
The ins and outs of speaker recognition: lessons from VoxSRC 2020

Yoohwan Kwon1,2*, Hee-Soo Heo1*, Bong-Jin Lee1, Joon Son Chung1

1Naver Corporation, 2Yonsei University

Abstract
The VoxCeleb Speaker Recognition Challenge (VoxSRC) at
Interspeech 2020 offers a challenging evaluation for speaker
recognition systems, which includes celebrities playing differ-
ent parts in movies. The goal of this work is robust speaker
recognition of utterances recorded in these challenging environ-
ments. We utilise variants of the popular ResNet architecture for
speaker recognition and perform extensive experiments using a
range of loss functions and training parameters. To this end,
we optimise an efficient training framework that allows power-
ful models to be trained with limited time and resources. Our
trained models demonstrate improvements over most existing
works with lighter models and a simple pipeline. The paper
shares the lessons learned from our participation in the chal-
lenge.
Index Terms: speaker verification, speaker recognition.

1. Introduction
Speaker recognition has various applications such as personal-
isation of voice command systems and user authentication in
security systems. Such applications require speaker recognition
systems to be robust to performance degradation in real-world
scenarios. For example, noise and channel effects have sig-
nificant effect on the performance of speaker recognition sys-
tems. In order to address these issues, the VoxCeleb dataset
has been released, allowing researchers to tackle the problem of
speaker recognition “in the wild” [1, 2]. The research commu-
nity in this field has quickly adopted the dataset and has made
remarkable technological advances. For example, some studies
have directly dealt with issues such as channel difference and
noise [3, 4], while others have incorporated advances in deep
learning architectures and loss functions for improving speaker
recognition performance [5, 6, 7, 8, 9, 10].

Fast progress of the field have revealed the need for a new
challenging dataset, since the performance has saturated as a
result of powerful models overcoming most of the known errors.
While the best performance on the original VoxCeleb test set
was reported to be 7.8% (equal error rate) in 2017 [1] and 3.8%
in 2018 [8], some recent works have demonstrated results under
1% [11].

The VoxCeleb Speaker Recognition Challenge 2020 iden-
tifies the limitations in existing test datasets and proposes new
challenges for the speaker recognition community. This year’s
challenge is different to the last in a number of ways: (1) there
is an explicit domain shift between the training data and the test
data; (2) the dataset contains celebrities playing different char-
acters in movies, providing more challenging target trials; (3)
the test set contains utterances that are shorter than the segments
seen during training.

Our submission to the challenge is based on popular archi-
tectures such as the Residual Networks (ResNet) and Time De-

* These authors contributed equally to this work.

lay Neural Networks (TDNN) [12, 13, 5]. We perform a wide
range of experiments using our efficient training framework,
and discuss strengths and weaknesses of the different loss func-
tions.

2. Methods
2.1. Trunk architectures

We experiment with three different trunk architectures – two
variants of the ResNet-34 used in [14] and one TDNN-based
model introduced in [11].

Speed optimised ResNet. Residual networks [12] are widely
used in image recognition and have been successfully applied
to speaker recognition [2, 15, 16, 4, 17]. In order to reduce
computational cost, the speed optimised variant uses one quar-
ter of the channels in each residual block compared to the orig-
inal ResNet-34. The model has 1.4 million parameters com-
pared to 22 million of the original ResNet-34. Self-attentive
pooling (SAP) [15] is used to aggregate frame-level features
into utterance-level representation, while paying attention to
the frames that are more informative for utterance-level speaker
recognition. The network architecture is identical to that used
in [18] except for the dimension of the input features, and we
refer to this configuration as Q / SAP in the results.

Performance optimised ResNet. The performance optimised
variant has half of the channels in each residual block com-
pared to the original ResNet-34, and in total contains 8.0 mil-
lion parameters. The stride at the first convolutional layer is
removed, leading to increased computational requirement com-
pared to the speed optimised model. Attentive Statistics Pool-
ing (ASP) [8] is used to aggregate temporal frames, where
the channel-wise weighted standard deviation is calculated and
concatenated to the weighted mean. Table 1 shows the detailed
architecture of this model, referred to as H / ASP in the results.

