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ABSTRACT  
Coronavirus Disease 2019 (COVID-19) has rapidly spread in 
2020, emerging a mass of studies for lung infection segmen-
tation from CT images. Though many methods have been 
proposed for this issue, it is a challenging task because of in-
fections of various size appearing in different lobe zones. To 
tackle these issues, we propose a Graph-based Pyramid 
Global Context Reasoning (Graph-PGCR) module, which is 
capable of modeling long-range dependencies among disjoint 
infections as well as adapt size variation. We first incorporate 
graph convolution to exploit long-term contextual infor-
mation from multiple lobe zones. Different from previous av-
erage pooling or maximum object probability, we propose a 
saliency-aware projection mechanism to pick up infection-re-
lated pixels as a set of graph nodes. After graph reasoning, 
the relation-aware features are reversed back to the original 
coordinate space for the down-stream tasks. We further con-
struct multiple graphs with different sampling rates to handle 
the size variation problem. To this end, distinct multi-scale 
long-range contextual patterns can be captured. Our Graph-
PGCR module is plug-and-play, which can be integrated into 
any architecture to improve its performance.  Experiments 
demonstrated that the proposed method consistently boost the 
performance of state-of-the-art backbone architectures on 
both of public and our private COVID-19 datasets.  

Index Terms—COVID-19, Lung infections segmenta-
tion, Graph convolution, Multi-scale.  

1. INTRODUCTION  
The break of Coronavirus Disease 2019 (COVID-19) has rap-
idly spread over the world, which has been declared as a 
global pandemic [1]. Accurate lung infections segmentation 
is one of the most important pre-processing steps for assess-
ment and quantification of COVID-19 [2-5]. The classic 
UNet [6] and UNet++ [7] were widely performed as segmen-
tation architectures for COVID-19. Recently, UNet-Inf [8] 
with a parallel partial decoder was proposed to segment lung 
infections. Despite achieving good results, these approaches 
are still incapable of exploring sufficient information from 
multifocal infections, appearing in different lobe zones [9,10]. 
It may hinder the infections segmentation performance, espe-
cially considering each pixel in isolation, as local information 
is noisy and ambiguous. It is also noteworthy that infections 
with various size occur in different scales. To tackle these two 
challenges, it is imperative to perform multi-scale long-term 

interactions on COVID-19 CT images, which contributes to 
model long-term dependencies among multiple lesions. 

Recently, graph convolution [11] has been incorporated 
into computer vision tasks for globally reasoning, which can 
be generally summarized as two kinds of approaches: feature 
space graph convolution and coordinate space graph convo-
lution. The feature space graph convolution captures interde-
pendencies along the channel dimensions of the feature map, 
which projects the feature into a non-coordinate space [12-
15]; whistle coordinate space graph convolution explicitly 
models the spatial relationships between pixels [16-20], 
which projects the feature into a new coordinate space, to pro-
duce coherent prediction between the disjoint infections.  

In this paper, we propose a saliency-aware projection-
based Graph-based Pyramid Global Context Reasoning 
(Graph-PGCR) module for COVID-19 lung infections seg-
mentation. Different from the existing work that the infec-
tion-related pixels were highlighted via average pooling [16] 
or maximum object probability [17], we propose a saliency-
aware projection (SAP) to keep eye on ‘where’ is an informa-
tive part, and thus selects discriminative pixels to form a 
fully-connected graph. In addition, we further take the multi-
scale cues into consideration to address the challenge that dif-
ferent infections appear in various scales. Inspired by the Pyr-
amid Pooling Module [21], we build a pyramid global context 
reasoning architecture to harvest multi-scale representations 
via SAP with various sampling rates. Hence, a coarser graph 
is constructed with lower sampling rate, providing more 
global dependencies for the larger receptive scale; while a 
finer graph is modeled with higher sampling rate, embedding 
more explicit long-range context for the smaller receptive 
field. In this way, we can perform graph reasoning on each 
scale and aggregate local and global clues to make the final 
prediction more reliable.  

Our Graph-PGCR module is plug-and-play and thus can be 
integrated into a wide variety of existing network architec-
tures to further enhance their performance. In summary, the 
main contributions of this research are four-fold: (i) We pro-
pose a Graph-PGCR module to model long-range dependen-
cies among disjoint infections as well as adapt size variation; 
(ii) We propose a SAP mechanism to select the infection-re-
lated pixels as a set of graph nodes, where global contextual 
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Fig. 1. Overview of the Graph-based Pyramid Global Context Reasoning (Graph-PGCR) module in UNet architecture. 

 
information can be propagated via graph convolution; (iii) 
We construct multiple graphs to harvest multi-scale contex-
tual patterns from infections with various size; (iv) We con-
duct extensive experiments on public and private COVID-19 
dataset, where our method yields consistent improvements 
over a number of baselines.   

