networks can capture the long-term temporal dependencies in
complex multivariate time series [7] and have been used for a variety of applications [8, 9, 10]. In
Encoder-Decoder model [11, 12], the information from all the input time-steps is encoded into a
single fixed-length vector, which is then used for decoding. Deep LSTM based encoder-decoder
approach has been developed for multivariate time series forecasting problem without consideration
of interpretability [13]. To address the bottleneck of using a fixed-length vector in encoder-decoder, a
model based on attention was introduced, which can automatically soft search for important parts of
the input sequence in neural machine translation [14]. Inspired by this paper, attention mechanism
based models have been developed for time series prediction [15, 16, 17, 18, 19, 20, 21, 22, 23]. We
compare and contrast some of the notable works in Table 1. Some of the models are not causal; some
are non-scalable and computationally intractable for a large number of variables and with complicated
interpretation mechanisms. Also, some models are only meant for single time-step prediction. Among
the few spatiotemporal interpretability based approaches, no domain knowledge verification has been
provided before. Also, previously developed approaches do not have any spatial attention to align
directly with the output that hinders the ability to explicitly capture spatial correlations.

Table 1: Comparisons between existing and proposed mechanisms.

Method Causal Spa.Tem.Int. Com.Tra. Seq.Out.
RETAIN [15] 7 3 3 7
DA-RNN [16] 7 3 3 7

AttentiveChrome [17] 7 3 7 7
SAnD [18] 7 7 3 7
ICAtt [24] 3 7 3 7

DSTP-RNN [22] 7 3 3 3
STAM (ours) 3 3 3 3

STAM-Lite (ours) 3 3 3 3

1 Spa.Tem.Int.: Spatiotemporal Interpretibility;
2 Com.Tra.: Computationally Tractable (Scalable); 3 Seq.Out.: Sequence
Output

To address these limitations, we propose a novel spatiotemporal attention mechanism (STAM) for
multivariate time-series prediction that provides meaningful spatiotemporal interpretations. The most
important distinguishing features of our approach compared to the previous studies [15, 16, 17, 22]
are the causal nature and that both the spatial and temporal attention are aligned directly to the output
variable. The model learns the temporal dependencies in data using LSTM layers in the encoder.
At each output time-step, the model first soft searches for the most relevant time-steps and most
significant variables. The model then predicts based on the computed spatial and temporal context
vectors. For multivariate time-series, STAM can be applied in both regression and classification
tasks with very minor modifications. The spatial and temporal interpretations can help users better
understand the contributions of different features and time-steps for prediction.

Contributions. We summarize the contributions of this work as follows:

(1) The proposed STAM architecture is novel for multiple time-step predictions in the context of
interpretability for multivariate time-series problems. To the best of our knowledge, this is the first
such work on attention-based time series models where the spatial and temporal attention weights are
directly aligned to the output, in a causal and scalable (computationally tractable) manner.

(2) The spatial and temporal attention mechanisms are jointly trained in a unified architecture
to learn the temporal and spatial contributions. The learned interpretations are explained using
domain knowledge for real-world datasets. This model can be utilized for any application involving
multivariate time series to provide spatiotemporal interpretability for the predictions.

(3) Complexity analysis is provided for STAM. STAM is interpretable while maintaining state-of-the-
art prediction accuracy. STAM outperforms the baseline models in most of the experiments, while,
for a few experiments, STAM achieves comparable prediction accuracy.
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2 Related Work
RETAIN [15], based on a two-level neural attention model, detects influential patient visits and
significant clinical variables for a binary classification task. In RETAIN, the spatial interpretation
method is quite complicated, domain-specific, and only meant for a classification task. A dual-stage
attention-based recurrent neural network (DA-RNN) [16] has spatial attention in the encoder layer and
temporal attention in the decoder. DA-RNN is not causal as it also depends on future inputs during
the computation of the spatial weights in the encoding phase. Their work also suffers from a lack
of understanding of the attention weights from a domain knowledge perspective. AttentiveChrome
[17] was developed to model and interpret dependencies among chromatin factors by using two
levels of attention for a single output prediction (binary classification). The hierarchy of LSTM
networks makes AttentiveChrome non-scalable and computationally intractable in the presence of a
large number of variables. Using bidirectional LSTMs to encode, the model is non-causal for time
series domain applications. Transformer [25], based solely on attention mechanisms, has achieved
state-of-the-art results for the machine translation task. However, the Transformer can only highlight
sequential attention weights and will not be suitable for spatial interpretability in a causal way for
time-series predictions. For clinical time-series modeling, attention-based model SAnD [18] has
been utilized inspired by the Transformer [25] model with some architectural modifications. Though
computationally tractable, SAnD is not causal and does not provide spatiotemporal interpretability.
Some attention-based models [20, 21, 24] lacks in spatiotemporal interpretability having only spatial
attention. Non-causal DSTP-RNN model [22] utilize multiple attention layers at each encoding
time-step which complicates the interpretation. Similar to DA-RNN, DSTP-RNN has spatial attention
in the encoding phase, the limitations of which are described in the next section. Since the official
codebase remains unpublished at the time of this submission, we do not perform a comparative study
for DSTP-RNN. Other non-causal models developed in this domain include a multi-stage attention
network [26] and a bidirectional LSTM network with temporal attention [27].

3 Preliminaries

3.1 Notations and Problem Formulation

We introduce the notations to be used in this paper and formulate the problem we aim to study. Given
N time series, we denote by X = [x1,x2, ...,xN ]> ∈ RN×Tx , the compact form of all time series,
where Tx is the total input sequence length and xi = [xi1, x

i
2, ..., x

i
Tx
]> ∈ RTx , i ∈ {1, 2, ..., N}

signifies time series associated with each input variable. To represent all input variables at time
step t ∈ {1, 2, ..., Tx}, with a slight abuse of notation, we denote by xt = [x1t , x

2
t , ..., x

N
t ]> ∈ RN

such that the compact form of all time series can also be expressed as X = [x1,x2, ...,xTx
]>.

