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ABSTRACT

The recognition of personalized content, such as contact names,
remains a challenging problem for end-to-end speech recognition
systems. In this work, we demonstrate how first- and second-pass
rescoring strategies can be leveraged together to improve the recog-
nition of such words. Following previous work, we use a shallow
fusion approach to bias towards recognition of personalized content
in the first-pass decoding. We show that such an approach can im-
prove personalized content recognition by up to 16% with minimum
degradation on the general use case. We describe a fast and scalable
algorithm that enables our biasing models to remain at the word-
level, while applying the biasing at the subword level. This has the
advantage of not requiring the biasing models to be dependent on
any subword symbol table. We also describe a novel second-pass
de-biasing approach: used in conjunction with a first-pass shallow
fusion that optimizes on oracle WER, we can achieve an additional
14% improvement on personalized content recognition, and even
improve accuracy for the general use case by up to 2.5%.

Index Terms— language modeling, automatic speech recogni-
tion, rescoring, shallow fusion, personalization

1. INTRODUCTION

The successful recognition of personalized content, such as a user’s
contacts or custom smart home device names, is essential for auto-
matic speech recognition (ASR). Personalized content recognition
is challenging as such words can be very rare or have low proba-
bility for the user population overall. For instance, a user’s contact
list may contain foreign names or unique nicknames, and they may
freely name their smart home devices.

This problem is exacerbated for end-to-end (E2E) systems, such
as those based on CTC [1], LAS [2], or RNN-T [3]. Unlike hy-
brid ASR systems, which include acoustic and language model (LM)
components that are trained separately, E2E systems use a single net-
work that is trained end-to-end. Whereas in a hybrid system, the LM
component can be trained separately on any written text, in an E2E
system, the training is generally restricted to acoustic-text pairs. As
a result, E2E systems are often trained with less data than hybrid
systems, making personalized content recognition particularly chal-
lenging given the limited representation during training. Further-
more, hybrid systems are able to incorporate personal content into
the decoding search graph, i.e., via class-based language models and
on-the-fly composition of biasing phrases and n-grams [4, 5, 6, 7, 8].

Various approaches have been proposed for improving person-
alized content recognition for E2E models, including model fine-
tuning with real or synthesized audio data [9], incorporating person-
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alized content directly during E2E training using a separate bias-
encoder module [10], using a token passing decoder with efficient
token recombination during inference [11], and shallow fusion (e.g.,
[12, 8, 13, 14]).

In this work, we describe a novel approach to address this prob-
lem using a combination of first-pass shallow fusion and second-pass
rescoring. We first provide a comparison of a few shallow fusion
approaches: shallow fusion applied at the word-level and subword
level, as well as contextual shallow fusion. We describe a novel algo-
rithm that uses grapheme-level lookahead to perform subword-level
rescoring, thus bypassing the need to build subword-level language
models that are dependent on the wordpiece model that generates
the subwords. We show the benefit of contextual shallow fusion
in capturing improvement in personalized content recognition. Fi-
nally, we describe a novel de-biasing approach in which we treat
the second-pass rescoring as an optimization problem to optimally
combine scores from the E2E model, the shallow fusion model, and
second-pass LMs. Apart from improving recognition for the person-
alized content, it also improves the general recognition.

2. PREVIOUS WORK

One popular approach to improve personalized content recognition
is via shallow fusion [15]. In shallow fusion, the scores from an
external language model ScoreSF (y) scaled by a factor λ are com-
bined with the main decoding scores PRNNT (y | x) during beam
search:

ŷ = argmax
y

(logPRNNT (y | x) + λ logScoreSF (y)) (1)

This biasing can be applied at word boundaries [8], at the
grapheme level [11, 13, 10], or at the subword level [13, 14]. Given
that E2E models generally used a constrained beam [16], applying
biasing only at word boundaries cannot improve performance if the
relevant word does not already appear in the beam. As a result, com-
pared to grapheme-level biasing which tends to keep the relevant
words on the beam, word-level biasing results in less improvement
on proper nouns such as contact names [10]. Applying biasing at
the subword level, which would result in sparser matches at each
step of the beam compared to the grapheme level, results in further
improvements [13].