2. METHODS  
Fig.1 illustrates an overview of the proposed Graph-PGCR 
module in the segmentation architecture (e.g. UNet). Given 
an input image, we first extract features via the UNet-Encoder, 
and then our Graph-PGCR module is integrated to capture 
multi-scale long-range representations.  Benefitting from the 
saliency-aware projection, the input feature map 𝑋 is firstly 
sampled into 𝐾 (e.g. 𝐾 = 3) parallel pyramid levels with var-
ious scales. After individual graph convolution, the reprojec-
tion via upsampling and the multi-scale fusion with concate-
nation layers are performed to generate the feature represen-
tation 𝑋, which is finally fed into the UNet-decoder for pre-
diction. It is worth noting that the input feature map 𝑋 can be 
extracted from any layer of deep convolutional model. In the 
following subsections, we introduce the detail of each com-
ponent in the Graph-PGCR module.  
2.1. Saliency-aware Projection in Coordinate Space  
In order to project infection-related pixels in coordinate space 
into a set of graph nodes in a new coordinate space, we pro-
posed a saliency-aware projection mechanism, which inte-
grates attention mechanism with pooling operation. Specifi-
cally, the attention mechanism aims at learning where to em-
phasize or suppress; while the pooling operation desires of 
picking out discriminative pixels.  

Before projection, we need to reduce the dimension of fea-
ture map 𝑋, which enhances the capacity of the projection. 
Inspired by the dual attention network [22], we implement 
the channel attention module to capture the channel depend-
encies between any two channel maps via self-attention 
mechanism. After enhancing the feature representation, we 
adopt a 1×1 convolution layer to reduce the feature dimen-
sion from 𝐶 to 𝑆. Similarly, the feature map also enhanced 
by spatial attention module to model the spatial dependencies 

between any two positions. Benefiting from the channel and 
spatial attention modules, we could emphasize interdepend-
ent feature maps and improve the feature representation of 
specific semantics.  

Considering that pooling along the channel dimension can 
effectively highlight informative regions [23], we further per-
form the max-pooling and average-pooling operations on the 
channel axis and then concatenate them to generate an atten-
tion map 𝑎 ∈ ℝ,×-	which focus on the salient pixels related 
to infections and surpass unnecessary ones. As vividly shown 
in Fig.2, the attention map 𝑎 with spatial size of 𝐻×𝑊 is di-
vided into several non-overlapping sub-regions with the 
stride of 𝛿 pixels. Within each region, the pixel 𝑝 with maxi-
mum localization probability: 𝑝 = arg	max89𝑎(𝑝;)  is se-
lected as a node. This process results in a set of nodes 𝒩 =
{𝑛@}@BC

𝒩  for the feature map 𝑋. 𝒩  equals to 𝐻/𝛿 × 𝑊/𝛿  
and represents the number of nodes. ∙  is the ceiling opera-
tion, which gives the smallest integer equal or larger than its 
input. Note that the process can be considered as a sampling 
process and 1/𝛿  can be considered as a sampling rate. In 
view of this, each node 𝑛@ is represented by its corresponding 
image coordinates. It is worth noting that the spatial interval 
between nodes can be controlled by adjusting 𝛿. The coarser 
graph is constructed with lager 𝛿 values, which perhaps cap-
tures longer-range interactions among nodes. In contrast, all 
pixels are assigned as individual nodes in the extreme case, 
where 𝛿 = 1. The initial feature representation of each 𝑛@ is 
extracted from the feature map 𝑋 enhanced in both channel 
and spatial dimensions. This results in a set of node features, 
𝒵 ∈ ℝG× 𝒩 , where 𝑆 equals to the feature dimension of 𝑋.  
2.2. Multi-Scale Reasoning with Graph Convolution  
In spite of graph reasoning exploring the global context, the 
long-term context pattern differs in multiple scales of the 
same image. Specifically speaking, the finer representation 
with smaller receptive field (smaller 𝛿)	embeds more explicit 
context; while the coarser representation with larger receptive 
scale (larger 𝛿 ) explores global dependencies. Taking the 
multi-scale schema into consideration, we incorporate it with 
graph reasoning to extend the long-range contextual patterns, 
and thus devise the Graph-PGCR module. 
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Fig. 2. An illustration of the proposed saliency-aware projec-
tion (SAP) mechanism. In this example, the attention map 
𝑎 ∈ ℝH×H is sampled with the stride 𝛿 = 2. We then find the 
pixel 𝑝 with maximum localization probability in each region 
(shown in different colors), which is selected as the node. 