Analogously, we denote by y ∈ RTy the output time series for Ty time-steps, where yj ∈ R is the
output at time step j. For future time series prediction problems, given the historical information
for Tx input (multivariate) time-steps, an employed sequence model aims at learning a (non)linear
mapping for Ty future values of the output (univariate) time series. To mathematically formulate
this problem, we define F(·) as the mapping to be learned to obtain the prediction of ŷj at output
time-step j.

ŷj = F(ŷ1, ŷ2, ..., ŷj−1,x1,x2, ...,xTx) (1)

In this paper, we aim to develop novel mapping functions F in Eq. 1 that achieves highly comparable
or better prediction accuracy while shedding light on both spatial and temporal relationships between
input and output. Compared to the existing works mentioned in the last section, our work facilitates
the accurate spatiotemporal interpretability that is quite crucial in time series prediction problems.

3.2 Attention Mechanism

Various attention mechanisms have been proposed and popularly applied to different deep sequence
models, such as RNN, GRU, and LSTM [28, 29]. We introduce here the existing attention mechanisms.
We denote by ht−1 ∈ Rm and ct−1 ∈ Rm the encoder hidden state and cell state at time t − 1
respectively. It is well known that ht and ct can be calculated by leveraging the update laws of LSTM
[30].

Spatial Attention Mechanism. The spatial attention mechanism can determine the relative contribu-
tions of different input variables in multivariate time series prediction. Recently, a number of papers
[16, 22, 26] have proposed to incorporate spatial attention in the encoding phase. Given the i-th
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attribute time series xi of length Tx, the spatial attention βi
t at time-step t is computed as following.

eit = v>e tanh(We[ht−1; ct−1] + Uex
i)

βi
t =

exp(eit)∑N
o=1 exp(eot )

(2)

The raw input time series at time t, xt, is then replaced by the weighted time series x̂t, and with x̂t

as input to the encoder LSTM (function f1), the new states ht and ct are computed.

x̂t = [β1
t x

1
t , β

2
t x

2
t , ..., β

N
t x

N
t ]>

(ht, ct) = f1(ht−1, ct−1, x̂t)
(3)

Temporal Attention Mechanism. The original temporal attention mechanism [14] was proposed to
be used in the decoding phase after the encoder. At output time-step j of the decoder, the attention
weight of each encoder hidden state is calculated by Eq. 4.

αt
j =

exp(atj)∑Tx

l=1 exp(alj)
, sj =

Tx∑
t=1

αt
jht. (4)

The probability αt
j reflects how much the output yj is aligned to the input xt. The associated energy

atj is computed using an alignment model (feed forward neural network), which is a function of
ht ∈ Rm and previous decoder hidden state h′j−1 ∈ Rp. The temporal context vector sj is the input
to the decoder at output time-step j. Intuitively, most temporal interpretability works [16, 17, 22, 26]
have adopted this approach to compute the temporal attention weights.

Limitations. Recent works in multivariate time series prediction [16, 22, 26, 31] have developed
different spatiotemporal attention mechanisms by incorporating the spatial attention into the encoder
layer followed by temporal attention into the decoder layer, as done previously. Unfortunately, there
exist two major limitations in these spatiotemporal attention mechanisms:

(1) The causality is broken by using xi, 1 ≤ i ≤ N covering the whole length of Tx to compute
the spatial attention weights (Eq. 2) which are used to calculate the weighted time series x̂t (Eq. 3)
at time-step t. The time-step t is ranging from 1 to Tx and for each t, the spatial attention weight
calculations require future information ahead of t. Using x̂t as input, the hidden state of the encoder
LSTM ht is computed, which has implicit future information ahead of time-step t. It therefore affects
temporal interpretability as well because the temporal attention alignment model is dependent on ht.

(2) There is no such spatial context vector to align with the output sequence directly, as in the temporal
attention. Although the current approaches measure the spatial importance in multivariate input
time series, based on Eq. 3, the spatial relationships between input and output can only be captured
implicitly via the hidden states. Therefore, the existing approaches still lack accurate spatiotemporal
interpretability.

4 Spatiotemporal Attention Mechanism (STAM)
We address the two limitations stated above by introducing a novel spatiotemporal attention mecha-
nism (STAM) to (1) maintain the causality in the model and to (2) achieve accurate spatiotemporal
interpretability. In this section, we propose and investigate the model STAM and its computational
complexity. The STAM model is illustrated in Fig. 1. We also propose a lighter version of STAM,
called STAM-Lite in the supplementary materials.

4.1 Spatial and Temporal Attention
In STAM, we develop a spatiotemporal attention mechanism to come up with spatial and temporal
context vectors to align directly with the output variable. The intuition behind such an idea is that
instead of having the spatial attention in the encoder layer, a separate spatial attention is designed
parallel to the temporal attention in the decoder layer to simultaneously attend to the most relevant time
steps and the most significant variables. Therefore, in STAM, both the spatial and temporal attentions
align directly with the output. The inputs to the spatial and temporal attention are spatial and temporal
embeddings, respectively. The embeddings are generated independently. The spatial embeddings
are obtained by using feed forward neural network for each feature xi = [xi1, x

i
2, ..., x

i
Tx
]> ∈

RTx , i ∈ {1, 2, ..., N}. From X = [x1,x2, ...,xN ]>, the embeddings for all variables are computed
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Figure 1: The illustration of the proposed model STAM attempting to compute the output ŷj at time
step j.

as D = [d1,d2, ...,dN ]>, where di ∈ Rm. Independently, the encoder consisting of two stacked
LSTM layers, compute the temporal embeddings (hidden states) given the input time series X =
[x1,x2, ...,xTx

]>. At time-step t, the input to the encoder is xt = [x1t , x
2
t , ..., x

N
t ]> ∈ RN . After

reading the input sequence in order from x1 to xTx
, the first LSTM layer returns the hidden states

which act as inputs to the second LSTM layer of the encoder. Using two LSTM layers, the encoder
generates a sequence of hidden states, expressed as H = [h1,h2, ...,hTx

]>, where ht ∈ Rm.