One challenge in applying biasing at the subword level, partic-
ularly for personalization, is that each of the biasing models needs
to be built at the subword level and include all possible segmenta-
tions of a given word. This can be expensive when we have one
or more models per user, particularly if the wordpiece model used
to train the first-pass model often changes. Unlike previous work,
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which generally relies on composition with a speller FST to trans-
duce a sequence of wordpieces into the corresponding word (e.g.,
[13, 10, 17]), we describe a novel prefix-matching algorithm in Sec-
tion 3.2.2 that enables the language models to be kept at the word
level and applies the subword decomposition at inference time.

Another challenge these shallow fusion approaches to personal-
ization is how to improve recognition of personalized content while
not degrading performance on general non-personalized content; to
this end, several strategies for applying contextual biasing have been
proposed [13, 14, 11]. Many of these strategies reveal that apply-
ing shallow fusion in context minimizes, but does not completely
remove, the degradation observed on general data, and do not dis-
cuss the potential impact of second-pass rescoring. For example,
[13] finds that applying contextual shallow fusion decreases the neg-
ative impact on general content while maintaining performance on
the shallow fusion content; however, even in this best case, they
report a slight degradation of 5.8% (6.9 to 7.3 WER, cf. 12.5 for
non-contextual shallow fusion) on general data.

On one hand, a more aggressive shallow fusion model enables
more personalized content to appear in the n-best hypotheses but on
the other hand, it is also more likely to cause false recognitions of
the biased personalized content. To address this, we present a strat-
egy in which we optimize shallow fusion for the n-best, as opposed
to the 1-best, hypotheses, thereby maximizing the personalized con-
tent present in the n-best. To recover the correct 1-best, we explore a
novel second-pass de-biasing approach that optimizes the combina-
tion of the E2E, shallow fusion, and second-pass scores.

3. METHODS

3.1. Baseline RNN-T model

Following [18], our baseline RNN-T model consists of an encoder
comprised of five LSTM layers of size 1024, and a two-layer LSTM
prediction network of size 1024 with an embedding layer of 512
units. The softmax layer consists of 4k (subword) output units. Our
model was trained on over 200k hours of anonymized utterances
from interactions with a voice assistant according to the minimum
word error rate criterion [19, 18].

3.2. First-pass shallow fusion

3.2.1. Personalized models

For each anonymized user in our test set, we construct three person-
alized models, corresponding to (1) contact names (2) smart home
device names and (3) enabled application names. Each of these mod-
els is represented as a word-level weighted finite state transducer
(FST). An example is shown in Figure 1a. For simplicity, in our
experiments, each word level arc has the same weight of -1. On
average, each user has 600 personalized contact names, 50 device
names, and 70 enabled applications.

3.2.2. Subword rescoring with lookahead

We describe our approach to biasing at the subword level using our
word-level personalized models (Algorithm 1). We leverage ideas
similar to [20] for subword level lookahead weight pushing and start
with a word-level model represented as an FST, such as the one
shown in Figure 1a. In this case, there are three paths associated
with this FST, containing the words “play”, “player”, and “play-
ground”. In Figure 1b, we show the subword breakdown for these
words, based on some wordpiece model. The weights on each path

Algorithm 1 On-the-fly subword rescoring with lookahead. T and
s represent word level FST and a non-final state of it. i denotes the
starting state of subword level FST and i[e] the input symbol string
for a transition e. W is a sequence of subword input. R denotes a set
of weights. Es denotes all transitions starting from s in T . π(a, b)
represents a path from a to b. we is the net weight for transition e. t
is the previous state in subword FST.