As seen in Fig.1, the graph convolution begins with sub-
sampling the convolved features into 𝐾 parallel pyramid lev-
els with various scales via saliency-aware projection. Higher 
sampling rate (smaller 𝛿 ) generates finer representations; 
while the coarser features are extracted from lower sampling 
rate (larger 𝛿). After selecting infection-related pixels as a set 
of nodes, a lightweight fully-connected graph with adjacency 
matrix 𝒜K ∈ ℝ 𝒩L × 𝒩L  is generated from 𝑘 -th separate 
branch for propagating information across nodes, as depicted 
in Fig.3. The adjacency matrix 𝒜K is defined as the similarity 
between nodes, where the more similar feature representa-
tions of two nodes, the stronger connectivity between them. 
It can be formulated as:	 

𝒜K = 𝜌K 𝒵K O⨂	𝜑K 𝒵K 																					(1)	 
where 𝜌K(∙) and 𝜑K(∙) are two learnable 1-dimensional lin-
ear transformations along node-wise dimension, ⨂	is the ma-
trix multiplication. We further apply a softmax layer to yield 
a normalized adjacency matrix 𝒜K . Then we conduct the 
graph convolution [11] in our model as: 

𝒵K = 𝜎 𝒜K(𝜇K 𝒵K )O𝒲K
O																			(2) 

where 𝜇K ∙  is a learnable linear transformation, 𝒲K ∈ ℝG×G 
is a trainable weight matrix, 𝜎 ∙  is the ReLU activation func-
tion, and 𝒵K is the output feature map after graph convolution 
in 𝑘-th separate branch.  
2.3. Reprojection and Multi-scale Fusion  
To provide complementary feature for the down-stream task, 
the last step is to map the relation-aware features (ℝG× 𝒩L ) 
generated from 𝑘-th separate branch back to the coordinate 
space (ℝU×,×-), which is compatible with the regular CNN. 
To achieve the dimension transformation, we reshape the re-
lation-aware 𝒵K ∈ ℝG× 𝒩L  into 𝒵K ∈ ℝG× ,/VL × -/VL . 
Then, a simple but effective upsampling operation is adopted 
as the reprojection function. In practice, the bilinear interpo-
lation is performed to resize  𝐻/𝛿K × 𝑊/𝛿K  to the original 
spatial input size 𝐻×𝑊. To maintain the original information, 
we further utilize a multi-scale fusion to fuse the reshaped 
relation-aware features from each scale with the original fea-
ture map 𝑋 in a learnable way, which carries both local and 
global context information. The multi-scale fusion process 
can be formulated as: 

Fig. 3. An illustration of reasoning with Graph convolution  

𝑋 = 𝐹 𝒰 𝒵K KBC
Y

, 𝑋 																												 3  

where 𝐹(∙) realizes the feature aggregation mechanism with 
a 1×1 convolution followed by a batch normalization and a 
ReLU activation function. 𝒰(∙) indicate up-sampling opera-
tion, and ∙  represents the concatenation. As a result, we 
have the feature 𝑋 with channel dimension of 𝐶. 
 

3. EXPERIMENTS AND RESULTS  
3.1. Datasets and Implementation  
The method was evaluated on two datasets: the public and our 
private COVID-19 datasets. (i) The public COVID-19 da-
taset [24]: It contains 20 COVID-19 CT scans from the Co-
ronacases Initiative and Radiopaedia, which were manually 
annotated for the left lung, right lung and COVID-19 infec-
tion. In the experiment, we trained our models using the 16 
volumes with 2-fold cross-validation and average the experi-
ment results as the final performance. (ii) The private 
COVID-19 dataset: we collected 102 COVID-19 CT scans 
(from the Department of Radiology, The First Affiliated Hos-
pital, College of Medicine, Zhejiang University), which has 
passed the ethic approvals. The left lung, right lung, and in-
fection were annotated by two radiologists with 5-year expe-
rience in chest radiology. For our study, 82 scans were ran-
domly selected for training and the other 20 scans for testing. 
After 2-fold cross-validation, we averaged the experiment re-
sults as the final performance. 
    The input image consisted of three slices: the slice to be 
segmented and the upper and lower slices, which was cropped 
to 224×224×3. The networks were updated utilizing the sto-
chastic gradient descent, where the learning rate was 1e-3 and 
weight decay was 5e-4. To effectively model the global con-
textual information, our Graph-PGCR module was appended 
at the end of the encoder as seen in Fig.1. After feature ex-
traction, the input feature map 𝑋 had the size of 1024×14×
14. We simply set node feature dimension 𝑆 = 64 in our im-
plementation. The Dice coefficient was employed as our prin-
cipal performance metric for each case.  
3.1. Ablation Study  
This section experiments the effect of key components of the 
Graph-PGCR module on the public COVID-19 dataset for 
lung infection segmentation. It includes the architecture of 
the original UNet as a baseline, Dual Attention (DA) Module 
[22], the proposed Graph-PGCR with different projection 
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Table 2. Comparison with state-of-art methods on both public dataset (𝐷𝑖𝑐𝑒8b) and private dataset (𝐷𝑖𝑐𝑒8c).  