ECAPA-TDNN. ECAPA-TDNN [11] consists of a series of 1-
dimensional Res2Net layers followed by statistics pooling mod-
ule with channel-dependent frame attention. There are two vari-
ants proposed in the paper, but we use the larger model with
14.7 million parameters. Our implementation of the model is
identical to that in the original paper, but differ in pre and post-
processing steps used during training and evaluation. This is the
best performing single model on the VoxCeleb1 test dataset in
the recent literature.

We train all three models with and without batch normali-
sation after the linear embedding layer.

2.2. Loss function

Additive margin softmax (AM-softmax) [21, 22] and Additive
angular margin softmax (AAM-softmax) [23] introduce a con-
cept of margin between classes in order to increase inter-class
variance. For AM-Softmax and AAM-Softmax losses, we se-

ar
X

iv
:2

01
0.

15
80

9v
1 

 [
cs

.S
D

] 
 2

9 
O

ct
 2

02
0



Table 1: Trunk architecture for the performance optimized
ResNet model. L: length of input sequence in frames, ASP:
attentive statistics pooling.

Layer Kernel size Stride Output shape

Conv1 3× 3× 32 1× 1 L× 64× 32
Res1 3× 3× 32 1× 1 L× 64× 32
Res2 3× 3× 64 2× 2 L/2× 32× 64
Res3 3× 3× 128 2× 2 L/4× 16× 128
Res4 3× 3× 256 2× 2 L/8× 8× 256
Flatten - - L/8× 2048
ASP - - 4096
Linear 512 - 512

lect a margin of 0.2 and a scale of 30, since these values give
the best results on the VoxCeleb1 test set.

The Angular Prototypical (AP) loss [18] is a variant of the
prototypical networks [24] that uses an angular objective, and
has demonstrated strong performance without the need for man-
ual hyper-parameters tuning [18, 25]. Our implementation uses
M = 2, with one utterance for every speaker in the query set
and one utterance in the support set.

Finally, we combine the Angular Prototypical loss together
with the vanilla softmax loss which provide further improve-
ment in performance over using each of the loss functions alone.
Figure 1 shows the training strategy for using the AP and the
softmax losses jointly. The use of multiple loss functions has
been discussed in [26, 27].

M
el-filterbanks
R

esN
et-34

M
el-filterbanks

Pooling

FC
-1

M
el-filterbanks

FC
-2

Softm
ax

loss
A

P loss

M
el-filterbanks

4096

512

5994

Figure 1: Overview of the architecture and the configuration of
the AP+Softmax loss.

3. Experiments
3.1. Dataset

The models are trained on the development set of Vox-
Celeb2 [2], which contains 5,994 speakers. The VoxCeleb1 test
sets [1], the previous year’s VoxSRC test set [28] and this year’s
VoxSRC development set are used for validation.

3.2. Input representations

During training, we use random 2-second temporal segments
extracted from each utterance. Pre-emphasis with a coefficient
of 0.97 is applied to the input signal. The spectrograms are
extracted with a hamming window of 25ms width and 10ms
step size.

For the ResNet models, the input features are 64-
dimensional log Mel-filterbanks. Mean and variance normal-
isation (MVN) is performed by applying instance normalisa-
tion [29] to the input.

For the TDNN models, the input features are 80-
dimensional Mel-frequency cepstral coefficients (MFCCs) ex-
tracted from the spectrograms. The features are mean nor-
malised at the input to the network.

We do not use voice activity detection during training and
testing, since active speaker detection in the data collection
pipeline of the VoxCeleb dataset removes any non-speech seg-
ments.

3.3. Data augmentation

Augmentation increases the amount and diversity of the train-
ing data, which helps reduce overfitting. We employ two of the
popular augmentation methods in speech processing – additive
noise and room impulse response (RIR) simulation. For addi-
tive noise, we use the audio clips from the MUSAN corpus [30];
for RIR, we sample the simulated filters of small and medium
rooms released in [31]. The augmentation parameters are se-
lected to replicate the behaviour of the Kaldi recipe of [5].

In contrast to the previous works that utilise the Kaldi im-
plementation for data augmentation [5, 11], we implement an
efficient implementation of the augmentation methods so that
they can be preformed online in the data loader. This allows
the models to be trained in machines without large amounts of
local storage, since the augmented version of the dataset do not
need to be stored. Moreover, this allows different noises and
RIR filters to be applied at every epoch, and therefore allows
the model to observe unlimited variations of the utterances dur-
ing training. Tempo augmentation was not applied because the
waveform similarity overlap-add (WSOLA) algorithm used by
the previous works is computationally expensive and only pro-
vides a very marginal improvement of performance.