Expand(T, s, i,W ):
1. Initialize : R← φ; prefix← ε; wprev ← 0
2. Sort : Es by i[Es] in lexicographical order
3. for sw in W do
4. if sw is delimiter then
5. if prefix ∈ i[Es] then
6. Return R ∪ (we − wprev)
7. else
8. Return R ∪ w−1(π(i, t))
9. prefix← Concatenate(prefix, sw)
10. Es ← BinarySearch(prefix ∈ Prefix(i[Es]))
11. if Es is empty then
12. Return R ∪ w−1(π(i, t))
13. else
14. N ← max string length in i[Es]
15. L← prefix string length
16. wlookahead ←

⊕
w(e ∈ Es))

17. wpushed ← wlookahead · L/N
18. Append:R← R ∪ (wpushed − wprev)
19. wprev ← wpushed

20. Return R

are determined via Algorithm 1. Notice that the net weight for each
path remains the same: i.e., the weight between state 0 and 5 (rep-
resenting the word “player”) in the subword-level FST is (-1.6) +(-
1.6)+(-4.8) = -8, which is the same as the weight for the same word
in the word-level FST. The weight wpushed for each transition state
is determined as follows: wpushed = ( L

N
)(wlookahead), where L

is the length of the prefix so far and N is the longest length of all
matched words. In our example, given the input sequence “play”
(pl, ay, ) from Figure 1, we can see there are three arcs prefixed
with the subword “pl”: thus, we have L = 2, N = 10, and the
pushed weight is -8 * 2 / 10 = -1.6. Additionally, similar to [10, 17],
we add fallback arcs for each non-final state with a weight equal to
the negation of the current total weight up to that point.

This approach is beneficial as it avoids unnecessary arc expan-
sion and provides a heuristic approach to perform subword-level
rescoring without the need to build the biasing FST itself directly
at the subword level. Additionally, this prefix matching approach
enables us to consider any possible subword sequences for a word.
To optimize the search for arcs that have a common prefix string,
we sort the input arc in lexicographic order so that we can use bi-
nary search to find the lower and upper bound of arc indices. As
we continue to process subword input, we are able to narrow down
the search range quickly. We also cache all newly created states in
subword level FST S, which results in efficient weight evaluation.

3.2.3. Contextual boosting model

Following previous work such as [4, 11, 5, 14], we construct a class-
based language model containing three classes: contact names,
home automation device names, and application names. To build
the contextual biasing LM, we identified all utterances containing
words that were annotated with aforementioned classes. We then



(a)                                                  (b)

Fig. 1: A illustration of (a) word-level biasing FST (b) subword-level FST with transition state weights evaluated using a grapheme-level
lookahead. Additional phi self loop at the start state is not shown.

replaced the word(s) in the utterance with the corresponding class
tag (e.g., @contactname). All utterances with the replaced class
tags that occurred a minimum of 10 times were included in the
contextual biasing FST. Unlike a typical class-based model, all arcs
on the class-based model are unweighted. Weights only appear in
the corresponding personalized models, which are injected at each
class tag. Both the class-based LM and personalized models operate
at the subword level using the algorithm described in Section 3.2.2.

3.3. Datasets

We evaluate on (1) a 20k utterance contact name test set and (2) a
20k utterance test set representing the general use case. Both test
sets consist of anonymized data from real user interactions with a
personal assistant device.

3.4. Second-pass rescoring

We rescore 8-best hypotheses from the first-pass shallow fusion as
described in Section 3.2. Each n-best hypothesis yi can be assigned
a score based on the following equation:

Score(yi) = logPRNNT (yi | x) + αScoreSF (yi)

+β logPRLM (yi)
(2)

PRLM (yi) is the probability of the hypothesis yi assigned by the
rescoring LM, ScoreSF (yi) is the shallow fusion score of yi from
the first-pass. α and β are the tunable scaling factors. In the tuning
stage, we resort to a simulated annealing algorithm as described in
[21] to find the optimal values of α and β. The objective of the
optimization is to minimize the overall WER of the dev set. This
approach enables us to optimally combine multiple rescoring LMs
with the first-pass scores.

To select the rescoring LM, we use the domain aware rescoring
framework described in [22] to differentiate between the utterances
with contact names and generic ones. For the generic utterances,
we use an NCE based neural LM (NLM) [23] trained on 80 million
utterances from live traffic. The model consists of two LSTM layers,
each with 512 hidden units. For the utterances with contact names,
we use a KN-smoothed 4-gram class based LM [24], with a single
ContactName class, trained on utterances with word annotations.