Method 𝐷𝑖𝑐𝑒8b(%) 𝐷𝑖𝑐𝑒8c(%) Method 𝐷𝑖𝑐𝑒8b(%) 𝐷𝑖𝑐𝑒8c(%) 

UNet [6] 

Baseline 77.50 76.02 

UNet ++ [7] 

79.84 77.14 
DA [22] 78.11 77.06 80.57 77.98 
GloRe [13] 78.23 76.95 80.29 77.53 
Graph-PGCR (𝜹 = 𝟐) 80.84 77.47 81.03 78.60 
Graph-PGCR (𝜹 = 𝟐, 𝟒, 𝟕) 81.38 78.92 81.95 79.88 

UNet_Inf [8] 

Baseline 78.63 78.46 

UNet 3+ [25] 

82.42 80.28 
DA [22] 79.65 79.55 83.09 81.32 
GloRe [13] 79.16 78.96 82.22 79.98 
Graph-PGCR (𝜹 = 𝟐) 81.67 79.98 83.56 81.63 
Graph-PGCR (𝜹 = 𝟐, 𝟒, 𝟕) 82.03 80.95 85.01 82.21 

Table 1. Lung infections segmentation performances on public 
COVID-19 dataset when gradually adding the proposed com-
ponents to the UNet. 

Architecture 𝐾 
 

𝛿 Dice(%) 
Baseline UNet - - 77.50 
UNet + DA [22] - - 78.11 
UNet + Graph-PGCR (AvgPooling) 1 2 79.96 
UNet + Graph-PGCR (MaxPooling) 1 2 80.02 
UNet + Graph-PGCR (SAP) 1 2 80.84 
UNet + Graph-PGCR (SAP) 2 2,4 81.16 
UNet + Graph-PGCR (SAP) 3 2,4,7 81.38 

 
mechanisms and multi-scales with different 𝛿. Table 1 shows 
the segmentation performances when gradually adding com-
ponents to the UNet. As seen, each component of the Graph-
PGCR module contributes to the performance. Generally, a 
total improvement of 3.88% was gained by our proposed 
Graph-PGCR module compared to baseline UNet.  
3.3. Comparison with the State of the Art  
A series of UNet based variations are adopted to further exam 
the effectiveness of the proposed Graph-PGCR module, in-
cluding UNet++ [7], UNet-Inf [8] and UNet 3+ [25]. Except 
for Dual Attention (DA) module, we further compare our 
method with the state-of-the-art graph context reasoning 
module (i.e., GloRe) [13]. The hyper-parameters of the graph, 
e.g., the number of the nodes and its feature dimensions, are 
set based on [13]. It is worth noting that they are appended at 
the same place as our proposed module.   

(i) Quantitative comparison: Table 2 shows the compari-
son results on public and private dataset, where we have the 
following observations. First, the proposed Graph-PGCR 
module (𝛿 = 2) improves the performance from the baselines 
under different segmentation networks. Moreover, our pro-
posed Graph-PGCR module (𝛿 = 2 ) has superior perfor-
mance over GloRe module. Additionally, the Graph-PGCR 
module (𝛿 = 2,4,7) with multiple GCR achieves the best per-
formance in four architectures, obtaining average improve-
ment of 3.0 and 2.5 point between four backbones performed 
on two datasets.  

(ii) Qualitative comparison: Fig.4 visualizes the segmen-
tation results of different plugin based on UNet 3+ network 

 
Fig. 4. Qualitative comparisons of different units incorporated with 
UNet 3+. Purple areas: true positive (TP); Yellow areas: false neg-
ative (FN); Green areas: the false positive (FP).  

in our private datasets, including DA module, Glore unit, our 
proposed Graph-PGCR module (𝛿 = 2,4,7). The results il-
lustrated how efficient our proposed Graph-PGCR module is 
on segmenting the irregular and even small infections. 
Specifically, it generates segmentation results that are close 
to the ground truth with much less missegmented infections. 
The success of Graph-PGCR module is owed to the ability of 
capturing multi-scale long-range dependencies. 
 

4. CONCLUSIONS 
 
In this paper, we develop an effective GCN-based approach, 
termed as Graph-based Pyramid Global Context Reasoning 
(Graph-PGCR) module, to model the multi-scale long-range 
contextual relationships, which is critical for COVID-19 lung 
infections segmentation. Benefiting from the saliency-aware 
projection that selects infection-related pixels as graph nodes, 
a fully-connected graph is constructed where global contex-
tual information is propagated across all nodes via graph con-
volution. The multi-scale schema is also adopted to explore 
distinct contextual patterns from multiple graphs. Experi-
ments show that the proposed Graph-PGCR module can ef-
fectively capture global contextual dependencies in COVID-
19 CT images and consistently improve over four strong 
baselines on lung infections segmentation task. 
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