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ABSTRACT
Self-attention models have been successfully applied in end-
to-end speech recognition systems, which greatly improve the
performance of recognition accuracy. However, such attention-
based models cannot be used in online speech recognition,
because these models usually have to utilize a whole acoustic
sequences as inputs. A common method is restricting the field
of attention sights by a fixed left and right window, which
makes the computation costs manageable yet also introduces
performance degradation. In this paper, we propose Memory-
Self-Attention (MSA), which adds history information into the
Restricted-Self-Attention unit. MSA only needs localtime fea-
tures as inputs, and efficiently models long temporal contexts
by attending memory states. Meanwhile, recurrent neural net-
work transducer (RNN-T) has proved to be a great approach for
online ASR tasks, because the alignments of RNN-T are local
and monotonic. We propose a novel network structure, called
Memory-Self-Attention (MSA) Transducer. Both encoder and
decoder of the MSA Transducer contain the proposed MSA
unit. The experiments demonstrate that our proposed models
improve WER results than Restricted-Self-Attention models
by 13.5% on WSJ and 7.1% on SWBD datasets relatively, and
without much computation costs increase.

Index Terms— Speech Recognition, Self Attention, RNN
Transducer

1. INTRODUCTION

In the past few years, models employing transformer structure
have achieved state-of-art results for many tasks, such as na-
ture language understanding, machine translation, and speech
recognition. Especially in speech recognition, lots of attention-
based models have proved to obtain a substantial performance
improvement [1][2][3][4]. For example, self-attention blocks
are successfully applied in CTC-based network, SAN-CTC [5]
showed that self-attention encoder is competitive with exist-
ing end-to-end models. Speech-transformer [6] proposed a
2D-Attention module, which computes attention weights on
both time and frequency axes, in order to extract more dis-
criminated representations of speech features. Transformer-
Transducer [7] used VGGNet with causal convolution as the
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frontend of encoder, and self-attention transducer as the net-
work architecture. However, such attention-based models can-
not be used in online speech recognition, because these models
usually have to utilize a whole acoustic sequences as inputs.
An additional challenge is that the computation complexity
of these models increases quadratically with input sequence
length, which is unacceptable for online ASR tasks. A typi-
cal solution for this challenge is restricting the field of atten-
tion sights by a fixed left and right window, which makes the
computation costs manageable but also leads to performance
degradation. To overcome the drawbacks of these restricted-
attention model, we proposed Memory-Self-Attention (MSA)
in this paper. MSA only needs localtime features as inputs,
and efficiently models long temporal contexts by attending
memory states. These memory states help MSA to gain better
performance than window-restricted-attention models. More-
over, the computation complexity of MSA is linear with input
sequence length, which is significant for online ASR tasks.

CTC [8], Transformer [9], RNN-Transducer [10][11] are
most common used architectures in speech recognition [12].
CTC [13][14] is first widely used to end-to-end models, but
CTC has a fatal drawback that every timestep is outputted
independently. Therefore, it has to be optimized jointly with
external language model in practice. Transformer [15][16] is
another choice by encoder-decoder infrastructure. However,
the mechanism of transformer allows the model to attend any-
where in the input sequence at each timestep. Therefore, the
alignments of transformer are non-local and non-monotonic.
The RNN-Transducer [17][18] was proposed as an extension
to CTC, which also marginalizes over all possible alignments
between the input sequence and the output targets. RNN-
Transducer is typically composed of an encoder, which trans-
forms the acoustic features into high-level representations, and
a decoder, which produces linguistic outputs. Previous works
employed GRU or LSTM as the encoders, giving the RNN-T
its name. In this paper, we explore the possibility of replacing
RNN-based encoders and decoders with our proposed MSA
units, which is called Memory-Self-Attention (MSA) Trans-
ducer. MSA Transducer can learn an implicit language model
and therefore removes the conditional independence assump-
tion in CTC. More importantly, the alignments of RNN-T are
local and monotonic, allowing MSA Transducer for online
speech recognition tasks.
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In the previous works, some unidirectional neural network
architectures were proposed for online ASR tasks, such as
deep LCBLSTM [19], and TDNN-LSTM [20]. Daniel Povey
proposed a time-restricted-attention layer for ASR [21], and
used it in LF-MMI [22] models which are not end-to-end. Two
unidirectional architectures, the time-delay LSTM (TDLSTM)
and parallel time-delayed LSTM (PTDLSTM) were presented
in [23]. Another researches are worked on local monotonic
attention [24][25]. Google proposed transformer encoders
with RNN-T loss [26], and they showed that limiting the left
and right context of attention per-layer can obtain not bad
accuracy but still have some gap between the performance of
full-attention models.