The hidden state and cell state in the decoder layer are denoted by h′ ∈ Rp and c′ ∈ Rp. A feed-
forward neural network is used as an alignment model to compute the spatial attention weights. At
output time-step j, the i-th spatial attention weight βi

j is calculated, where [h′j−1;d
i] ∈ Rp+m with

h′j−1 ∈ Rp the previous hidden state of the decoder LSTM and di ∈ Rm the spatial embedding for
i-th feature. The parameters to learn are We ∈ Rp+m and be ∈ R. We adopt the ReLU activation
function instead of tanh due to slightly better results obtained through empirical studies. We then
calculate the spatial context vector gj using the spatial attention weights.

eij = ReLU(W>e [h′j−1;d
i] + be)

βi
j =

exp(eij)∑N
o=1 exp(eoj)

, gj =

N∑
i=1

βi
jd

i
(5)

For output time-step j, to get the temporal attention weight αt
j corresponding to the hidden state ht,

the associated energy atj is computed as follows:

atj = ReLU(W>a [h′j−1;ht] + ba) (6)

where [h′j−1;ht] ∈ Rp+m with h′j−1 ∈ Rp the previous decoder hidden state and ht ∈ Rm the
temporal embedding for t-th input time-step. The parameters to learn are Wa ∈ Rp+m and ba ∈ R.
Thereafter, the attention weights αt

j for t ∈ {1, 2, ..., Tx} are calculated followed by the temporal
context vector sj according to Eq. 4. It should be noted that the spatial context vector gj and the
temporal context vector sj are distinct at each time step.

4.2 STAM
In STAM, the spatial and temporal attentions rely on two different LSTM layers (denoted by LSTMG

and LSTMS) in the decoder. Therefore, the hidden state inputs are different to spatial and temporal
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attention. For the purpose of presentation, we denote the hidden and cell states of the LSTM
corresponding to the spatial context gj with ∗G, where ∗ indicates either hidden or cell state. The
states are therefore denoted as h′G ∈ Rp and c′G ∈ Rp. At output time-step j, the input to the spatial
attention (Eq. 5) is the previous decoder hidden state h′G,j−1 to compute the spatial context vector
gj . The dimension of gj is reduced to rG,j using a feed-forward neural network. We optimize the
extent of this reduction through our experiments. Next we update rG,j by concatenating with output
of the previous time-step ŷj−1. The concatenation is denoted by r̂G,j . It should be noted that the
decoder output ŷj−1 is a scalar in time series prediction instead of a vector. r̂G,j becomes the input
to LSTMG as follows:

rG,j = ReLU(WGgj + bG), r̂G,j = [rG,j ; ŷj−1] (7)

where WG ∈ Rq×m and bG ∈ Rq are learnable parameters. Instead of the real measurement, the
prediction of the output time series is utilized through the non-teacher forcing training approach,
which allows a more robust learning process. Similarly, for the LSTM corresponding to the temporal
context sj , the states are indicated with ∗S . The hidden and cell states are denoted by h′S ∈ Rp and
c′S ∈ Rp respectively. At output time-step j, the previous LSTMS hidden state h′S,j−1 is the input
to the temporal attention (Eq. 6) to compute the temporal context vector sj (Eq. 4). After reducing
the dimension reduction and concatenating with ŷj−1, r̂S,j becomes the input to LSTMS as shown
here:

rS,j = ReLU(WSsj + bS), r̂S,j = [rS,j ; ŷj−1] (8)

where WS ∈ Rq×m and bS ∈ Rq are parameters to learn. The decoder hidden states and cell states
are updated as:

(h′G,j , c
′
G,j) = f3(h

′
G,j−1, c

′
G,j−1, r̂G,j)

(h′S,j , c
′
S,j) = f4(h

′
S,j−1, c

′
S,j−1, r̂S,j)

(9)

where f3 and f4 are the nonlinear mappings of LSTMG and LSTMS respectively. Before prediction,
the last step for STAM is to unify the hidden state updates of the two LSTMs together by concatenating
into [h′G,j ;h

′
S,j ]. Compared to STAM-Lite, STAM has one extra LSTM layer added to the decoder

to separately account for the spatial and temporal impact of input time series on the output or target
time series. We can observe that the spatial and temporal context vectors are aligned directly with the
output variable enabling accurate interpretability, which will be shown empirically.

4.3 Complexity Analysis

In a principled manner, STAM mainly involves four modules: the encoder, the spatial attention, the
temporal attention, and the decoder. Therefore, we omit some operations such as spatial embeddings
and concatenation reduction for the context vectors. The encoder and decoder in STAM are spanned
by LSTM layers. STAM has two LSTM layers in the encoder, and its decoder module also uses
two LSTM layers separately to process the context vectors generated from the spatial and temporal
attention, respectively. To analyze the STAM’s inference time complexity, we follow a similar
calculation method as in [32]. As the state size of the encoder is m, and that of the decoder is p, by
taking into account all the four modules, such a mechanism leads to the inference time complexity
of O(8(Nm +m2 + 2m)Tx + (p + 2 + 2m)(N + Tx)Ty + 8Ty(p

2 + pq + 3p)), where q is the
dimension of the context vector after dimension reduction for STAM. The first and third terms inside
signify the computational complexity for the encoder and decoder, respectively. The second term is
for spatial and temporal attention.