3.4. Implementation details

Our implementation is adapted from the PyTorch-based speaker
recognition code released with [18].

The models are trained using NVIDIA V100 GPUs with
32GB memory using the Adam optimiser, with an initial
learning rate of 0.001. The batch size of 200 is used for
the classification-based loss functions and 400 for the metric
learning-based losses. A weight decay of 5e-5 is applied. Train-
ing schedules vary by the model as smaller models take more
epochs to converge.

We use mixed precision training, a technique to train deep
neural networks using half precision floating point numbers.
This allows larger batch sizes to be used for any given GPU
memory size, which can significantly boost the performance of
metric learning-based models [18].

Speed optimised ResNet. The learning rate is reduced by 5%
every 5 epochs. The network is trained for 300 epochs.

Performance optimised ResNet. The learning rate is reduced
by 25% every 16 epochs. The network is trained for 250 epochs.

ECAPA-TDNN. The learning rate is reduced by 25% every 8
epochs. The network is trained for 150 epochs.

3.5. Scoring

The trained networks are validated on the VoxCeleb and the
VoxSRC test sets. We sample ten 4-second temporal segments
at regular intervals from every segment in the test set, and com-
pute the 10 × 10 = 100 similarities for every pair using all
possible combinations of segments. The mean of the 100 sim-
ilarities is used as the final pairwise score. This protocol is re-



Table 2: Results on the VoxCeleb and VoxSRC test sets. The figures in bold represent the best results for each model and metric. AP:
Angular Prototypical. Aug.: Data augmentation used during training. BN: Batch normalisation used after the embedding layer. †:
This method uses score normalisation as a post-processing step. ‡: Additional data augmentation methods are applied. §: Submissions
to VoxSRC 2019.

Config. # Params Loss Aug. BN VoxCeleb1 cl. VoxCeleb1-E cl. VoxCeleb1-H cl. VoxSRC 2019 VoxSRC 2020 Val
EER MinDCF EER MinDCF EER MinDCF EER MinDCF EER MinDCF

FR-34 [18] 1.4M AP 7 7 2.05 0.166 2.27 0.164 4.36 0.282 2.65 0.182 6.35 0.374
Sys 1 [19] § 6.1M Softmax † 3 7 1.42 - 1.35 - 2.48 - - - - -
Fusion [19] § - - - - 1.02 - 1.14 - 2.21 - 1.42 - - -
Sys A5 [20] § 60M AM-Softmax 3 7 - - 1.51 - - - 1.72 - - -
Fusion [20] § - - - - - - 1.22 - - - 1.54 - - -
ECAPA 1K [11] 6.2M AAM-Softmax † 3 ‡ 3 1.01 - 1.24 - 2.32 - 1.32 - - -
ECAPA 1K [11] 14.7M AAM-Softmax † 3 ‡ 3 0.87 - 1.12 - 2.12 - 1.22 - - -

Q1

Q / SAP 1.4M

AM-softmax 7 7 1.67 0.121 1.96 0.131 3.54 0.213 2.20 0.132 5.22 0.295
Q2 AAM-softmax 7 7 1.57 0.112 1.75 0.118 3.24 0.199 2.09 0.124 4.82 0.270
Q3 AP 7 7 1.58 0.138 1.87 0.136 3.62 0.239 2.14 0.150 5.32 0.320
Q4 AP+softmax 7 7 1.47 0.119 1.78 0.130 3.44 0.229 2.04 0.143 5.09 0.310
Q5 AM-softmax 7 3 1.60 0.128 1.80 0.119 3.20 0.194 2.17 0.123 4.79 0.268
Q6 AAM-softmax 7 3 1.50 0.110 1.75 0.117 3.09 0.190 2.00 0.123 4.68 0.260
Q7 AP 7 3 1.51 0.115 1.72 0.125 3.40 0.224 1.98 0.140 5.10 0.298
Q8 AP+softmax 7 3 1.45 0.111 1.68 0.119 3.21 0.206 1.99 0.129 4.85 0.277

