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ABSTRACT

We consider the problem of separating a particular sound source
from a single-channel mixture, based on only a short sample of
the target source. Using SoundFilter, a wave-to-wave neural net-
work architecture, we can train a model without using any sound
class labels. Using a conditioning encoder model which is learned
jointly with the source separation network, the trained model can
be “configured” to filter arbitrary sound sources, even ones that it
has not seen during training. Evaluated on the FSD50k dataset, our
model obtains an SI-SDR improvement of 9.6 dB for mixtures of
two sounds. When trained on Librispeech, our model achieves an
SI-SDR improvement of 14.0 dB when separating one voice from a
mixture of two speakers. Moreover, we show that the representation
learned by the conditioning encoder clusters acoustically similar
sounds together in the embedding space, even though it is trained
without using any labels.

Index Terms— Source separation, deep learning, FiLM condi-
tioning.

1. INTRODUCTION

A wide variety of sounds exist in the world. In everyday life, peo-
ple are often exposed to a mixture of various sounds, such as birds
singing, cars passing by, people talking, and so on. In this work, we
consider the task of taking a mixture of different sound sources, as
monophonic audio, and extracting from it a specific sound source.
There are various ways in which this task could be approached.
Given the recent success of deep learning for audio processing [1,
2, 3, 4], we propose to train a neural network for this task. A key
aspect of our proposal is not to tie the sound to be extracted to any
predefined collection of sound categories (such as, for example, the
ontology defined by AudioSet [5]). Instead, we treat the task as a
one-shot learning problem. The model receives as input the audio
mixture to be filtered, together with only one short example of the
kind of sound to be filtered. Once trained, the model is expected to
extract this specific kind of sound from the mixture if present, and to
produce silence otherwise. We show that this is indeed possible, and
propose the following key contributions:

• We propose SoundFilter, a wave-to-wave neural network ar-
chitecture that can be trained end-to-end using single-source
audio samples, without requiring any class labels that denote
the type of source.

• We evaluate our method on the CC0 subset of the FSD50k [6]
dataset and the Librispeech [7] dataset, showing a mean SI-
SDR improvement of 9.6 dB and 14.0 dB, respectively.

• We show that the learned representation encodes semantically
meaningful information, even though it is trained without any
labels. Specifically, the embeddings of acoustically similar
sounds tend to form homogeneous clusters.

2. RELATED WORK

Closely related to this paper is the work by Kong et. al. [8], who also
train a neural network for conditional source-separation of single-
channel audio. This approach uses a classification model trained on
AudioSet [5], which consists of 10s segments with weak class labels.
The trained classification model is then used to extract segments of
1.6 seconds for which a class presence is detected with high confi-
dence. The source separation network is then trained on mixtures of
two segments from different classes, using one of the two segments
as the target. The output of the classification model on the target
segment are fed to the network as a conditioning input. At inference
time they run the classification network once more, to determine the
set of classes present in the input mixture. For each such class, a
one-hot vector indicating the selected class is then used to extract the
different sources. In short, a key difference between Kong et al. [8]
and our approach is that the former requires labeled data to train the
classifier model, whereas our SoundFilter operates in a fully unla-
beled setup. In addition, the embedding used in [8] is defined in
terms of AudioSet’s class ontology. Even though this ontology con-
tains 527 classes, this is still a significant limitation: for example,
it does not allow separation of multiple instances of the same class,
e.g., to filter out one specific voice from a mix of multiple voices.

Another closely related area of research is universal sound sep-
aration. Given a mixture of sounds, the task is to output each of
the sound sources. Kavalerov et al. [1] have recently shown that by
constructing a suitable dataset of mixtures of sounds, one can obtain
SI-SDR (scale-invariant SDR) improvements of up to 10 dB. These
results can be further improved by conditioning the sound separation
model on the embeddings computed by a pre-trained audio classifier,
which can also be fine-tuned [9]. More recently, a completely unsu-
pervised approach to universal sound separation was developed [10],
which does not require any single-source ground truth data, but in-
stead can be trained using only real-world audio mixtures. Another
interesting approach which avoids the need for single-source ground
truth data uses a pre-trained classifier to enforce that each output
channel contains only the sound of one (predefined) class [11].

A lot of previous work exists for specific domains, such as sep-
arating speech from either other speech sources [12, 13] or separat-
ing speech from other sounds [14, 15]. Besides speech, there also
has been much work towards extracting individual instrument tracks
from music [16, 17, 2]. Another related line of research performs
audio source separation with the help of with other modalities, such
as vision [3, 18] or accelerometers [19].