5 Experiments
5.1 Datasets

Pollution Dataset: We use the Beijing PM2.5 Data Set from the UCI Machine Learning Repository.
It is an hourly dataset comprising the PM2.5 data of the US Embassy in Beijing and meteorological
data from Beijing Capital International Airport [33]. For Tx input time-steps, we use eight variables
- pollution (PM2.5 concentration), dew point, temperature, pressure, combined wind direction,
cumulated wind speed, cumulated hours of snow, and cumulated hours of rain. We predict the
pollution for the upcoming Ty time-steps. Keeping the last 20% of the dataset for testing, the
approximate sizes of the training, validation, and test sets are 26,275, 8,758, and 8,759, respectively.
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Building Dataset: We use a public multivariate time series dataset collected from an air handling unit
in a building heating, ventilation, and air-conditioning (HVAC) system [34]. This dataset consists of
nine variables - average zone temperature (AvgZoneTemp), outside air temperature (OAT, ◦F ), return
air temperature (RAT, ◦F ), outside air damper command (OA DamperCMD), cooling valve command
(CoolValveCMD), discharge air temperature (DAT, ◦F ), supply fan speed command (SuFanSpeed-
CMD), discharge air static pressure (DA StaticP), and return fan speed command (ReFanSpeedCMD).
With this multivariate input of Tx time-steps, the output is average zone temperature for upcoming
Ty time-steps. The training, validation, and test sizes are approximately 20,932, 6,977, and 6,978,
respectively.

EHR Dataset: MIMIC-III [35] is a publicly available electronic health record (EHR) database
that comprises information relating to patients admitted to critical care units at a large tertiary care
hospital. Clinical prediction benchmark tasks have been proposed using MIMIC-III [36] containing
multivariate time series data. Instead of using the benchmark tasks, we formulate a new task that
can be most suitable to test our proposed model STAM. After getting access to MIMIC-III, we only
followed [36] to generate the training, validation, and test datasets with each having 14681, 3222,
and 3236 number of ICU stays, respectively. We choose seven clinical variables - Glucose, Heart
Rate, Mean Blood Pressure (MBP), Oxygen Saturation (O2sat), Respiratory Rate (RR), Temperature,
and pH level. Keeping these variables as input for Tx = 24 time-steps, we predict respiratory rate for
Ty future time-steps. In other words, based on the clinical variables on the first day (24 hours) of an
ICU stay, we predict the respiratory rate for the upcoming Ty hours.

5.2 Baseline Models and Results

Baseline Models: For the empirical results comparison, we use these baseline models: Epsilon-
Support Vector Regression with Radial Basis Function kernel (SVR-RBF), Encoder-Decoder (Enc-
Dec) model [11, 12], LSTM with temporal attention (LSTM-Att) model [14], and Dual-Stage
Attention-Based Recurrent Neural Network (DA-RNN) [16]. We try to optimize the hyper-parameters
of all the baseline models, including SVR-RBF, which have shown improved results than in [27].
The optimized values of hidden state dimensions for the Enc-Dec, LSTM-Att, and DA-RNN models
are 32, 32, and 64. With this setting, the approximate number of trainable parameters for Enc-Dec,
LSTM-Att and DA-RNN are 18,831, 19,120 and 57,764 respectively. Additional details of the
baseline models are provided in the supplementary materials.
Table 2: Empirical results for pollution dataset (with Tx = 5, Ty = 4). Each model was trained
three times, to obtain the average and standard deviation of each evaluation metric.

Model RMSE MAE R2 Score Train Time Test
/ epoch Time

SVR-RBF 48.135 ± 0.000 31.890 ± 0.000 0.735 ± 0.000 11.96s 2.82s

Enc-Dec 48.043 ± 0.209 35.817 ± 10.587 0.736 ± 0.002 6.18s 0.61s

LSTM-Att 47.957 ± 0.377 30.730 ± 0.448 0.737 ± 0.004 6.79s 0.64s

DA-RNN 49.207 ± 0.106 31.267 ± 0.220 0.723 ± 0.001 7.36s 0.63s

STAM-Lite 47.658 ± 0.155 30.080 ± 0.673 0.741 ± 0.002 7.15s 0.64s

STAM 47.778 ± 0.404 29.853 ± 0.965 0.739 ± 0.004 8.84s 0.86s

Results: We perform experiments to come up with the best set of hyper-parameters for training our
STAM model. Keeping the hidden state dimensions of the encoder and decoder same (m = p) for
simplicity, a dimension of 32 gives better results in the experiments. We use Adam optimizer with a
learning rate of 0.001 and a batch size of 256. To prevent overfitting, dropout layer (0.2) is used after
each LSTM layer, and each model is trained for 50 epochs. Through experiments, we optimize the
dimension reduction of context vectors to q = 4 and the input sequence length to Tx = 5 for pollution
and building datasets. Under these settings, the approximate number of trainable parameters for
STAM is 24,733. We use three evaluation metrics: root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination or R-squared score (R2). We utilize NVIDIA Titan
RTX GPU to train our models. Tables 2, 3 and 4 presents the empirical results for the pollution,
building and EHR datasets respectively. The training time per epoch (the number of seconds to train
a model once for the entire training set) is provided for each model, except for SVR-RBF, where the
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Table 3: Empirical results for building dataset (with Tx = 5, Ty = 3). Each model was trained three
times, to obtain the average and standard deviation of each evaluation metric.