QA1

Q / SAP 1.4M

AM-softmax 3 7 1.64 0.105 1.88 0.124 3.36 0.206 2.19 0.131 5.05 0.280
QA2 AAM-softmax 3 7 1.65 0.123 1.77 0.119 3.19 0.199 2.02 0.128 4.87 0.272
QA3 AP 3 7 1.69 0.131 2.06 0.147 4.00 0.257 2.46 0.160 5.93 0.339
QA4 AP+softmax 3 7 1.51 0.129 1.67 0.123 3.28 0.214 2.01 0.135 5.03 0.294
QA5 AM-softmax 3 3 1.71 0.115 1.90 0.122 3.33 0.200 2.17 0.130 5.03 0.276
QA6 AAM-softmax 3 3 1.60 0.112 1.77 0.120 3.19 0.197 2.08 0.128 4.84 0.267
QA7 AP 3 3 1.54 0.124 1.69 0.125 3.37 0.222 2.05 0.139 5.14 0.303
QA8 AP+softmax 3 3 1.37 0.116 1.59 0.112 2.98 0.191 1.86 0.123 4.63 0.267

H1

H / ASP 8.0M

AM-softmax 7 7 1.77 0.128 2.00 0.130 3.51 0.208 2.20 0.130 5.12 0.288
H2 AAM-softmax 7 7 1.74 0.132 1.85 0.125 3.30 0.199 2.10 0.121 4.74 0.267
H3 AP 7 7 1.44 0.116 1.74 0.122 3.35 0.211 1.92 0.131 4.95 0.287
H4 AP+softmax 7 7 1.21 0.098 1.42 0.099 2.77 0.175 1.64 0.101 4.15 0.241
H5 AM-softmax 7 3 1.44 0.101 1.62 0.107 2.85 0.174 1.84 0.111 4.28 0.243
H6 AAM-softmax 7 3 1.25 0.101 1.56 0.103 2.78 0.166 1.75 0.105 4.12 0.231
H7 AP 7 3 1.20 0.102 1.52 0.110 3.01 0.194 1.70 0.116 4.50 0.270
H8 AP+softmax 7 3 1.29 0.091 1.41 0.100 2.78 0.176 1.55 0.109 4.21 0.241

HA1

H / ASP 8.0M

AM-softmax 3 7 1.53 0.113 1.67 0.114 3.07 0.191 1.89 0.112 4.59 0.263
HA2 AAM-softmax 3 7 1.49 0.111 1.51 0.105 2.91 0.181 1.75 0.103 4.40 0.245
HA3 AP 3 7 1.24 0.105 1.50 0.108 3.06 0.198 1.66 0.112 4.60 0.267
HA4 AP+softmax 3 7 0.88 0.079 1.07 0.076 2.21 0.147 1.26 0.079 3.51 0.202
HA5 AM-softmax 3 3 1.35 0.101 1.45 0.099 2.64 0.166 1.64 0.097 4.05 0.232
HA6 AAM-softmax 3 3 1.15 0.083 1.35 0.091 2.49 0.155 1.61 0.093 3.80 0.218
HA7 AP 3 3 1.16 0.086 1.38 0.099 2.78 0.180 1.62 0.103 4.32 0.248
HA8 AP+softmax 3 3 1.03 0.084 1.23 0.087 2.47 0.159 1.40 0.091 3.94 0.220

EA1

ECAPA 1K 14.7M

AM-softmax 3 7 1.13 0.085 1.35 0.093 2.61 0.165 1.54 0.090 4.03 0.228
EA2 AAM-softmax 3 7 0.96 0.076 1.24 0.086 2.40 0.152 1.59 0.085 3.82 0.212
EA3 AP 3 7 1.14 0.088 1.40 0.100 2.88 0.189 1.72 0.105 4.41 0.258
EA4 AP+softmax 3 7 0.90 0.081 1.11 0.077 2.32 0.155 1.32 0.084 3.81 0.219
EA5 AM-softmax 3 3 1.23 0.093 1.33 0.091 2.52 0.157 1.54 0.093 3.85 0.221
EA6 AAM-softmax 3 3 1.01 0.077 1.27 0.085 2.45 0.156 1.64 0.082 3.83 0.212
EA7 AP 3 3 1.12 0.084 1.35 0.098 2.78 0.183 1.51 0.103 4.37 0.250
EA8 AP+softmax 3 3 0.96 0.078 1.22 0.083 2.45 0.163 1.49 0.090 4.00 0.228

F1
Fusion

- Best EER - - 0.73 0.056 0.93 0.065 1.87 0.122 1.18 0.066 3.08 0.174
F2 - Best MinDCF - - 0.74 0.061 0.93 0.066 1.90 0.124 1.17 0.067 3.10 0.173

ferred to as test time augmentation (TTA-3) in [2] and is used
by [4, 18].