3. METHOD

Our SoundFilter model is a wave-to-wave convolutional neural net-
work, which is trained from mixtures synthesized from a collection
of unlabeled audio recordings, in a process outlined below. Concep-
tually, we assume that the original audio collection consists of many
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Fig. 1: SoundFilter model overview.

clips of a few seconds each, which contain the same type of sound
for the whole duration of the clip. We also assume that each such clip
contains a single audio source (such as one speaker, one musical in-
strument, one bird singing, etc.). While not strictly necessary for the
training setup to work (see Section 4.2), this simplifies the way that
the evaluation operates. We further assume that the provided original
audio data contains a variety of different kinds of sound sources.

3.1. Training setup

A training example consists of three parts: i) the target audio, which
contains only one sound; ii) a mixture, which contains two different
sounds, one of which is the target audio; ii) a conditioning audio
signal, which is another example containing the same kind of sound
as the target audio. The model is trained to produce the target audio,
given the mixture and the conditioning audio as inputs, as illustrated
in Figure 1 and detailed below. We use training examples where all
three parts have equal length L, say 2s, and proceed as follows:

1. Select an example from the training dataset and extract two
random crops xt ∈ RL and xc ∈ RL of length L each, where
xt denotes the target audio and xc the conditioning audio.

2. Select another distinct random example xn ∈ RL from the
training dataset, which is used as noise source.

3. Create a mixture xm ∈ RL, by mixing xt ∈ RL (target) with
xn ∈ RL (noise). During training, we mix the two exam-
ples at varying SNRs, chosen uniformly at random between
−4 dB and +4 dB, to create mixtures of varying difficulty.

3.2. Model architecture

The model architecture takes as input two sequences of audio sam-
ples (the mixture audio and the conditioning audio), and outputs the
filtered audio x̂t, as illustrated in Figure 1. Our model consists of
two components: i) a conditioning encoder, which takes the condi-
tioning audio and computes the corresponding embedding, and ii) a
conditional generator, which takes the mixture audio and the condi-
tioning embedding as input, and produces the filtered output.

The generator is a wave-to-wave U-Net [20] architecture, whose
architecture is detailed in Figure 2. In a nutshell, it is a symmetric
encoder-decoder network with skip-connections, where the architec-
ture of the decoder layers mirrors the structure of the encoder, and
the skip-connections run between each encoder block and its mir-
rored decoder block. This architecture consists of an encoder, which
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Encoder block (N=128, S=2)
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Fig. 2: Detailed outline of the conditioned audio-to-audio U-Net ar-
chitecture.

outputs a bottleneck embedding, followed by a decoder, which gen-
erates the output samples from the bottleneck embedding, the skip-
connections and the conditioning input. The encoder and the de-
coder each have four blocks stacked together, which are sandwiched
between two plain convolution layers. The encoder follows a down-
sampling scheme of (2, 2, 8, 8) while the decoder up-samples in the
reverse order. The number of channels is doubled whenever down-
sampling and halved whenever up-sampling. Each encoder block
consists of an up-sampling layer in form of a transposed 1D convo-
lution, followed by a residual unit made up of three 1D convolutions
with a kernel size of 3 and dilation rates of 1, 3, and 9, respectively.
The decoder block also mirrors the encoder block, and consists of the
same residual unit followed by a strided 1D convolution for down-
sampling. A skip-connection is added between each encoder block
and its mirrored decoder block. The outermost skip connection feeds
the input directly to the output of the last convolution, to which the
input is added. We use group normalization after each Conv1D oper-
ation (not shown in the figure for simplicity) [21]. Moreover, we use
the ELU activation function [22] for all non-linearities in the model.

A key ingredient of the proposed model is that the generator is
conditioned on the embedding representation computed from a sam-
ple acoustically similar to the target. Note that while a similar U-Net
architecture was used in [19], in that case the conditioning signal
was fed directly to the encoder as an additional audio channel. In-
stead, in this work we implement the conditioning mechanism using
FiLM [23, 24], which is inserted after some of the layers of the U-
Net architecture, as illustrated in Figure 2. For simplicity, we use
exactly the same architecture for the conditioning encoder as for the
encoder of the U-Net, with the difference that the former has no
conditioning input. Due to the fully convolutional architecture, the
conditioning encoder produces a sequence of d-dimensional embed-
dings, at a sampling frequency 256 times smaller than the original
audio sampling frequency (2 × 2 × 8 × 8 = 256). Since we as-
sume that the same sound source is present throughout the length
of the (relatively short) input mixture xm, we aggregate this se-
quence of embeddings along the temporal dimension, into a single
d-dimensional embedding (we used d = 256 in our experiments),
before feeding it to the conditional generator. A simple way to ag-
gregate these embeddings in time is to use max-pooling. In order to
better adapt to non-homogeneous conditioning audio, we propose to
use a cosine-similarity based attention mechanism (called content-
addressing in [25]). Namely, we first compute a sequence of embed-
dings for the target audio using the conditional encoder and apply



Table 1: SI-SDR improvement (SI-SDRi) averaged across replicas.