Model RMSE MAE R2 Score Train Time Test
/ epoch Time

SVR-RBF 0.1344 ± 0.0000 0.1125 ± 0.0000 0.9874 ± 0.0000 0.19s 0.03s

Enc-Dec 0.0776 ± 0.0189 0.0586 ± 0.0207 0.9956 ± 0.0022 4.40s 0.42s

LSTM-Att 0.0601 ± 0.0045 0.0450 ± 0.0039 0.9975 ± 0.0004 4.76s 0.42s

DA-RNN 0.0600 ± 0.0013 0.0408 ± 0.0006 0.9975 ± 0.0002 5.18s 0.48s

STAM-Lite 0.0634 ± 0.0017 0.0448 ± 0.0002 0.9972 ± 0.0002 5.20s 0.53s

STAM 0.0599 ± 0.0024 0.0415 ± 0.0010 0.9975 ± 0.0002 5.94s 0.60s

Table 4: Empirical results for EHR dataset (with Tx = 24, Ty = 4). Each model was trained three
times, to obtain the average and standard deviation of each evaluation metric.

Model RMSE MAE R2 Score Train Time Test
/ epoch Time

SVR-RBF 4.6067 ± 0.0000 3.2984 ± 0.0000 0.4078 ± 0.0000 26.92s 5.22s

Enc-Dec 4.5981 ± 0.0088 3.2807 ± 0.0202 0.4100 ± 0.0023 6.48s 0.47s

LSTM-Att 4.6269 ± 0.0365 3.3019 ± 0.0321 0.4026 ± 0.0094 6.77s 0.53s

DA-RNN 4.6760 ± 0.0216 3.3011 ± 0.0151 0.3898 ± 0.0056 10.64s 0.63s

STAM-Lite 4.6089 ± 0.0107 3.3085 ± 0.0141 0.4072 ± 0.0027 7.06s 0.53s

STAM 4.5913 ± 0.0031 3.2805 ± 0.0067 0.4117 ± 0.0008 7.93s 0.56s

total training time is shown. Unlike the building dataset, SVR-RBF requires many more iterations
to reach convergence within the acceptable error threshold (ε = 0.1) for both pollution and EHR
datasets resulting in much higher training and testing times. Tables 2, 3 and 4 also show that STAM
is scalable and computationally tractable with comparable training time to DA-RNN. In terms of
prediction performance, STAM maintains high accuracy and even slightly outperforms the baseline
models in all three datasets. Attention-based time series models achieving comparable performance
to that of the baseline models have also been reported previously [15, 17]. While maintaining high
accuracy, STAM also provides accurate spatiotemporal interpretability.

5.3 Discussion on Interpretability
The proposed STAM model has been empirically shown to outperform the baseline models. As
attention-based models typically experience a trade-off between prediction accuracy and interpretabil-
ity, we next discuss how the proposed approach enables accurate spatiotemporal interpretability.

Pollution Dataset: When the output variable at a future time-step Ty is pollution, the temporal
attention weights are concentrated mostly in the last few time-steps (hours) of the input sequence
decreasing from Tx = 5 to Tx = 1. Intuitively, the output in a time series is also affected mostly
by recent time-steps, and the correlation usually decreases with increasing time lag. From Table 5,
according to the spatial attention weights, the five most relevant variables from STAM include
pollution, dew point, wind speed, hours of snow, and hours of rain. Temperature, pressure, and
wind direction have comparatively smaller weights. Such spatial correlations obtained by STAM
are in accord with the specific underlying relationships found in [37]. Intuitively, wind direction
and pressure are not supposed to have strong correlations with pollution as PM2.5 refers to the
atmospheric particulate matters which could be cleaned by weather conditions of snow or rain and
blown away depending on the wind strength (speed) rather than direction. Dew point has a slightly
higher attention weight than temperature(air) as dew point approximately shows how moist the air
would be, which can affect the movement of the atmospheric particles. From Table 5 and the plot in
Fig. 2, we observe that similar spatial interpretations are generated by both STAM and DA-RNN,
while the slight differences are attributed to the different underlying model architectures.
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Table 5: Spatial attention weight distributions from STAM and DA-RNN.
Pollution Dataset Building Dataset EHR Dataset

Variables
Attention

Variables
Attention

Variables
Attention

Weight (%) Weight (%) Weight (%)
STAMDA-RNN STAMDA-RNN STAMDA-RNN

Pollution 13.43 13.26 AvgZoneTemp 11.76 11.22 Glucose 11.49 20.59
Dew Point 11.02 9.75 OAT 7.02 10.88 Heart Rate 5.74 9.93

Temperature 10.64 9.93 RAT 7.48 10.99 MBP 8.64 12.64
Pressure 10.81 10.30 OA DamperCMD 20.26 11.53 O2sat 4.67 4.46

Wind Direction 10.42 10.74 CoolValveCMD 9.13 11.00 RR 47.36 21.00
Wind Speed 14.28 14.91 DAT 14.73 11.32 Temp. 5.13 5.59

Hours of Snow 14.68 15.55 SuFanSpeedCMD 8.99 10.90 pH 16.91 25.74
Hours of Rain 14.64 15.49 DA StaticP 9.28 10.96

ReFanSpeedCMD 11.26 11.12

Figure 2: Plots of spatial attention weight distributions from STAM and DA-RNN for pollution,
building and EHR datasets. The variables are organized based on attention weights of STAM (high
to low).