4. RESULTS AND DISCUSSION

We report on word error rate reduction (WERR) and oracle WERR to
the baseline RNN-T model throughout. The oracle WERR is com-
puted by finding the hypothesis in the 8-best that minimizes WER
for each utterance.

Contacts General
Model WERR Oracle WERR Oracle
RNN-T – – – –

+word(1.0) -6.5 -2.3 0.4 -0.2
+word(1.5) -6.5 -2.5 1.4 0.1
+word(2.0) -5.0 -1.6 3.0 0.1
+noctxt-subwd(1.0) -13.3 -10.9 -0.5 0.0
+noctxt-subwd(1.5) -14.2 -14.4 0.1 0.0
+noctxt-subwd(2.0) -12.7 -16.9 2.0 0.6
+noctxt-subwd(2.5) -7.8 -18.4 5.0 0.8
+noctxt-subwd(3.0) -0.4 -18.1 9.6 1.7
+ctxt-subwd(1.0) -14.0 -10.9 -0.5 0.0
+ctxt-subwd(1.5) -16.3 -13.6 -0.3 0.0
+ctxt-subwd(2.0) -16.5 -16.9 0.6 0.3
+ctxt-subwd(2.5) -14.3 -16.9 2.7 1.1
+ctxt-subwd(3.0) -10.8 -16.7 5.0 2.5

Table 1: Results using only the contact names personalized model,
with different biasing weights, and comparing word-level bias-
ing(word), with subword-level biasing with (ctxt-subwd) and with-
out context(noctxt-subwd)

4.1. Comparing shallow fusion approaches

In Table 1, we report results comparing word-level biasing, to
subword-level biasing with and without context, using different bi-
asing weights. We report results using only the personalized contact
names model for shallow fusion. We find significant improvements
in WERR and oracle WERR when applying biasing at the subword
level (best WERR improvement: 14.2%) compared to the word level
(best WERR improvement: 6.5%). This aligns with previous work
[10, 13], which found that applying biasing at the subword level
allows more critical words to stay on the beam.

Comparing the subword results with and without context, we
observe larger improvements in WERR on contact names at higher
biasing weights when using the contextual biasing model. For ex-
ample, at a weight of 2.5, we observe improvements of 14.3% with
context, but only 7.8% without context. Additionally, we observe
that constraining shallow fusion with context decreases the impact
on the general WERR at higher biasing weights.

Finally, we observe that increasing the biasing weight leads to
improvements in oracle WERR on contact names, even when overall
WERR improvements decrease. This suggests that a higher weight
allows for more personalized content to appear in the n-best hypothe-
ses, even as it increases the number of false recognitions in the 1-best
hypothesis. We return to this point later.



Contacts General
Model WERR Oracle WERR Oracle
RNN-T – – – –

+noctxt-subwd(1.0) -14.2 -11.6 0.1 0.0
+noctxt-subwd(1.5) -13.1 -15.3 2.6 0.5
+noctxt-subwd(2.0) -8.8 -17.3 8.5 1.7
+noctxt-subwd(2.5) 2.9 -18.4 18.7 3.4
+ctxt-subwd(1.0) -14.3 -11.1 -0.5 0.0
+ctxt-subwd(1.5) -16.5 -13.4 0.5 0.6
+ctxt-subwd(2.0) -16.5 -16.1 2.6 1.1
+ctxt-subwd(2.5) -14.2 -16.5 5.7 2.5
+ctxt-subwd(3.0) -14.3 -16.7 5.7 2.5

Table 2: Results using three personalized models, with different bi-
asing weights. Biasing with context helps to avoid general degrada-
tion at the same level of biasing weights

2P no de-biasing 2P w/ de-biasing
Model Contacts General Contacts General
+noctxt-subwd(2.5) -21.2 0.6 -28.5 -2.7
+ctxt-subwd(2.0) -25.3 -1.7 -27.4 -2.5

Table 3: Results of de-biasing the shallow fusion scores for contact
name personalized model in second-pass(2P).

4.2. Adding additional personalized content in shallow fusion

In Table 2, we show that biasing in context helps to avoid degra-
dation on general use cases particularly as the number of classes
increases. For these results, we use additional personal models (de-
vices, applications). We can observe that degradation on the general
test set is more pronounced when the amount of biasing content in-
creases. This is in line with previous work (e.g., [8]). Specifically,
using a biasing weight of 2.5, we observe an 8.5% degradation on the
general test set without context, but only 2.6% with context. Criti-
cally, we observe that the WERR for contact names is preserved.

4.3. Second Pass Rescoring

A trend seen in Table 1 is that the 1-best WERR for both the Con-
tacts and the General test sets degrades as the shallow fusion biasing
factor increases. However, Oracle WERR for the Contacts test set
improves. We address this divergence using second-pass rescoring.

We note that second-pass rescoring without shallow fusion pro-
vides an improvement of 16.5% and 2.3% on the Contacts and Gen-
eral test sets. Following sections elicit that we see an additional 10-
15% improvement on the Contacts test set when shallow fusion is
used along with second-pass rescoring. To the best of our knowl-
edge, no previous work has shown this synergy.

4.3.1. De-biasing shallow fusion scores

We observe that re-weighting the shallow fusion scaled scores from
the first-pass helps us achieve better WERR compared to adding it
with the first-pass RNN-T scores. i.e., setting α = 1 during opti-
mization in Equation 2. It helps in achieving better WERR for shal-
low fusion with or without context, as can be seen in Table 3. We
call this method de-biasing in second-pass and use it in the results
reported in the subsequent sections.

We observe that de-biasing is especially useful when there is no
context-based biasing in the first pass. It improves recognition for

First-pass 2P w/ de-biasing
Model Contacts General Contacts General
One biasing model
+noctxt-subwd(2.5) -7.8 5.0 -28.5 -2.7
Three biasing models
+noctxt-subwd(2.5) 2.9 18.4 -29.1 -2.7

Table 4: Results of second-pass rescoring when more personalized
models are added in shallow fusion

Contacts General
Model WERR WERR
+noctxt-subwd(2.0) -27.2 -2.3
+noctxt-subwd(2.5) -28.5 -2.7
+noctxt-subwd(3.0) -29.2 -2.9
+noctxt-subwd(3.5) -29.3 -2.5
+ctxt-subwd(2.0) -27.4 -2.5
+ctxt-subwd(2.5) -28.4 -2.2
+ctxt-subwd(3.0) -30.0 -2.3

Table 5: Results of second-pass rescoring over the contact names
personalized model, with different biasing weights, with and without
context

personalized content without compromising the WER of the general
test set.

4.3.2. Adding additional personalized models in shallow fusion

Second-pass optimization can not only recover from degradation in
WERR but can also improve WERR when additional personalized
models are added to first-pass shallow fusion without context (Table
4). The first-pass degradation can be seen in Table 2 and is repro-
duced in Table 4: we observe that in general, incorporating more
biasing models without context results in larger degradations on the
general test set. However, second-pass rescoring with de-biasing en-
ables us to completely recover from these degradations, while con-
tinuing to improve overall contact name WERR. This aligns with our
reasoning that second-pass can improve the first-pass 1-best degra-
dation as long the first-pass oracle WERR continues to improve.

In Table 5, we report the WERR post second-pass rescoring for
various weights of shallow fusion biasing, with and without context.
As the biasing weight increases, we improve WERR for both the
Contacts and General test sets.

5. CONCLUSION

In this work, we have presented several strategies to improve per-
sonal content recognition for end-to-end speech recognition systems.
We have outlined a novel algorithm for efficient biasing of person-
alized content on the subword level at inference time. This helps us
improve on personal content recognition by 14% - 16% compared
to RNN-T. We also describe a novel second-pass optimization to im-
prove recognition by an additional 13% - 15% without degrading the
general use case. Combining the two strategies, we achieve 27% -
30% improvement overall in personal content recognition and about
2.5% improvement on the general test set. We also elucidate ways to
tackle degradation on the general test set when biasing the RNN-T
model in the absence of any context.
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