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ABSTRACT

Block-sparse signal recovery without knowledge of block sizes and
boundaries, such as those encountered in multi-antenna mmWave
channel models, is a hard problem for compressed sensing (CS)
algorithms. We propose a novel Sparse Bayesian Learning (SBL)
method for block-sparse recovery based on popular CS based reg-
ularizers with the function input variable related to total variation
(TV). Contrary to conventional approaches that impose the regular-
ization on the signal components, we regularize the SBL hyperpa-
rameters. This iterative TV-regularized SBL algorithm employs a
majorization-minimization approach and reduces each iteration to a
convex optimization problem, enabling a flexible choice of numeri-
cal solvers. The numerical results illustrate that the TV-regularized
SBL algorithm is robust to the nature of the block structure and able
to recover signals with both block-patterned and isolated compo-
nents, proving useful for various signal recovery systems.

Index Terms— Compressed Sensing, Block-sparsity, Sparse
Bayesian Learning, Total Variation, Majorization-minimization.

1. INTRODUCTION

Block-sparse signal recovery has various applications in wireless
communication, audio, and image processing. We are primarily
interested in such signal recovery for mmWave channel estimation
where the received signal is composed of angular multipath compo-
nents that impinge on the receive antenna as clustered rays [1, 2].
One of the main challenges with block-sparse recovery is to model
inter-element dependency, in addition to the sparsity constraint.
Since block sizes can be unequal and block boundaries are unknown,
the number of possible signal “blocks” involved in the search grows
exponentially with the grid size. Hence, there is a need to impose
structure on signal recovery algorithms. This also presents an in-
herent trade-off between computational complexity and block-sparse
modeling for arbitrarily sized blocks with unknown boundaries.

Considering known block partitions, compressed sensing (CS)
[3,4] algorithms have been modified for block-sparse signals, which
include Group-Lasso [5], Group Basis Pursuit [6], Model-based
CoSaMP [7], and Block-OMP [8]. Early attempts for block-sparse
recovery under unknown block partitions include Struct-OMP in [9]
and the method based on graphical models in [10]. The works
[11,12] were the first SBL approaches and developed the Block SBL
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(BSBL) algorithm. Using Bayesian CS, [13] incorporated a spike-
and-slab prior to model both block and individual sparsity.

The Pattern-coupled SBL (PC-SBL) [14] enforced block-sparse
structures by coupling the underlying SBL parameters. The Non-
uniform Burst Sparsity algorithm proposed in [15] improved on [14]
through Variational Bayesian Inference. Coupled priors were also
used in the Extended-BSBL (EBSBL) method in [16]. The works
in [17, 18] enforce block structures using a cluster-structured prior.

We propose a novel total variation (TV) based regularizer for
SBL to promote block-sparse signal recovery. Specifically, we en-
force block sparsity in the hyperparameter space of SBL to promote
uninterrupted zero regions of the estimated signal. This is achieved
using common regularizers from CS acting on the hyperparameter
TV input variable, instead of signal components. The framework is
quite general and allows for an exploration of a wide range of regu-
larizers utilizing the experience from CS. To the best of our knowl-
edge, this is the first work to apply a TV type penalty in the hyper-
parameter space of SBL to encourage block-sparsity. Majorization-
minimization is used to convexify the proposed SBL formulation and
develop an iterative algorithm. Numerical results show that by in-
ducing a soft TV prior on the parameters, the TV-regularized SBL
method is robust to sparsity structure; the algorithm attains defini-
tive recovery from strict block-sparsity to fully random sparsity.

2. NEW TOTAL VARIATION REGULARIZERS FOR
BLOCK-SPARSE SIGNAL RECOVERY VIA SBL

We consider a multiple measurement vector (MMV) problem which
involves simultaneous estimation of L block-sparse source vectors
xl ∈ CN from a collection of noisy linear measurements.

yl = Axl + nl, l = 1, . . . , L, (1)

where yl ∈ CM is a measurement vector at time instant l, A ∈
CM×N is a fixed known measurement matrix, and nl ∼ CN (0, λI)
is a noise vector, independent of xl. Source vectors and noise
vectors are assumed to be independent and identically distributed
(i.i.d.) across the time instants. The same sparsity pattern is shared
among the collection of vectors {xl}Ll=1. Thus, the signal ensem-
ble X = [x1 · · ·xL] is block-row-sparse. We assume that both the
block sizes and their locations are unknown.