3.6. Evaluation protocol

We use two performance metrics: (i) the Equal Error Rate
(EER) which corresponds to the threshold at which the false
acceptance rate is equal to the false rejection rate; and (ii) the
minimum detection cost (MinDCF) of the function used by the

NIST SRE [32] and the VoxSRC1 evaluations. The parameters
Cmiss = 1, Cfa = 1 and Ptarget = 0.05 are used for the cost
function.

1http://www.robots.ox.ac.uk/˜vgg/data/
voxceleb/competition2020.html

http://www.robots.ox.ac.uk/~vgg/data/voxceleb/competition2020.html
http://www.robots.ox.ac.uk/~vgg/data/voxceleb/competition2020.html


3.7. Fusion

We perform the feature fusion by computing the weighted aver-
age of the score of individual systems. We search over all possi-
ble combinations of models and weights in order to compensate
for the difference of the back-end model. The weight value is
chosen from 0, 1, 2 or 3 for each model. We optimise the fusion
weights on the VoxSRC 2020 validation set in order to find the
optimal parameters that give the best EER or MinDCF. For the
best model based on the EER, the weights of 3 were given to
HA4 and EA4, while EA5 and HA6 got weights of 1.

3.8. Results

Table 2 compares the results on the validation sets. We compare
our models to two of the best scoring submissions [19, 20] to
VoxSRC 2019.

We select the models that perform best on the validation
sets, and evaluate them on VoxSRC 2020 test set. The results
on the test set are reported in Table 3.

Table 3: Results on the challenge test set

Model VoxSRC 2020
EER MinDCF

HA4 4.98 0.294
F1 4.22 0.250

3.9. Discussion

0.10 0.150.20 0.30 0.50 1.00 2.00 5.00 10.00
FPR(%)

0.10

0.15
0.20

0.30

0.50

1.00

2.00

5.00

10.00

FN
R(

%
)

AM
AAM
AP
AP+softmax

Figure 2: DET curves for ECAPA-TDNN models with batch nor-
malisation on the output.

The results show that the combination of metric learning
and classification objectives work best for most models. The
batch normalisation applied after the embedding layer con-
tributes a significant performance improvements to the models
trained with AM-softmax and AAM-softmax losses.

Analysis of the DET curve. Figure 2 represents the detec-
tion error trade-off (DET) curve for the ECAPA-TDNN mod-
els trained with batch normalisation using various loss func-
tions. It can be seen that the model trained with AP+Softmax
loss shows the best performance for most operating points, but
AAM-softmax trained model works best at operating points
where false positives carry a high penalty. The DET curves for

the other model types also follow similar patterns – AP-based
models are generally well suited to low FNR scenarios (e.g. per-
sonalisation of music preference for AI speakers), whereas AM-
Softmax and AAM-Softmax work well for low FPR scenarios
(e.g. telephone banking authentication).

Effects of data augmentation. We perform experiments with
and without data augmentation for both speed optimised and
performance optimised ResNet models. Data augmentation
contributed a significant boost in performance for variants of
the larger performance optimised model, which is in line with
expectations. However, in the case of the smaller speed opti-
mised model, data augmentation had adverse effect on perfor-
mance for almost all variants, despite the fact that the model
was left to train for a long time until convergence. Therefore
it can be concluded that data augmentation only helps to im-
prove the performance when the model has enough capacity to
take advantage of the variations introduced by the augmentation
methods.

Effects of batch size. The experiments in [18] have shown that
the performance of models trained with metric learning objec-
tives increases with the batch size. We verify the phenomenon
for the H / ASP model trained with AP and AP+Softmax losses
in Table 4. Note that our implementation of the model and that
of [14] are identical except for the larger batch size, enabled by
the use of more modern GPUs and mixed precision training.