Dataset SI-SDRi [dB]
FSD50k 9.6± 0.2

Librispeech 14.0± 0.1

max-pooling to obtain a single embedding vt. Then, we compute
the weighted average of the embeddings produced from the condi-
tioning audio, using as weights the softmax-compressed cosine simi-
larities between vt and the individual embeddings. L2-normalization
is applied to all embeddings before and after aggregation. In order
to use the final embedding in each FiLM conditioning layer of the
conditional audio model, these values are linearly projected to the
required number of values (i.e., the number of output channels of
the preceding convolution).

The generator and the conditioning encoder are jointly trained
end-to-end, with the objective of maximizing the scale-invariant
signal-to-distortion ratio (SI-SDR) [26] (soft-clipped at a limit of 30
dB) between the target xt and the filtered audio x̂t. The SI-SDR
measures the SDR between a target and estimate within an arbitrary
scale factor, which is widely used for evaluating source separation
tasks. Our training setup runs on GPU or TPU, is implemented in
TensorFlow and uses the Adam optimizer with a learning rate of
1e−4, default values of β1 = 0.9, β2 = 0.999, and a batch size of
32.

4. EXPERIMENTS

We evaluate our model on examples that are synthetically generated
in a similar way as the training data described in Section 3.1. During
evaluation, we ensure that target audio and the conditioning audio
are always disjoint crops from the same input example, which never
overlap in time. In contrast to training, where we mix target audio
and noise at different SNR levels, during evaluation we always mix
with at a SNR equal to 0dB. As the evaluation metric, we use SI-
SDR, as it is invariant to gain mismatches. We report the average
and the standard deviation over 5 different runs. Note that neither
the training nor the evaluation of our model requires the availability
of labeled samples, as it merely relies on the assumption that audio
examples contain the same sound sources (one or multiple) through-
out the example.

4.1. Datasets

The main dataset used for training and evaluation is the recent
FSD50k dataset [6]1, which contains recordings of various types of
sounds provided by users via Freesound, since our focus of interest is
the filtering of single sound sources of any kind. This dataset comes
with manually-verified labels for 200 classes, defined as a subset of
the AudioSet ontology [5], which we use to compute per-class met-
rics. In addition, we evaluate SoundFilter for the task of separating
overlapping speakers, for which we use the Librispeech dataset [7],
containing short clips of speech from 251 different speakers.

4.2. Results

We trained two separate SoundFilter models on FSD50k and Lib-
rispeech and obtained an average SI-SDR improvement equal to
9.6dB and 14.0dB, respectively, as reported in Table 1. Using the

1We only use samples with a CC0 license.

Table 2: SI-SDR improvement (SI-SDRi) for FSD50k, when train-
ing and evaluation is on disjoint classes, averaged across replicas.

Split SI-SDRi [dB]
split 1 9.4± 0.0
split 2 9.1± 0.2
split 3 8.8± 0.2
split 4 10.0± 0.2
split 5 9.8± 0.2

avg. of all splits 9.4± 0.4

labels available in FSD50k, we analyzed the results for each class
separately, as illustrated in Figure 3. We observe that some classes
are easier to separate from the mixtures than others. For example,
for Piano, Tambourine, Car Alarm and Clapping, the mean SI-SDR
is well over 15 dB. For almost all classes we achieve a mean SI-SDR
above 5 dB, except for a few classes such as Crash cymbal, Harp
and Toothbrush. We could not identify a clear pattern between the
acoustic properties of the sounds and the observed SI-SDR, except
that separating short sounds such as Snap seems to be easier. Audio
samples produced by SoundFilter are publicly available2.

To evaluate SoundFilter in more challenging and realistic one-
shot conditions, we trained the model on examples for which both
the target and the noise audio belong to a set of classes, while
we evaluate on examples created from a completely disjoint set of
classes. This experiment is meant to evaluate how well the model
generalizes to new classes not seen during training. To this end, we
used the labels to prepare 5 different splits of the FSD50k dataset,
each containing a disjoint subset of 46 classes. Then, we trained 5
separate models, where for each model i = 1, 2, . . . , 5 we omit the
classes in group i from the training data, and use only classes from
the remaining group i during evaluation. Table 2 shows the results
for each different split. We observe that the average SI-SDR varies
across splits, due to the intrinsic difficulty of the classes sampled in
each split, but it remains above 8.6dB on the worst split, and is on
average equal to 9.4dB, i.e., only marginally worse than the SI-SDR
achieved when training and evaluating using all classes.