Building Dataset: With the average zone temperature (AvgZoneTemp) as the output variable, the
temporal attention weights are almost equally distributed across all the input time-steps, suggesting
that most likely, the correlation is weakly depending on the time in this case with a relatively high
sampling frequency (one minute). This is attributed to the slow thermal dynamics in the zone and
the impact of the building mass absorbing heat to resist the quick change of the zone temperature.
Table 5 shows that the most relevant variables found by STAM are outside air damper command (OA
DamperCMD), discharge air temperature (DAT), return fan speed command (ReFanSpeedCMD), and
itself. Such correlations can be interpreted well by the domain knowledge (detailed physics provided
in the supplementary section). First, the AvgZoneTemp is affected by DAT since these two variables
have a direct physics relationship based on the heat transfer equation, and in most building systems,
the discharge air is pumped to the zone directly in summer without reheating. Return air temperature
(RAT) indicates the temperature of zone air circulated back to the central system, and due to the
summer time of data collection, it is similar to the outside air temperature (OAT). Since the return air
has a relatively higher level of CO2, only part of it is mixed with the fresh outside air to generate
the mixed air, which is then cooled down by the cooling valve to become discharge air. Thus, how
much fresh outside air and return air is required to maintain the indoor comfort are determined by the
OA DamperCMD and ReFanSpeedCMD, respectively, which significantly affects the AvgZoneTemp.
The cooling valve command (CoolValveCMD) controlling the cooled water flow rate directly affects
the mixed air temperature instead of zone temperature, resulting in a smaller attention weight. The
discharge air static pressure (DA StaticP) has more impact on the airflow rate than OAT and RAT.
The supply fan speed command (SuFanSpeedCMD), a key indicator for the airflow rate, has its
attention weight closer to DA StaticP. From Table 5 and Fig. 2, DA-RNN fails to distinguish the most
informative variables clearly with the weights learned roughly the same for all. It implies that it may
not efficiently capture the underlying complex system dynamics. In contrast, STAM is much better at
learning the system dynamics through the data associated with different variables.

EHR Dataset: Researchers have concluded that heart rate (HR) does not have much impact on the
respiratory rate (RR) [38, 39]. Also, RR measurements correlate poorly with oxygen saturation
(O2sat) measurements [40]. These two relations are precisely reflected from the interpretations of
STAM in Table 5, with HR and O2sat having lower attention weights to predict RR. The temporal
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attention weights are found to be almost uniformly distributed across the time-steps. The most
relevant variables found by STAM are glucose and pH apart from RR itself, as shown in Table 5,
which can be interpreted well. Glucose levels can affect RR, and the risk of having difficulty in
breathing can be reduced by maintaining good diabetes control [41]. Rapid or labored breathing
can be a symptom of diabetic ketoacidosis (DKA), which is caused by very high blood glucose
levels accompanied by a high level of ketones in the blood. DKA can have serious consequences
on the respiratory system [42]. pH describes the acidity or basicity of a solution. For good health,
the right pH levels are needed, and the human body constantly works to control the pH level of
blood. Disturbance in the acid-base balance of the body changes the pH level. It provokes automatic
compensatory mechanisms to push the blood pH back towards normal. In general, the respiratory
system is utilized to compensate for metabolic disturbances [43]. Therefore, the pH level can
significantly affect RR. From Table 5 and the plot in Fig. 2, STAM demonstrates better distinguishing
capability than DA-RNN with comparable interpretations from both methods for RR prediction.

6 Conclusion
Multivariate time series prediction has numerous applications in various domains of significant
societal impact such as healthcare, financial markets, agriculture and climate science to name a
few. Performance monitoring of human-engineered systems also utilizes multivariate sensor time
series data to a great extent for enhanced efficiency, safety and security. In this paper, we propose
a deep learning architecture that can effectively capture the temporal correlations in multivariate
time series data and simultaneously provide accurate interpretations of the prediction outcomes. The
temporal and spatial attentions are directly aligned with the output variable. Leveraging the spatial
context vector facilitates better spatial correlation-based interpretations between the input and output
variables.

Such spatial and temporal interpretations can help users to better understand the contributions of
different features and time-steps for prediction. Therefore, we believe that the work presented here
can be a great resource for the domain experts in different sectors who seek trustworthy (not just
a black-box) machine learning tool for analyzing time series data. Scientists, engineers, medical
professionals, farmers, policy makers and various other types of users can gain valuable insights by
understanding the predictions from the perspective of ’what’ and ’where’ highlighted by our proposed
model. Therefore, the proposed model, which is applicable to any type of multivariate time series
data can help in data-driven decision-making in various parts of the society, well-beyond the machine
learning community.

While the spatial and temporal correlations are captured based on the attention weights, one potential
limitation is how much data is required to achieve it, which remains an open problem in this work.
The required number of data points could depend on how prominent the underlying relationships are
between the input and output variables in a dataset. In future, we plan to extend STAM to problems
involving multiple output variables.
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Supplementary Materials
S.1 Baseline Models
We use the following baseline models to compare the results with our proposed models STAM and
STAM-Lite. We try to optimize the hyper-parameters of the baseline models.

1. SVR-RBF: Epsilon-Support Vector Regression with Radial Basis Function kernel. We
optimize the hyper-parameters of SVR-RBF, especially epsilon. After choosing the optimal
set of hyperparameters, we observe that SVR-RBF shows improved performance than in
[27] for the pollution dataset.

2. Enc-Dec: Encoder-Decoder model [11, 12]. Originally developed for neural machine
translation, a deep LSTM based encoder-decoder model has also been applied for multi-
variate time series prediction [13]. The Enc-Dec model comprises an encoder for the input
sequence and decoder for the output sequence. The encoder encodes the input sequence
into a fixed-length vector used by the decoder to predict the output sequence. The whole
encoder-decoder setup is trained jointly.

3. LSTM-Att: LSTM with temporal attention model. Proposed as an extension to the Encoder-
Decoder model [11, 12], the attention-based model [14] can automatically soft search for
important parts of the input sequence. Instead of encoding the whole input sequence into a
single fixed-length vector, the model encodes the input sequence into a sequence of vectors.
During decoding, it adaptively chooses a subset of these vectors where the most relevant
information is concentrated. Intuitively, a similar approach like this has been adopted for
temporal attention in time series prediction [17, 27].
Both the Enc-Dec and LSTM-Att models were originally developed for neural machine
translation. For time series prediction, the output at each decoder time-step is a scalar
instead of a vector. We modify both of these models accordingly using mean squared error
as the loss. Similar to STAM-Lite and STAM, the decoder receives the information of the
previously predicted output instead of the real measurement through the non-teacher forcing
training approach.