2. MEMORY-SELF-ATTENTION (MSA)
TRANSDUCER

2.1. Model Architecture

The speech recognition tasks can be defined as a sequence
to sequence problem, which takes acoustic features Xt =
[x0, x1, ..., xT ] as the inputs, and produces predicted label
sequence Yu = [y0, y1, ..., yU ] as the outputs. In which, T is
the acoustic frames length, and U is the predicted label length.
RNN-T consists of an acoustic encoder network, a separate
language model named prediction network and a joint network.
For online ASR, the encoder network takes acoustic features
x1:t as the inputs and outputs encoder states et. Meanwhile,
the decoder network takes previous predicted label y1:u−1
recurrently, and outputs decoder states du. Finally, the joint
network merges the encoder and decoder states together, and
produces label prediction yt,u at each timestep t.

et = EncoderNetwork(x1:t) (1)

du = DecoderNetwork(y1:u−1) (2)

yt,u = JointNetwork(et, du) (3)

Our proposed network is based on RNN-T architecture.
Encoder and decoder network contain convolutional blocks
and our proposed MSA blocks, as shown in Figure 1. The
encoder takes acoustic features as inputs into a 2-D Conv block,
in order to overcome the local variance of the features both
on time and frequency axis. MSA blocks are after the 2-D
Conv block, and before the joint network. The decoder also
has a 1-D convolutional layer, but with grapheme inputs and
convolutional kernel on time axis only. At last, a joint network
is designed to concatenate both encoder and decoder output
hidden states together. After linear layers and Tanh activation,
the probability distribution of output labels are produced with
softmax function. As shown in Figure 2 a, 2-D Conv and 1-D
Conv block share the similar architecture, with LayerNorm
and Relu activation after convolutional layer. Moreover, the
stride of 2-D convolution is set to 3, in order to reduce the
computation cost of subsequent MSA blocks.

 

Fig. 1. Memory-Self-Attention Transducer

As shown in Figure 2 b, our proposed MSA block is a
variant of restricted-attention unit. The first MSA block takes
the output of convolutional layer as inputs, and subsequent
MSA blocks are fed with the output of bottom MSA block.
MSA block processes the inputs into two kinds of paths. The
first path is a standard self-attention unit, and the other is a
memory recurrent unit. Similar to restricted-attention unit, the
MSA block takes window-restricted states into a multi-head
attention layer. As xt is the acoustic feature of each frame, we
denote the window-restricted consecutive features as st.

st = [xt−l : xt+r] (4)

mt = MultiHeadAttention(st) (5)

ht = LSTM(ht−1, st) (6)

ft = LayerNorm(mt + ht + st) (7)

et = LayerNorm(FFN(ft) + ft) (8)

In which, l and r is the left and right window size respectively.
The multi-head attention layer can attend every position within
the restricted window. The output of multi-head attention layer
is denoted as mt. Another path of MSA block is a memory
recurrent unit, where we denote the memory state as ht. We
use LSTM as the recurrent layer, which takes the previous
hidden state ht−1 and current input features st, outputing the
current memory state ht. Then, st, ht, and mt are added
together, feeding into a LayerNorm layer as ft. At last, a



Fig. 2. (a) 1/2-D Conv Block (b) MSA Block

feedfoward layer and another LayerNorm layer take ft, and
produce output states of encoder network as et.