The early works imposed a block structure on SBL inference
through a specific deterministic or stochastic parameterization of the
signal; for example, BSBL [12] relies on a pre-determined block par-
tition. Whereas, to handle dynamic block sizes, algorithms like PC-
SBL [14,15] impose explicit coupling on the variables. Our approach
improves on one limitation of such coupling based approaches: re-
duced sensitivity to isolated spurious components. We first provide
a brief overview of the SBL framework for sparse signal recovery.



2.1. SBL Framework: Generalized Cost Function

There are various advantages of SBL for MMV sparse signal recov-
ery, motivating our choice: (i) The M-SBL [19] parameter estima-
tion abstracts each row of X by a single parameter (γi), reducing
the number of parameters to be estimated from NL to N compared
to CS approaches; (ii) It falls under the class of methods that are
correlation-aware which have shown superior ability to find sparse
solutions [20]; (iii) SBL shows great promise for sparse signal recov-
ery under correlated sources and ill-conditioned dictionaries [21].

We now describe the SBL inference. With an additive Gaus-
sian noise model (1), the SBL framework [19] assumes a parametric
Gaussian distribution for each signal xl ∈ CN (l ∈ {1, . . . , L}) as

p(xl;γ) = CN (0,Γ) = 1√
(2π)N |Γ|

exp
(
− 1

2
xH
l Γ−1xl

)
, where

γ = [γ1 · · · γN ]T ∈ RN+ is a vector of hyperparameters, adjusting
the variance of each signal component xl,i, i = 1, . . . , N , and
Γ , diag(γ). The hyperparameter values γ reflect the sparsity pro-
file of the block-row-sparse X; a suitable prior on γ can lead xl to
model many interesting sparse priors, e.g., Gaussian scale mixtures.

The posterior density p(xl|yl;γ) is also Gaussian as
CN (µxl|yl;γ

,Σx|y;γ), where

µxl|yl;γ
= λ−1Σx|y;γAHyl, Σx|y;γ =

(
λ−1AHA + Γ−1)−1

.
(2)

For a given γ, the estimate of each signal {xl}Ll=1 is formed as
x̂l,SBL = µxl|yl;γ

according to (2). Following [19], the hyperpa-
rameter estimation is done through Type-II maximum a posteriori
(MAP) estimation of the posterior p(γ|y1, . . . ,yL) over γ, i.e.,

γ∗ = argmin
γ�0

L log |Σy|+
∑L
l=1 yH

l Σ−1
y yl − log p(γ), (3)

where Σy = λI + AΓAH is the measurement covariance matrix
and log p(γ) is the hyperprior on γ. The expression in (3) is the gen-
eralized MMV SBL cost function. This optimization is non-convex
due to the concave term log |Σy|; convexity of log p(γ) depends on
the prior. We elaborate on the optimization strategies in Sec. 3.

2.2. SBL with Novel TV-based Regularizers

Most existing approaches enforce structure by working directly on
xl, a more challenging and less efficient approach for the complex
block-sparsity problem. Informative priors/regularizers log p(γ) in
(3) can help improve inference [22–24]. Although block-sparse
methods have been developed using SBL, the priors are often strong,
thereby biasing the methods and making them brittle. Surprisingly,
some simple regularizers seem to have been overlooked and we show
them to be quite effective and, more importantly, robust.

To support block-sparse solutions, we opt for a regularizer that
combines various sparse regularizers developed in CS, with Total
Variation (TV) [25–27]. To this end, we denote the hyperprior as
β T (γ) , −log p(γ), where β is a non-negative weighting parame-
ter and T (·) is a general TV-type penalty of vector γ. Regardless of
T (·), we refer to our developed method collectively as TV-SBL.