4. DA-RNN: Dual-stage Attention-based Recurrent Neural Networks [16]. It has spatial
attention in the encoder layer, which computes a sequence of hidden states. As described in
our main paper content, one of the limitations of DA-RNN is that it is not causal, depending
on the future inputs during the encoding phase. The temporal attention weights are computed
in the decoding phase.

Table 6: Approximate number of trainable parameters with input sequence length, Tx = 5 and output
sequence length, Ty = 3 for each baseline model (except SVR-RBF) and our proposed STAM-Lite
and STAM models.

Model Enc-Dec LSTM-Att DA-RNN STAM-Lite STAM

Number of Parameters ∼18,831 ∼19,120 ∼57,764 ∼19,761 ∼24,733

S.2 STAM-Lite
In STAM-Lite, there is a single LSTM layer in the decoder. At output time-step j, the context
vectors gj and sj are computed using the previous decoder hidden state h′j−1. To align both the
contexts with the output time series, we first concatenate these two vectors into [gj ; sj ] ∈ R2m. The
concatenated dimension is reduced to rj ∈ Rq using a feed-forward neural network, as shown in
Eq. 10. We optimize the extent of this reduction through our experiments. Next we update rj by
concatenating with output of the previous time-step ŷj−1. The concatenation is denoted by r̂j . It
should be noted that the decoder output ŷj−1 is a scalar in time series prediction instead of a vector.

rj = ReLU(WGS [gj ; sj ] + bGS), r̂j = [rj ; ŷj−1] (10)

where WGS ∈ Rq×2m and bGS ∈ Rq are parameters to learn. Instead of the real measurement, the
prediction of the output time series is utilized through non-teacher forcing training approach, which
enables the learning to be more robust. The decoder hidden state h′j and cell state h′j are updated by
using r̂j as input to the decoder LSTM (function f2):

(h′j , c
′
j) = f2(h

′
j−1, c

′
j−1, r̂j). (11)
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Figure 3: The illustration of the proposed model STAM-Lite attempting to compute the output ŷj at
time step j.

From Fig. 3, we can observe that the spatiotemporal context vector is aligned directly with the output
variable enabling accurate interpretability. Eq. 11 suggests that in STAM-Lite, both the spatial and
temporal attentions share the same decoder parameterized by an LSTM layer, which is due to the
concatenation of the two context vectors.

S.2.1 Complexity Analysis
STAM-Lite involves four modules: the encoder, the spatial attention, the temporal attention, and
the decoder. Similarly, we still omit some operations such as spatial embeddings and concatenation
reduction for the context vectors. The encoders and decoders in both STAM-Lite are spanned by
LSTM layers, and it has two LSTM layers in the encoder. We analyze the inference time complexity
of the STAM-Lite model next. We still follow a similar way of the calculation as in [32]. Since the
state size of the encoder is m and that of the decoder is p, such a mechanism leads to the inference
time complexity of O(8(Nm+m2 + 2m)Tx + (p+ 2 + 2m)(N + Tx)Ty + 4Ty(p

2 + pq + 3p)),
where q is the dimension of the context vector after dimension reduction. The first and third terms
inside signify the computational complexity for the encoder and decoder, respectively. The second
term is for both the spatial and temporal attention. Thus, compared to STAM, STAM-Lite has a
smaller complexity due to only one LSTM layer in the decoder module.

S.3 Results
We present here some additional results for pollution, building, and EHR datasets.
Table 7: Empirical results for pollution dataset (with Tx = 5, Ty = 3). Each model was trained
three times, to obtain the average and standard deviation of each evaluation metric.

Model RMSE MAE R2 Score

SVR-RBF 42.399 ± 0.000 27.917 ± 0.000 0.795 ± 0.000

Enc-Dec 42.105 ± 0.155 25.432 ± 0.477 0.798 ± 0.002

LSTM-Att 41.739 ± 0.564 25.683 ± 0.969 0.801 ± 0.005

DA-RNN 43.186 ± 0.051 26.455 ± 0.224 0.787 ± 0.001

STAM-Lite 41.873 ± 0.200 25.851 ± 0.785 0.800 ± 0.002

STAM 41.535 ± 0.216 25.691 ± 0.738 0.803 ± 0.002

S.4 Overview of the Building Dataset
In this section, we provide an overview of the working mechanism of airside heating, ventilation,
and air-conditioning (HVAC) in the building. Every building HVAC system can be roughly divided
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Table 8: Empirical results for building dataset (with Tx = 5, Ty = 2). Each model was trained three
times, to obtain the average and standard deviation of each evaluation metric.

Model RMSE MAE R2 Score

SVR-RBF 0.1354 ± 0.0000 0.1127 ± 0.0000 0.9872 ± 0.0000

Enc-Dec 0.0616 ± 0.0061 0.0464 ± 0.0057 0.9973 ± 0.0005

LSTM-Att 0.0554 ± 0.0024 0.0392 ± 0.0025 0.9979 ± 0.0002

DA-RNN 0.0548 ± 0.0018 0.0400 ± 0.0023 0.9979 ± 0.0001

STAM-Lite 0.0634 ± 0.0018 0.0491 ± 0.0026 0.9972 ± 0.0002

STAM 0.0528 ± 0.0027 0.0367 ± 0.0024 0.9980 ± 0.0002

Table 9: Empirical results for EHR dataset (with Tx = 24, Ty = 2). Each model was trained three
times, to obtain the average and standard deviation of each evaluation metric.

Model RMSE MAE R2 Score

SVR-RBF 4.3962 ± 0.0000 3.1510 ± 0.0000 0.4538 ± 0.0000

Enc-Dec 4.3983 ± 0.0206 3.1670 ± 0.0290 0.4533 ± 0.0051

LSTM-Att 4.4083 ± 0.0208 3.1667 ± 0.0176 0.4508 ± 0.0052

DA-RNN 4.4628 ± 0.0396 3.1665 ± 0.0201 0.4372 ± 0.0100

STAM-Lite 4.3993 ± 0.0288 3.1637 ± 0.0283 0.4531 ± 0.0072

STAM 4.3860 ± 0.0146 3.1277 ± 0.0096 0.4564 ± 0.0036

into two sub-systems: airside HVAC system and waterside HVAC system. As the data used in our
experiments is more related to the airside HVAC system, we omit the working mechanism of the
waterside HVAC system in this context.