2.2. Complexity Analysis

 

Fig. 3. Visualization of Memory-Self-Attention

As shown in Figure 3, Memory-Self-Attention not only
attends the current window-restricted states but also history
memory states, allowing the model to capture long-term de-
pendency. In this section, we compare MSA with other model
structure on the relationship between operation complexity
and their reception of fields. As well known, BLSTM and
unrestrict-self-attention are most popular used structures in
acoustic network. However, such kinds of models cannot be
used in online speech recognition, because these models usu-
ally have to utilize a whole acoustic sequences as inputs. It
means that they cannot produce prediction labels until they
see the last frame of the inputs. A common solution is mak-
ing the network unidirectional like LSTM, or restricting the
field of attention sights by a fixed left and right window as
Restricted-Self-Attention. All of the above methods make the
computation costs manageable yet also introduce performance
degradation. As shown in Table 1, it has proved that left-only
Restrict-SA (left window = infinite) has a better performance
than unidirectional LSTM. However the obvious drawback is

that it makes operations complexity up to O(T 2d), where T
is the length of input features and d is the model dimension
of hidden states. It means the inference speed will become
slower and slower when speech frames are accumulated, which
is unacceptable in online ASR tasks. Extreme left and right
Restrict-SA (left=l, right=r) overcomes this drawback, and
reduce the operations complexity to O(T (l + r)d), but it also
restricts the reception field to O(ml + mr). Though it can
stack multiple layers to acquire a larger reception field, where
m is the number of attention layers. Our proposed Memory-
Self-Attention not only maintains the operations complexity
to O(T (l + r + d)d), but also extends the reception field to
O(T ). In intuitive thinking, the complicated self-attention
unit of MSA will model the localtime features carefully, and
relative light memory unit of MSA will look as far as possible
of the history information.

3. EXPERIMENTS

Our experimental works were implemented by evaluating the
performance of our models on two publicly available ASR
corpus (WSJ and SWBD). As a comparison, we trained the
proposed MSA encoder with CTC loss, and trained the MSA
Transducer with RNN-T loss. Both Character Error Rates
(CER) and Word Error Rates (WER) are evaluated, and the
results are summarized as Table 2.

3.1. Experimental Setup

As inputs to the system, the audio data is encoded with mean-
variance normalized Fbank 40 coefficients (plus energy) of
25ms frame length and 10ms frame shift, together with their
first and second temporal derivatives. Therefore, each input
vector is 123 dimensions. At each timestep, we concat the
left and right 9 frames into one feature vector, so total 19
frames are used as the input vector. All of the speech text
are capitalized, and 26 grapheme labels (plus −, ′, blank and
∅) are used during training and decoding, so the output is 30
classes for scoring. The whole system was set up on Pytorch
framework, and used 4 Nvidia V100 cards for training. Pytorch
DataParallel is used to train mini-batch data over multiple
GPUs with 16 samples per batch.

In the training stage of MSA Transducer, the model is
started with 25000 warmup steps, and we divide the learning
rate by 10 for every 20 epochs. Adam optimizer with β1 = 0.9,
β2 = 0.98 and epsilon = 10−9 is used. The standard MSA
Transducer in most experiments has the following configura-
tion. The encoder has (1) Two 2-D convolutional blocks, each
with two convolutional layers with kernel size = 21× 5 and
channel = 32. The second convolutional layer has stride = 3
in temporal dimension. (2) Twelve MSA blocks, with 1024
attention layer dimension, 8 multi-heads attention, and 2048
feedforward layer dimension. The decoder is similar with the
encoder, but with two 1-D convolutional blocks with kernel



Table 1. Operation Complexity Analysis

Model Type Model Structure Operations Per-layer Seq-Operations Max Path Length
Bidirectional BLSTM O(Td2) O(T ) O(T )
Bidirectional Unrestricted-SA O(T 2d) O(1) O(T )
Unidirectional LSTM O(Td2) O(T ) O(T )
Unidirectional Restricted-SA (left=inf, right=r) O(T 2d) O(1) O(T )
Unidirectional Restricted-SA (left=l, right=r) O(T (l + r)d) O(1) O(ml +mr)
Unidirectional Memory-SA O(T (l + r + d)d) O(T ) O(T )