We now describe the motivation of our regularizer T (γ). For
maximally (random) sparse solutions, an appropriate choice is
T (γ) =

∑
i I(γi), where the indicator function I(·) is an exact

measure of sparsity as I(γi) = 1 for γi > 0 and zero otherwise.
Since the function T (γ) is intractable, many surrogate measures
have been used, the most common one being the `1-norm in CS.

Using the indicator function to help block-sparsity, the main
driver of our work is T (γ) =

∑
i I(|γi−γi−1|), i.e., TV on γ. This

assumes equal variances of the entries within a block and thus opti-
mally counts the number of edges in the underlying signal. Armed
with this ideal measure, we can use tractable measures developed in
CS on the TV inspired input variable |γi−γi−1| to identify appropri-
ate block structures. It is noteworthy that imposing this regularizer
on the hyperparameters rather than the source vectors xl is an im-
portant distinction and also key to the success of our approach. CS
theory has developed many regularizers which are monotonically in-
creasing and concave on the positive orthant to promote sparsity. We
discuss two options to illustrate the potential of the TV framework.
1) Linear TV: Conventional Smoother
The Linear TV regularizer is equivalent to the `1 penalty in CS and
is given by the form

T (γ) =
∑N
i=2 |γi − γi−1|. (4)

It has also been used in different signal processing applications to
preserve edges and enforce local smoothness. We use this convex
regularizer to enforce a block structure in the recovered signal. In
addition to the signal regions, this penalty is found to denoise the
zeros more effectively than the unregularized SBL algorithm.
2) Log TV: CS-based Regularizer
Another widely used regularizer in CS is

∑N
i=1 log(|xi|+ ε), where

ε is a positive stability parameter. This regularizer employs an iter-
ative reweighted `1 minimization algorithm and has been shown to
yield superior recovery [28, 29]. Utilizing this regularizer for block-
sparsity, the Log TV regularizer is given by

T (γ) =
∑N
i=2 log(|γi − γi−1|+ ε). (5)

As in the CS, the Log TV based approach is found to be more effec-
tive than the Linear TV. This is due to its better resemblance to `0-
norm [29], allowing more signal variance differences within a block
and restraining small (faulty) signal estimate components to emerge.

3. OPTIMIZATION APPROACHES FOR TV-SBL

There are many options for minimizing the general SBL objective
function. We apply the majorization-minimization (MM) approach
and derive an iterative algorithm for minimizing the TV-SBL cost.

3.1. Optimization of TV-SBL with Linear TV

The TV-SBL optimization (3) for the Linear TV regularizer in (4) is

γ∗=argmin
γ�0

L log|Σy|+
∑L
l=1 yH

l Σ−1
y yl + β

∑N
i=2|γi − γi−1|.

(6)
Using the MM technique similar to [30], we majorize the concave
term log|Σy| and solve iteratively a sequence of convex optimiza-
tion problems. We majorize (i.e., linearize) log|Σy| by its first-order
Taylor approximation at point Γ(j), i.e.,

log|λI + AΓAH| ≤ log|λI + AΓ(j)AH|+
Tr
(
(Σ

(j)
y )−1AAH[Γ− Γ(j)]

)
,

(7)

where the superscript j denotes the MM iteration index. Using (7),
at iteration j, we end up with solving the convex problem

γ(j+1) =argmin
γ�0

LTr
((

Σ(j)
y

)−1
AΓAH

)
+
∑L
l=1 yH

l Σ−1
y yl + β

∑N
i=2 |γi − γi−1|,

(8)

and then updating Σ
(j)
y using the newly obtained γ(j+1).



3.2. Optimization of TV-SBL with Log TV

The TV-SBL optimization (3) for the Log TV regularizer in (5) is

γ∗ =argmin
γ�0

L log|Σy|+
∑L
l=1 yH

l Σ−1
y yl

+β
∑N
i=2 log(|γi − γi−1|+ ε).

(9)

Similar to the Linear TV case above, we apply the MM approach for
(9). Besides majorizing the log|Σy| term via (7), we majorize the
concave Log TV penalty (5) by its first-order Taylor approximation
at points (γ(j)

i − γ
(j)
i−1), i = 2, . . . , N , i.e.,

log(|γi − γi−1|+ ε) ≤ log(|γ(j)
i − γ

(j)
i−1|+ ε) +

|γi−γi−1|

|γ(j)i −γ
(j)
i−1|+ε

.