Table 4: Comparison of the results for different batch sizes. The
H / ASP trunk architecture is used. BS: Batch size.

BS Loss Aug. BN VoxSRC 2019
EER MinDCF

150 [14] AP 3 7 1.92 0.128
150 [14] AP+Softmax 3 7 1.46 0.088
150 [14] AP 3 3 1.74 0.117
150 [14] AP+Softmax 3 3 1.49 0.102

400 AP 3 7 1.66 0.112
400 AP+Softmax 3 7 1.26 0.079
400 AP 3 3 1.62 0.103
400 AP+Softmax 3 3 1.40 0.091

Comparison to [11]. Our best model (HA4) trained with
the AP+Softmax loss matches the performance of the large
ECAPA-TDNN using a model that has only a half the number of
parameters, and with a more simple implementation. Our sys-
tems do not use tempo augmentation, re-encoding or SpecAug-
ment during training. Moreover, we do not use score normal-
isation as a post-processing step on the output. As a result of
these differences, the models trained with our implementation
under-performs compared to the results reported in [11] for the
same model specification and loss function.

4. Conclusion
The paper describes our experience from the participation in
VoxSRC 2020. The best system is trained using a combination
of metric learning and classification-based objectives, and out-
perform the baselines by a significant margin. Our best model
outperforms all single model and ensemble systems submitted
to the last year’s challenge.

Acknowledgements. We would like to thank Brecht Desplan-
ques for his help with the implementation of ECAPA-TDNN.



5. References
[1] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman, “Vox-

Celeb: a large-scale speaker identification dataset,” in Proc. In-
terspeech, 2017.

[2] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman, “Vox-
Celeb2: Deep speaker recognition,” in Proc. Interspeech, 2018.

[3] Chau Luu, Peter Bell, and Steve Renals, “Channel adversar-
ial training for speaker verification and diarization,” in Proc.
ICASSP. IEEE, 2020, pp. 7094–7098.

[4] Joon Son Chung, Jaesung Huh, and Seongkyu Mun, “Delving
into VoxCeleb: environment invariant speaker recognition,” in
Speaker Odyssey, 2020.

[5] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel
Povey, and Sanjeev Khudanpur, “X-vectors: Robust dnn embed-
dings for speaker recognition,” in Proc. ICASSP. IEEE, 2018, pp.
5329–5333.

[6] Jee-weon Jung, Hee-Soo Heo, Il-Ho Yang, Hye-jin Shim, and Ha-
Jin Yu, “A complete end-to-end speaker verification system using
deep neural networks: From raw signals to verification result,” in
Proc. ICASSP. 2018, pp. 5349–5353, IEEE.

[7] Mirco Ravanelli and Yoshua Bengio, “Speaker recognition from
raw waveform with sincnet,” in IEEE Spoken Language Technol-
ogy Workshop. IEEE, 2018, pp. 1021–1028.

[8] Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda, “Atten-
tive statistics pooling for deep speaker embedding,” in Proc. In-
terspeech, 2018.

[9] David Snyder, Daniel Garcia-Romero, Gregory Sell, Alan Mc-
Cree, Daniel Povey, and Sanjeev Khudanpur, “Speaker recogni-
tion for multi-speaker conversations using x-vectors,” in Proc.
ICASSP. IEEE, 2019, pp. 5796–5800.

[10] Li Wan, Quan Wang, Alan Papir, and Ignacio Lopez Moreno,
“Generalized end-to-end loss for speaker verification,” in Proc.
ICASSP. IEEE, 2018, pp. 4879–4883.

[11] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck,
“Ecapa-tdnn: Emphasized channel attention, propagation and ag-
gregation in tdnn based speaker verification,” in Proc. Inter-
speech, 2020.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proc. CVPR, 2016,
pp. 770–778.

[13] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro
Shikano, and Kevin J Lang, “Phoneme recognition using time-
delay neural networks,” IEEE transactions on acoustics, speech,
and signal processing, vol. 37, no. 3, pp. 328–339, 1989.

[14] Hee Soo Heo, Bong-Jin Lee, Jaesung Huh, and Joon Son Chung,
“Clova baseline system for the voxceleb speaker recognition chal-
lenge 2020,” arXiv preprint arXiv:2009.14153, 2020.