Table 2. Performance of Memory-Self-Attention Model

Train Loss Encoder Decoder WSJ SWBD
CER WER CER WER

CTC LSTMx4 — 6.07 16.76 17.99 35.43
CTC Restricted-SAx12 (l=16, r=4) — 5.21 14.22 16.42 33.70
CTC Memory-SAx12 (l=16, r=4) — 4.65 12.29 15.51 31.32
RNN-T Memory-SAx12 (l=16, r=4) LSTMx2 6.43 15.04 19.79 34.55
RNN-T Memory-SAx12 (l=16, r=4) Restricted-SAx6 (l=10, r=0) 7.99 15.41 17.98 32.22
RNN-T Memory-SAx12 (l=16, r=4) Memory-SAx2 (l=10, r=0) 6.98 15.21 17.32 31.67

size = 5 and stride = 1, followed by another two MSA blocks.
Finally, the linear and projection layer dimension is 1024, with
dropout = 0.2 for preventing overfit. In the inference stage,
we used the standard beam search algorithm. More specificly,
the beam width of CTC is set to 200, and 32 for RNN-T.

Like previous work in [27], we pre-trained the encoder
network with CTC loss, and pre-trained the decoder network
with cross-entropy loss. The joint network is fine-tuned with
RNN-T loss eventually. The pre-trained encoder is connected
to a 1024 dimension feed-forward layer and a softmax layer,
to output grapheme label probabilities. The performance of
this pre-trained CTC model is shown in Table 2 as comparison.
The experimental results infer that pre-training can accelerate
the convergence of MSA Transducer, and it is the essential
procedure to achieve better performance.

3.2. Results

The performance of all the models are summarized as Table 2.
Because our works focus on the online ASR tasks, we compare
them with forward-only networks. We take 4-layer unidirec-
tional LSTM and 12-layer Restricted-Self-Attention as our
baseline models, where l = 16 and r = 4 is the left and right
context window that every position in self-attention can attend.
In addition, both CTC model and RNN-T model are evaluated
with language model by shallow fusion for better performance.
We used standard kaldi s5 recipe to train the language model.
Specificly, 3-Gram model trained on the extended text data is
incorporated with the CER and WER test of WSJ, and 4-Gram
model trained on Switchboard and Fisher transcripts is used
for SWBD test.

The experiments on encoder part of the model demonstrate
that both Restricted-SA and our proposed Memory-SA can

achieve better results than baseline forward-only LSTM net-
work. The MSA model with CTC loss improves WER results
than Restricted-SA network 13.5% relatively on WSJ test data,
and 7.1% on SWBD dataset. However, the models with RNN-
T loss do not beat ones with CTC loss. We thought that the
decoder part of RNN-T models might not have enough data
to learn a good implicit language model on small datasets. In
our experiments, we also found that external language model
trained on the same transcripts greatly improves the results of
CTC models but has little impact on RNN-T models.

4. CONCLUSION

In this paper, we present Memory-Self-Attention (MSA) Trans-
ducer, which adds history information into the Restricted-
Self-Attention unit. We trained the MSA models on RNN-T
loss, making it suitable for online ASR tasks, because the
alignments of RNN-T are local and monotonic. Our experi-
ments show that MSA has better results than basic LSTM and
window-restricted-attention networks. Moreover, MSA Trans-
ducer achieves these results without much computation cost
increase, because it only needs localtime features as inputs, and
efficiently models long temporal contexts by attending mem-
ory states. We are interested to investigate the performance
of MSA unit in various monotonic models such as truncated
attention-based speech transformer. Exploring better archi-
tectures that add history information into the self-attention
models, can also be extended. We will leave these ideas as
future works.
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analysis of local monotonic attention variants,” in IN-
TERSPEECH, 09 2019.

[25] L. Dong, F. Wang, and B. Xu, “Self-attention aligner:
A latency-control end-to-end model for asr using self-
attention network and chunk-hopping,” in ICASSP, 2019.

[26] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott,
S. Koo, and S. Kumar, “Transformer transducer: A
streamable speech recognition model with transformer
encoders and rnn-t loss,” in ICASSP, 2020.

[27] K. Rao, H. c. i. Sak, and R. Prabhavalkar, “Exploring
architectures, data and units for streaming end-to-end
speech recognition with rnn-transducer,” in ASRU, 2017.


	1  Introduction
	2  Memory-Self-Attention (MSA) Transducer
	2.1  Model Architecture
	2.2  Complexity Analysis

	3  Experiments
	3.1  Experimental Setup
	3.2  Results

	4  Conclusion
	5  Acknowledgement
	6  References