We also performed an ablation study over different design
choices of our model to better understand their impact. Specifi-
cally, we repeated the evaluation with the following variants of the
proposed model:

• Model capacity: We varied the model capacity by adjusting
the number of channels used in all convolutional layers. In-
stead of using 32 as the initial channel depth and doubling it
in each encoder block (Figure 2), we scaled all depths by 2x,
4x, and 0.5x. Table 3 shows that increasing model capacity in
this way does improve SI-SDR, at the cost of a considerable
increase in the number of parameters.

• Attention mechanism: We observe that removing the attention
mechanism based on cosine similarity, and instead aggregat-
ing the sequence of embeddings produced by the conditioning
encoder by directly using max-pooling along the temporal di-
rection, the SI-SDR remains at 9.6dB. Despite this result, we
believe the attention mechanism to be beneficial in practice,
in particular for non-homogeneous conditioning inputs.

• Normalization: We found that the choice of the normalization
applied to the model activations is critical for the good perfor-
mance of the model. Indeed, replacing group normalization

2https://google-research.github.io/seanet/
soundfilter/examples/

https://google-research.github.io/seanet/soundfilter/examples/
https://google-research.github.io/seanet/soundfilter/examples/
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Fig. 3: SI-SDR metrics for FSD50k per class, sorted by mean. We recommend reading the electronic version, which allows zooming in
arbitrarily, to read the class labels.

Table 3: SI-SDR improvement (SI-SDRi) on FSD50k, for different
model variants, averaged across replicas.

Split SI-SDRi [dB]
Baseline 9.6± 0.2

Conv depth: 16 8.8± 0.3
Conv depth: 64 9.8± 0.1
Conv depth: 128 10.0± 0.1

Without attention mechanism 9.6± 0.0
Batch norm instead of group norm 6.9± 0.5
Pre-trained AudioSet embeddings 7.9± 0.3

Multi-scale resolution loss (DDSP) 8.0± 0.2
Training on AudioSet (eval on FSD50k) 8.6± 0.2

(using groups of 16 channels) with batch normalization, the
observed SI-SDR decreases to 7.1dB.

• Conditioning encoder: The conditioning encoder in Sound-
Filter is trained end-to-end with the generator. We tried to re-
place this component with a fixed encoder, which was trained
as a fully supervised classifier on Audioset. We use the logit
layer of the classification model (which produces one value
for each of the 527 Audioset classes) and project it to 256
dimensions with a learnable linear layer.

• Loss function: We replaced the SI-SDR loss function with a
multi-scale spectrogram loss as proposed in [27] (computed
in the mel-spectrogram domain as suggested in [28]). Unsur-
prisingly, the SI-SDR decreases to 8.8dB, since there is a mis-
match between the loss function used during training and the
evaluation metrics. However, the quality of the output is very
similar to the one obtained using the SI-SDR loss and a more
comprehensive subjective evaluation campaign is needed to
fully evaluate the impact of the choice of the loss function.

• Single-source audio: Both FSD50k and Librispeech have the
property that each example contains only one sound source,
present throughout the example. To investigate the impact of
dropping this requirement, we also trained SoundFilter using
AudioSet [5], which mostly consists of mixtures of multiple
sources. Notably, we observe a relatively small drop in per-
formance when evaluating on FSD50k, from 9.6dB to 8.6dB.

Tambourine

Whoosh-swoosh-swish
Burst-pop

Electric_piano

Acoustic_guitar

Throat_clearing

Car_alarm

Vibraphone

Wind_instrument-woodwind_instrument

Fig. 4: t-SNE plots of learned embeddings for FSD50k (left), col-
ored by class label and Librispeech (right), colored by the speaker
identity. Both plots are showing embeddings for evaluation data, un-
seen during training. We recommend reading the electronic version,
which allows zooming in arbitrarily, to read the labels.

4.3. Visualizing the learned embedding space

The proposed SoundFilter model is trained without having access to
class labels. However, the conditioning encoder learns to produce
embeddings that represent the acoustic characteristics of the condi-
tioning audio. To verify this, we visualize a 2-dimensional projection
of the embedding space with t-SNE [29], by clustering the embed-
dings of the examples seen during evaluation. Figure 4 shows the
learned representation, for both FSD50k and Librispeech, where dif-
ferent colors/markers denote, respectively, different class labels and
speakers. In both cases we observe a clear structure, which corre-
lates well with class labels, despite the fact that labels were not used
during training. This observation gives some evidence that the con-
ditioning embeddings encode semantically meaningful information.

5. CONCLUSION

We present SoundFilter, a conditional sound separation model that
can focus on an arbitrary type of sound in a mixture of sounds, given
only a short sample. It can be trained using only unlabelled exam-
ples of single-source recordings. Our work could be extended by
exploring how to use the embedding learned as part of SoundFilter
as a representation for an audio event classifier. In addition, it would
be of interest to extend our approach from one-shot to many-shot.
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