Regarding the airside HVAC system, although it is essentially interacted with the waterside HVAC
system, in terms of energy, it is on the demand side, which means that according to each zone’s
comfort requirement, the whole system generates the conditioned air to be supplied to the zones for
satisfying the specific needs. We focus on the physical relationships qualitatively among the variables
of the building dataset used in our experiments. We start with the definition of each variable.

S.4.1 Variables

1. Average Zone Temperature (Avg Zone Temp, ◦F ): The temperature measured in an
averaged way for a zone. This is because the local variable air volume supplying air to a
zone can be located in different places inside the zone, depending on a specific building
configuration. Thus, temperatures measured for different places inside the zone can be
diverse. However, when collecting data, only one temperature is reported by averaging
several slightly different zone temperatures.

2. Outside Air Temperature (OAT, ◦F ): The temperature of the outdoor environment.

3. Return Air Temperature (RAT, ◦F ): The temperature of the air returning from the zone.

4. Outside Air Damper Command (OA Damper CMD): The command signal of the damper
position controlling the outside air. It ranges from 0 – 100%, where 0% means that the
damper is closed while 100% means that the damper is fully open.

5. Cooling Valve Command (Cool Valve CMD): The command signal of the valve position
controlling the cooling water. It ranges from 0 – 100%, where 0% means that the valve is
closed while 100% means that the valve is fully open.

6. Discharge Air Temperature (DAT, ◦F ): The temperature of the discharge air, which is
supplied to the zone.
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7. Supply Fan Speed Command (Su Fan Speed CMD): The command signal of the supply
fan to control how fast it runs. The supply fan is for pumping the discharge air.

8. Discharge Air Static Pressure (DA StaticP): The static pressure of the discharge air.
9. Return Fan Speed Command (Re Fan Speed CMD): The command signal of the return

fan to control how fast it runs. The return fan facilitates to circulate back the air to the
central airside system.

S.4.2 Working Mechanism of the Airside HVAC System

Before introducing how the airside HVAC system works, we first mention two notations that will be
used next. The first one is called the air-handling unit (AHU), and the second one is the aforemen-
tioned variable air volume (VAV). Typically, AHU generates the conditioned air for each zone. For
each zone, its local VAV will reheat the conditioned air based on different comfort requirements and
seasons (e.g., cooling season and heating season). As the data used in the experiments are collected
from the cooling season, we focus only on cooling down the zone temperature. We ignore any heating
for the zone here.

When the fresh outside air is taken into the system by the AHU, at the same time, part of the return
air from the thermal zone(s) is circulated back to the AHU. Part of the return air is pumped out of the
system as the exhaust air. One could reuse the total return air, but it would cause the ventilation issue
as the CO2 level keeps increasing. The reason for not using the refreshed outside air entirely is due to
the energy-saving, particularly for the winter (heating season). The outside air and return air is mixed
in the AHU to become the mixed air.

Due to the cooling season, the mixed air temperature is relatively high such that it cannot be provided
directly to the thermal zone(s). Then the cooling water comes to play. Before reaching the supply
fan, the mixed air passes a coil system in the AHU. Since it is the cooling season, the cooling coil is
activated to cool down the mixed air to become the discharge air. Hence, the discharge air is pumped
by the supply fan to the thermal zone(s). Before entering each thermal zone, depending on the record
of the thermostat, the reheat coil on the VAV is activated or not. In the cooling season, this is not
usual but also relies on different climates. After the discharge air enters into the thermal zone, it helps
regulate the zone temperature to the reference temperature set by the thermostat. The air from the
thermal zone(s) is pumped by the return air fan back to the central AHU system. This process is
repeated in the airside HVAC system.

S.5 EHR Dataset
In the United States, most hospitals use an electronic health record (EHR) system across different
states [44]. With time, more hospitals are adopting digital health record systems. To make hospital
data widely accessible to researchers, Medical Information Mart for Intensive Care (MIMIC-III)
database was released [35]. MIMIC-III is a publicly available EHR database that comprises infor-
mation relating to patients admitted to critical care units at a large tertiary care hospital. Clinical
prediction benchmarks have been proposed using MIMIC-III data [36]. The proposed benchmark
tasks contain multivariate time series data for intensive care unit (ICU) stays covering clinical prob-
lems like in-hospital mortality prediction, forecasting length of stay (LOS), detecting physiologic
decline, and phenotype classification. For example, task LOS involves a regression at each time
step, while in-hospital mortality risk is predicted once early in admission. In this paper, instead of
using the benchmark tasks, we formulate a new task that can be most suitable to test our proposed
models. After getting access to MIMIC-III, we only followed [36] to generate the datasets for training,
validation, and test sets.

In the benchmark [36], the time series are re-sampled into regularly spaced intervals. They performed
imputation of the missing values using the most recent measurement value if it exists or a pre-specified
“normal" value. After following the benchmark processing, the number of ICU stays in training,
validation, and test sets are 14681, 3222, and 3236, respectively.

We choose seven clinical variables - Glucose, Heart Rate, Mean Blood Pressure (MBP), Oxygen
Saturation (O2sat), Respiratory Rate (RR), Temperature, and pH level. Keeping these variables as
input for Tx = 24 time-steps, we predict respiratory rate for Ty future time-steps. In other words,
based on the clinical variables on the first day (24 hours) of an ICU stay, we predict the respiratory
rate for the upcoming Ty hours.
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