(10)
Thus, at iteration j, we solve the convex problem

γ(j+1)= argmin
γ�0

LTr
((

Σ(j)
y

)−1
AΓAH

)
+
∑L
l=1 yH

l Σ−1
y yl + β

∑N
i=2

1

|γ(j)i −γ
(j)
i−1|+ε

|γi − γi−1|,
(11)

followed by updating Σ
(j)
y using the newly obtained γ(j+1).

3.3. Convex Solver Implementation of TV-SBL

Any convex optimization package can be implemented to solve (8)
and (11). Algorithm 1 presents the implementation of TV-SBL via
the widely used CVX optimization package [31] to facilitate easy
adoption and experimentation. One key step is to handle the matrix
inverse in yH

l Σ−1
y yl through the Schur’s complement equivalence

[32, Appendix A5.5] by introducing the Hermitian symmetric matrix
variables Zcvx,l ∈ SM×M , l = 1, . . . , L.

Algorithm 1 CVX Solver for TV-SBL

Input: A,Y,γ(0), λ, β, ε, jmax

Output: µxl|yl;γ
(∀ l ∈ {1, . . . , L})

1: for j = 0 to jmax − 1 do
2: Evaluate [Σ

(j)
y ]−1 = (λI + AΓ(j)AH)−1

3: CVX variables: γcvx ∈ RN , Zcvx,l ∈ SM×M , l = 1, . . . , L

4: minimize: LTr
[
(Σ

(j)
y

)−1
AΓcvxA

H]+∑L
l=1 Tr(Zcvx,l)+

β T (γcvx) {T (γcvx)→ Linear TV (4) or Log TV (5)}

5: subject to: γcvx � 0,
[

Zcvx,l (yly
H
l )

1/2

(yly
H
l )

1/2 λI + AΓcvxA
H

]
� 0

(∀ l ∈ {1, . . . , L})
6: γ(j+1) ← γcvx

7: end for
8: Evaluate µxl|yl;γ

(∀ l ∈ {1, . . . , L}) using γ(jmax) in (2)

4. NUMERICAL RESULTS

This section provides the numerical results for the CVX solver de-
scribed in Algorithm 1. For the MMV setup (1), we consider a sig-
nal length of N = 150 with M = 20 measurements and L = 5
snapshots. We form the dictionary A ∈ RM×N by first drawing
its elements from a Gaussian distribution, and then normalizing the
columns as ‖·‖2 = 1. The signal ensemble X containsK = 10 non-
zero rows and each non-zero element is drawn fromN (0, 1/K). We
consider three classes of block-sparse signals:
(i) Homogeneous block-sparse signal with 2 blocks of length 5 each;
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Fig. 1. Comparison of Linear TV and Log TV penalties under homo-
geneous block-sparsity (see Fig. 2(a)): (a) NMSE and (b) F1-Score.

(ii) Random sparse signal with 10 randomly placed components
(which are thus mostly isolated);
(iii) Hybrid sparse signal with 1 block of length 4, 1 block of length
3, and 3 isolated components.

Each noise signal nl, l = 1, . . . , L, is generated fromN (0, σ2
n)

with variance σ2
n chosen so that the Signal-to-noise ratio (SNR),

10log10

(
E ||Axl||2
E ||nl||2

)
1, varies from 0 to 20 dB.

We assess performance via the Normalized mean square er-
ror (NMSE) and support recovery. The NMSE is defined as
E
[
||X̂−X||2
||X||2

]
, where X̂ is the estimated source matrix and the norm

used is the Frobenius norm. Support recovery is evaluated us-
ing the F1-Score, defined as [33] F1 = E

[
2 precision×recall

precision+recall

]
, where

precision = tp
tp+fa , recall = tp

tp+mis , “tp”: number of true positives,
“fa”: number of false alarms, and “mis”: number of misdetections.

Remark 1. For the ease of comparison, we evaluate the support re-
covery by preserving the K largest rows of X̂ while setting the rest
to zero. In practice, the support is estimated using a fixed threshold.

Performance of Different TV Penalties
Fig. 1 compares the performance of the Linear and Log TV regular-
izer in (4) and (5), respectively, for the homogeneous block-sparse
signal. Both regularizers improve the performance from that of M-
SBL. We observe an improved performance for the Log TV penalty,
consistent with our claim in Sec. 2.2, showing that it is more adept
at identifying block structures and denoising the zero rows of X.

Comparison with Benchmark Algorithms
We study all three block-sparsity classes and compare the perfor-
mance of our TV-SBL (Log TV) algorithm to SBL-based block-
sparse recovery algorithms: (i) BSBL [12], (ii) PC-SBL [14], and
(iii) Burst Sparsity Learning [15]. The M-SBL algorithm [19] is
used as a reference to show recovery without regularization. In or-
der to assess the robustness of each algorithm to changes in block
patterns, the parameters of each algorithm were empirically tuned
for the homogeneous block-sparse signal over the SNR range, and
then left unchanged for random and hybrid sparse signals.

1) Homogeneous block-sparse signals: As seen in Fig. 2, all algo-
rithms, unsurprisingly, outperform M-SBL. BSBL, being provided
block size and boundary information apriori, attains the best F1-
Score (Fig. 2(c)). Even without partition knowledge, the regularized
SBL algorithms fare comparably in F1-Score and even exceed BSBL
in NMSE. Only Burst Sparsity Learning, with its optimal coupling-
based inference, exceeds TV-SBL which uses a softer prior. This
illustrates that pure block-sparse recovery requires explicit coupling
of parameters for the best performance.

1All expectations E[·] are evaluated over 200 Monte Carlo trials.
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Fig. 2. Recovery performance for homogeneous block-sparsity: (a) 2 blocks of length 5, (b) NMSE, and (c) F1-Score.
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Fig. 3. Recovery performance for random sparsity: (a) 10 blocks of length 1, (b) NMSE, and (c) F1-Score.
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Fig. 4. Recovery performance for hybrid sparsity: (a) 1 block of len. 4, 1 block of len. 3, and 3 blocks of len. 1, (b) NMSE, and (c) F1-Score.

We now demonstrate that a softer prior for block-sparsity in TV-
SBL gains in increased flexibility to block structure.

2) Sparse signals: Fig. 3(a) represents the extreme scenario for the
block-sparse algorithms, i.e., the block size is one. TV-SBL outper-
forms the coupling-based algorithms, being comparable to M-SBL.
Explicit hyperparameter coupling biases the algorithms to block
structures, and thus renders them ineffective for isolated sparsity.
Using a softer prior, TV-SBL supports block-sparsity without such
excessive bias; it is remarkably adept at isolated sparsity as well.

3) Hybrid sparse signals: The hybrid block structure in Fig. 4(a) is
representative of a practical scenario for, e.g., MIMO wireless chan-
nel models, with varying angular spreads due to uneven scattering.
As seen in Fig. 4, TV-SBL outperforms all other algorithms in this
setting. The soft prior introduced by TV-SBL accommodates blocks
as well as isolated components. To summarize, TV-SBL shows itself
to be a robust block-sparse recovery algorithm.

5. CONCLUSION

We proposed a TV-regularized SBL method for recovering signal
blocks of unknown sizes and boundaries from compressive measure-
ments. As a fresh idea, the method imposes a soft TV prior on the
SBL hyperparameters to encourage block-sparse solutions. The de-
veloped iterative majorization-minimization algorithm necessitates
only convex optimization tools to solve the problem, enabling a use
of numerous efficient solvers. The numerical results showed that
TV-SBL obtains superior trade-off between recovering block-sparse
and random sparse signals. Such robustness has great utility in a
diversity of practical sparse signal estimation scenarios.

Imposing a TV penalty on the SBL hyperparameters opens up
several concave regularization penalties as well as fast numerical
solvers. Our future analysis will study further the hyperparameter
regularization from a more general perspective of the TV penalty.
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