[15] Weicheng Cai, Jinkun Chen, and Ming Li, “Exploring the encod-
ing layer and loss function in end-to-end speaker and language
recognition system,” in Speaker Odyssey, 2018.

[16] Weidi Xie, Arsha Nagrani, Joon Son Chung, and Andrew Zisser-
man, “Utterance-level aggregation for speaker recognition in the
wild,” in Proc. ICASSP, 2019.

[17] Yoohwan Kwon, Soo-Whan Chung, and Hong-Goo Kang, “Intra-
class variation reduction of speaker representation in disentangle-
ment framework,” Proc. Interspeech, 2020.

[18] Joon Son Chung, Jaesung Huh, Seongkyu Mun, Minjae Lee,
Hee Soo Heo, Soyeon Choe, Chiheon Ham, Sunghwan Jung,
Bong-Jin Lee, and Icksang Han, “In defence of metric learning
for speaker recognition,” in Proc. Interspeech, 2020.

[19] Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel Matějka, and
Oldřich Plchot, “BUT system description to voxceleb speaker
recognition challenge 2019,” arXiv preprint arXiv:1910.12592,
2019.

[20] Daniel Garcia-Romero, Alan McCree, David Snyder, and Gregory
Sell, “JHU-HLTCOE system for the VoxSRC speaker recognition
challenge,” in Proc. ICASSP. IEEE, 2020, pp. 7559–7563.

[21] Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu, “Additive
margin softmax for face verification,” IEEE Signal Processing
Letters, vol. 25, no. 7, pp. 926–930, 2018.

[22] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,
Jingchao Zhou, Zhifeng Li, and Wei Liu, “Cosface: Large margin
cosine loss for deep face recognition,” in Proc. CVPR, 2018, pp.
5265–5274.

[23] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou,
“Arcface: Additive angular margin loss for deep face recognition,”
in Proc. CVPR, 2019, pp. 4690–4699.

[24] Jake Snell, Kevin Swersky, and Richard Zemel, “Prototypical
networks for few-shot learning,” in NIPS, 2017, pp. 4077–4087.

[25] Jaesung Huh, Hee Soo Heo, Jingu Kang, Shinji Watanabe, and
Joon Son Chung, “Augmentation adversarial training for unsu-
pervised speaker recognition,” in Workshop on Self-Supervised
Learning for Speech and Audio Processing, NeurIPS, 2020.

[26] Seong Min Kye, Youngmoon Jung, Hae Beom Lee, Sung Ju
Hwang, and Hoirin Kim, “Meta-learning for short utterance
speaker recognition with imbalance length pairs,” 2020.

[27] Hee-Soo Heo, Jee weon Jung, IL-Ho Yang, Sung-Hyun Yoon,
Hye jin Shim, and Ha-Jin Yu, “End-to-End Losses Based on
Speaker Basis Vectors and All-Speaker Hard Negative Mining for
Speaker Verification,” in Proc. Interspeech, 2019, pp. 4035–4039.

[28] Joon Son Chung, Arsha Nagrani, Ernesto Coto, Weidi Xie,
Mitchell McLaren, Douglas A Reynolds, and Andrew Zisserman,
“VoxSRC 2019: The first VoxCeleb speaker recognition chal-
lenge,” arXiv preprint arXiv:1912.02522, 2019.

[29] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, “In-
stance normalization: The missing ingredient for fast stylization,”
arXiv preprint arXiv:1607.08022, 2016.

[30] David Snyder, Guoguo Chen, and Daniel Povey, “Musan: A mu-
sic, speech, and noise corpus,” arXiv preprint arXiv:1510.08484,
2015.

[31] Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer,
and Sanjeev Khudanpur, “A study on data augmentation of rever-
berant speech for robust speech recognition,” in Proc. ICASSP,
2017, pp. 5220–5224.

[32] NIST 2018 Speaker Recognition Evaluation Plan, 2018 (ac-
cessed 31 July 2020), https://www.nist.gov/system/
files/documents/2018/08/17/sre18_eval_plan_
2018-05-31_v6.pdf, See Section 3.1.

https://www.nist.gov/system/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf
https://www.nist.gov/system/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf
https://www.nist.gov/system/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf

