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ABSTRACT

In this work, we investigate differential chaos shift keying (DCSK),

a communication-based waveform, in the context of wireless power

transfer (WPT). Particularly, we present a DCSK-based WPT archi-

tecture, that employs an analog correlator at the receiver in order to

boost the energy harvesting (EH) performance. By taking into ac-

count the nonlinearities of the EH process, we derive closed-form

analytical expressions for the peak-to-average-power-ratio of the re-

ceived signal as well as the harvested power. Nontrivial design in-

sights are provided, where it is shown how the parameters of the

transmitted waveform affects the EH performance. Furthermore, it

is demonstrated that the employment of a correlator at the receiver

achieves significant EH gains in DCSK-based WPT systems.

Index Terms— Differential chaos shift keying, wireless power

transfer, nonlinear energy harvesting.

1. INTRODUCTION

According to Ericsson, the wireless traffic is expected to increase

more than five times between 2019 and 2025 [1]. For applications

such as massive machine-type communications, where a large num-

ber of devices are deployed, powering or charging becomes critical

as well as costly. Hence, low-powered and self-sustainable next gen-

eration wireless communication networks is an important and rele-

vant topic of research. In this context, based on the advances made in

recent years, wireless power transfer (WPT) can be considered as a

suitable candidate, where the devices are wirelessly powered by har-

vesting energy from ambient/dedicated radio-frequency (RF) signals

[2]. This is achieved by employing a rectifying antenna (rectenna)

at the receiver that converts the received RF signals to direct current

(DC).

The design of efficient WPT architectures fundamentally relies

on accurate mathematical models for the energy harvesting (EH) cir-

cuit. The work in [2] proposes a realistic nonlinear model of the

EH circuit, which depends on the circuit characteristics and also en-

ables the design of excitation waveforms that maximize the WPT

efficiency. This model has triggered interests in the area of wireless

power waveform design, with an objective of maximizing the RF-

to-DC conversion efficiency. The authors in [3] show that the non-

linearity of the rectification process at the EH circuit causes certain

waveforms, with high peak-to-average-power-ratio (PAPR) to pro-

vide higher output DC power, compared to conventional constant-
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envelop sinusoidal signals. Based on this observation, there are

some works, which investigate the effect of the transmitted sym-

bols and modulation techniques on WPT. By considering the non-

linear EH model proposed in [2], the authors in [4] investigate the

use of multisine waveforms for WPT due to their high PAPR. The

work in [5] proposes a simultaneous wireless information and power

transfer (SWIPT) architecture based on the superposition of multi-

carrier unmodulated and modulated waveforms at the transmitter.

Apart from the multisine waveforms, experimental studies demon-

strate that due to their high PAPR, chaotic waveforms outperform

conventional single-tone signals in terms of WPT efficiency [6].

Due to its properties such as sensitivity to initial data and ape-

riodicity, chaotic waveforms have been extensively used in the past

to improve the performance of wireless communication systems. In

this context, the non-coherent modulation technique of differential

chaos shift keying (DCSK) is one of the most widely studied chaotic

signal-based communication system [7]. The majority of the related

works focus on the error performance of such systems for various

scenarios. To exploit the benefits of both DCSK and WPT, there

are few works in the literature that investigate SWIPT in a chaotic

framework, e.g. [8, 9, 10]. In [8], a short-reference DCSK-based

SWIPT architecture is proposed to achieve higher data rate than the

conventional system. A chaotic multi-carrier system is investigated

in a SWIPT framework via the sub-carrier index to reduce the energy

consumption [9]. In [10], adaptive link selection for buffer-aided re-

laying is investigated in a DCSK-SWIPT architecture, where two

link-selection schemes based on harvested energy are proposed.

However, the above studies consider a simplified linear model

for the EH, and as a result, they are independent of the circuit charac-

teristics as well as the design of excitation waveforms [2]. Motivated

by this, in this paper, we present a DCSK-based WPT architecture

by taking into account the nonlinearities of the EH process. Specifi-

cally, the contribution of this work is three fold. Firstly, we propose

a novel WPT architecture, where an analog correlator is employed

at the receiver in order to boost the EH performance. Secondly, the

flexibility of the proposed architecture is demonstrated, as the cor-

relator can control the PAPR of the received signal at the harvester.

Finally, analytical expressions of PAPR and the harvested DC are

derived for both cases, i.e. with and without the correlator. The ana-

lytical framework provides a convenient methodology for obtaining

nontrivial insights into how key parameters affect the performance.

2. A CHAOTIC SIGNAL-BASED WPT SYSTEM

ARCHITECTURE

2.1. System model

We consider a point-to-point WPT set-up, where the transmitter em-

ploys a DCSK generator and the receiver consists of an analog cor-
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Fig. 1. Proposed architecture for DCSK-based WPT.

relator, followed by an EH circuit, as shown in Fig. 1. Note that,

DCSK signals, until now, have been mainly considered for informa-

tion transfer. However, here we focus on the WPT aspect and ignore

the information side of the signal. Furthermore, the decoding of

these signals can be found in [7, 8, 10]. We assume that the received

power is proportional to r−α, where r is the transmitter-receiver

(Tx-Rx) distance and α denotes the path-loss exponent. Moreover,

a Rayleigh distributed flat fading channel h is considered with unit

mean power, i.e. f|h|(γ) = 2γe−γ
2

, ∀ γ ≥ 0.
By considering a circuit-based nonlinear model of the harvester

circuit, the output DC current is approximated in terms of the input

signal y(t) as [2]

zDC = k2RantE{|y(t)|2}+ k4R
2
antE{|y(t)|4}, (1)

which is a monotonically increasing function of the DC component

of the current at the rectifier output and the parameters k2, k4, and

Rant are constants determined by the characteristics of the circuit.

2.2. Chaotic signals

Each DCSK symbol is represented by two consecutive chaotic signal

components; the first one serves as the reference, while the second

carries the data ±1. The l-th transmitted DCSK symbol is character-

ized by a sequence of 2β, β > 0, samples of the chaotic basis signal,

in which the k-th bit is given by [7]

sl,k =

{

xk, k = 2(l − 1)β + 1, . . . , (2l − 1)β,

dlxk−β, k = (2l − 1)β + 1, . . . , 2lβ,
(2)

where dl = ±1 is the l-th information bit, and xk is the chaotic basis

signal. As 2β chaotic samples are being used to spread each infor-

mation bit, β is defined as the spreading factor. Thus, the overall l-th

transmitted symbol at time t is sl(t) = [sl,1(t), sl,2(t), · · · , sl,2β(t)].
Due to its good correlation properties, we consider the Chebyshev

chaotic map of degree ξ, where the invariant probability density

function (PDF) of xk, namely fX(x) is [7]

fX(x) =

{

1

π
√

1−x2
, |x| < 1,

0, otherwise.
(3)

2.3. Analog correlator

The proposed WPT architecture employs an analog correlator, fol-

lowed by an EH rectifier circuit. An analog correlator essentially

consists of a series of (ψ − 1) delay blocks, where ψ is a posi-

tive integer; the rationale behind this application is that, the signal

can be effectively integrated over a certain time interval [11]. Thus,

an ideal ψ-bit analog correlator provides an output signal y(t) =

h
∫ 0

ν=−ψT sl(t − ν)dν where h is the channel coefficient, T is the

bit period, and sl(t) is the chaotic input signal [11]. In what follows,

for the sake of simplicity, we will consider ψ equal to the transmit-

ted DCSK symbol length, i.e. ψ = 2β. Hence, the correlator output

yl(t) for the l-th transmitted symbol sl(t) is

yl(t) =
√
Pth

2β
∑

k=1

sl,k(t), (4)

where Pt is the transmission power. Note that ψ = 1 corresponds

to the conventional case without a correlator. We state the following

proposition, that refers to the effect of the analog correlator on the

signal’s PAPR.

Proposition 1. The signal PAPR at the harvester input is

PAPR =

{

2, without correlator (ψ = 1),

4β, with correlator (ψ = 2β).
(5)

Proof. See Appendix A.

From Proposition 1, we observe that the correlator can control the

value of PAPR through the design parameter ψ. Also, since high

PAPR signals are desirable for WPT [3], the correlator can signifi-

cantly enhance the EH performance of the DCSK signals.

3. CHAOTIC SIGNAL-BASED

WIRELESS POWER TRANSFER

In this section, we investigate the effect of the DCSK waveform on

the WPT performance. Specifically, we evaluate zDC for both cases

with/without the correlator. For the sake of simplicity, we will use

ρ1 = k2RantPt and ρ2 = k4R
2
antP

2
t . Hence, from (1) and (4), the

harvested DC with a correlator is

zC =r−αρ1E







(

|h|
2β
∑

k=1

sk

)2






+r−2α
ρ2E







(

|h|
2β
∑

k=1

sk

)4






,

(6)

and for the case without a correlator is

zNC =r−αρ1E

{

|h|2
2β
∑

k=1

s
2
k

}

+ r
−2α

ρ2E

{

|h|4
2β
∑

k=1

s
4
k

}

, (7)

where the expectation is taken over h and sk.

We now state the following two theorems, which provide closed-

form expressions for zC and zNC.

Theorem 1. When a correlator is employed, the harvested DC is

zC =

{

r−αρ1 + 6r−2αρ2, β = 1,

r−αρ1β + 12r−2αρ2β
2, β > 1.

(8)

Proof. See Appendix B.

Next, we consider the case of a WPT receiver without the analog

correlator, which is given by the following theorem.

Theorem 2. When a correlator is not employed, the harvested DC

is given by

zNC = r
−α
ρ1β +

3

2
r
−2α

ρ2β. (9)

Proof. See Appendix C.



From Theorems 1 and 2, we observe that zC and zNC is a

quadratic and linear function of β, respectively. Therefore, for fixed

r, ρ1 and ρ2, we have zC > zNC, ∀ β. This clearly demonstrates the

impact of the correlator on the WPT performance. Also, note that if

a linear EH model is used, i.e. only the second order term of (1) is

considered, both are equivalent.

Now, with a slight abuse of notation, let rC and rNC be the Tx-

Rx distances for zC and zNC, respectively. We can show that zC ≥
zNC, even when rC > rNC. To achieve this, β needs to satisfy

β >
ρ1
(

r−αNC − r−αC

)

+ 1.5ρ2r
−2α
NC

12ρ2r
−2α
C

, (10)

which can be easily derived from (8) and (9).
Next, we compare the proposed architecture with the existing

multisine waveform based EH framework [4]. We know from [4],

that the achieved EH performance when an N -tone multisine wave-

form is used, results in a zDC whose linear term is independent of N

and the nonlinear term is linearly dependent on N . Furthermore, for

a given bandwidth, the number of tones in a multisine waveform can-

not be decided arbitrarily. A large N implies very small inter-tone

spacing, which results in low output DC voltage at the harvester.

On the other hand, a too small N suggests infinitely large inter-tone

spacing, i.e. most of the signal gets filtered out by the low pass filter

at the harvester. Hence, multisine waveforms can enhance the WPT

performance only if an optimum inter-tone spacing is selected, and

experimentally it is observed that we have N < 10 [12]. In the case

of DCSK-based waveforms, as observed from Theorem 1, the linear

and nonlinear terms of zC are proportional to β and β2, respectively;

also, we usually have β ≫ 1 [8]. Hence, the WPT performance of

the proposed DCSK-based WPT architecture is significantly greater

than the multisine waveform-based EH.

4. NUMERICAL RESULTS

We consider a transmission power Pt = 30 dBm and path-loss ex-

ponent α = 4. The parameters considered for the WPT model are

k2 = 0.0034, k4 = 0.3829, and Rant = 50 Ω [4]. Recall that,

ψ = 2β and ψ = 1 correspond to a WPT receiver with and without

the analog correlator, respectively.

Fig. 2 demonstrates the performance of the proposed DCSK-

based WPT architecture in terms of harvested DC, where we observe

a significant improvement. Although the analytical expressions for

zDC, when β > 1, are central limit theorem (CLT)-based, we observe

that the theoretical results match very closely with the simulation re-

sults. The significant gain in WPT performance with the correlator is

related to the high PAPR, which is a function of the spreading factor

β, as stated in Proposition 1. Moreover, we note that, with/without

the correlator at the receiver, the harvested DC with Tx-Rx distance

30 m is less compared to the harvested DC with Tx-Rx distance 20
m; this is intuitive due to the path-loss factor. Finally, we also ob-

serve that zC with Tx-Rx distance of 30 m outperforms zNC with a

smaller Tx-Rx distance of 20 m when we have β > 52. This obser-

vation matches the lower bound proposed in (10), which results in

β > 52 for the considered set of system parameters.

5. CONCLUSION

In this work, we investigate DCSK-based WPT, by taking into ac-

count the nonlinearities of the EH process. Specifically, we use a

communication-based waveform for the purpose of WPT and also

Fig. 2. Effect of spreading factor on zDC; lines correspond to analysis and

markers correspond to simulation results.

propose a new analog correlator-aided WPT receiver. By consider-

ing a Rayleigh fading scenario, we derive analytical expressions of

the harvested DC for both cases, i.e. with and without the correla-

tor. Our results show the significant gains that can be achieved by

our proposed approach. A promising extension of this work is to

investigate this design framework in the context of SWIPT.

6. APPENDIX A: PROOF OF PROPOSITION 1

Without a correlator at the receiver, i.e. for ψ = 1, the PAPR corre-

sponding to l-th transmitted symbol is

PAPR =

max
l

{

2lβ
∑

k=2(l−1)β+1

|hl|2s2l,k
}

E

{

2lβ
∑

k=2(l−1)β+1

|hl|2s2l,k

} . (11)

By considering a channel instance hl and the PDF of xk from (3),

we obtain max
l

{

2lβ
∑

k=2(l−1)β+1

|hl|2s2l,k
}

= 2|hl|2β and

E







2lβ
∑

k=2(l−1)β+1

|hl|2s2l,k







= |hl|2
2lβ
∑

k=2(l−1)β+1

E{s2l,k} = |hl|2β.

(12)

Hence, for ψ = 1, we have PAPR = 2|hl|2β
|hl|2β

= 2. On the other

hand, for ψ = 2β, i.e. with a correlator, we have

PAPR =

max
l

{(

2lβ
∑

k=2(l−1)β+1

|hl|sl,k
)2}

E

{(

2lβ
∑

k=2(l−1)β+1

|hl|sl,k
)2}

, (13)

where from (3), we have max
l

{

2lβ
∑

k=2(l−1)β+1

|hl|sl,k
}2

= 4|hl|2β2.

Note that for chaotic sequences generated by the Chebyshev map,

we have E[sl,isl,j ] = 0 for i 6= j [13, Eq. 55]. As such,

E

{(

2lβ
∑

k=2(l−1)β+1

|hl|sl,k
)2}

= |hl|2β, which follows from

(12). Hence, we have PAPR = 4|hl|2β2

|hl|2β
= 4β.



7. APPENDIX B: PROOF OF THEOREM 1

The quantity |h|
2β
∑

k=1

sk in (6) can be alternatively written as

s = |h|
2β
∑

k=1

sk = |h|
2β
∑

k=1

xk = |h|(1 + d)

β
∑

k=1

xk. (14)

By assuming equally likely transmission of d = ±1 and if we con-
sider a = 1+d, it results in the PDF fA(a) =

1
2
, a ∈ {0, 2}. Hence,

s can be written as a product of random variables, i.e. S = |h|AV ,

where we have V =
β
∑

k=1

Xk, i.e. the PDF fV (v) is the (β − 1)-

fold convolution of fX(x) [14]. As a closed-form expression cannot

be obtained for fV (v) with any arbitrary β, we obtain an analytical

expression of fS(s) for β = 1 and a well-approximated CLT-based

expression of fS(s) for β > 1, respectively.

7.1. Case β = 1

For β = 1, we have s = |h|(1 + d)x1. Therefore the cumulative

distribution function of s conditioned on h is

FS|H(s|h) =
∑

i=0,2

Pr(AX < s|A = i, h)Pr(A = i)

=
1

2

[

1

π
sin−1

(

s

2|h|

)

+
1

2
+ 1[0,∞)

(

s

|h|

)]

. (15)

As a result, the pdf of s conditioned on h is obtained as fS(s|h) =
∂FS|H(s|h)

∂s
= 1

2π
√

4|h|2−s2
. Accordingly we obtain fS(s) by

unconditioning on h, i.e. fS(s) =
∞
∫

s
2

αe−α2

π
√

4α2−s2
dα = e

− s2

4

4
√
π
.

Based on (6), we need the PDFs corresponding to S2 = Z and

S4 = P . The CDF of Z is obtained as FZ(z) = P(−√
z ≤

S ≤ √
z) = FS(

√
z) − FS(−

√
z), which results in the PDF

fZ(z) =
∂FZ(z)
∂z

= 1
4
√
πz
e−

z
4 . As Z is non-negative in nature, the

CDF of P is FP (p) = P(Z2 ≤ p) = P(Z ≤ √
p) = FZ(

√
p), i.e.

fP (p) =
∂FP (p)

∂p
=

1

2
√
p
fZ(

√
p) =

1

8
√
πp3/4

e
−

√
p

4 . (16)

Hence, we obtain zC as

zC = r
−α
ρ1E[Z] + r

−2α
ρ2E[P ] = r

−α
ρ1 + 6r−2α

ρ2. (17)

7.2. Case β > 1

We first perform a CLT-based characterization of

{

|h|
2β
∑

k=1

xk

}2

and

{

|h|
2β
∑

k=1

xk

}4

, followed by deriving an approximate closed-form

expression of zC. We know that s = |h|(1 + d)
β
∑

k=1

xk, where

for a sufficiently large β, CLT states that v =
β
∑

k=1

xk will fol-

low a Gaussian distribution with mean µ = βE[X] and variance

σ2 = βVar[X], where E[X] = 0 and Var[X] = 1
2
. Hence, we have

V ∼ N
(

0, β
2

)

and by following a similar methodology as in the

β = 1 case, we derive the CDF of S

FS|H(s|h) = 1

2

[

1

2

(

1 + erf

[

s

2|h|√β

])

+ 1[0,∞)

(

s

|h|

)]

.

(18)

By differentiating (18), we obtain fS|H(s|h) = 1
4|h|√πβ e

− s2

4|h|2β ,

which by unconditioning on h yields fS(s) = 1
4
√
β
e
−
√

s2

β . Now

we obtain the pdf of s2(= z) and s4(= p) as fZ(z) =
1

4
√
βz
e
−
√

z
β

and fP (p) =
1

8
√
βp

3

4

e
−
√√

p
β respectively. Hence

zC = r
−α
ρ1E[Z]+r

−2α
ρ2E[P ] = r

−α
ρ1β+12r−2α

ρ2β
2
. (19)

It is interesting to observe that although we have obtained a CLT-
based analytical expression, the approximation error is always less

than 5% irrespective of the value of β.

8. APPENDIX C: PROOF OF THEOREM 2

The proof follows steps similar with the analysis in Theorem 1, i.e.

separately considering the cases of β = 1 and β > 1.

8.1. Case β = 1

Let Y = X2, where X follows the PDF as stated in (3). Hence,

we obtain FY (y) = P(X2 ≤ y) = P(−√
y ≤ X ≤ √

y) =
FX(

√
y)− FX(−√

y) and so the PDF is given by

fY (y) =
1

2
√
y
[fX (

√
y) + fX(−√

y)] =
1

π
√

y(1− y)
. (20)

Thus, the PDF of ∆ =
2β
∑

k=1

x2
k corresponding to β = 1 is equal

to f∆(δ) = 1
2
fY
(

δ
2

)

= 1

π
√
δ(2−δ)

. We obtain the PDF of |h|2∆

as f∆|H(δ|h) = 1
|h|2 f∆

(

δ
|h|2

)

= 1

π
√
δ(2|h|2−δ)

, which results in

f∆(δ) =
∞
∫

0

e−α

π
√
δ(2α−δ)

dα = 1√
2πδ

e−
δ
2 .

Next, we require the PDF of |h|4Θ, where Θ =
2β
∑

k=1

x4
k and

from (20), the PDF of Y = X2 is fY (y) =
1

π
√
y(1−y)

. Hence, we

obtain the CDF of G = Y 2 as FG(g) = P(Y 2 ≤ g) = P(0 ≤ Y ≤√
g) = FY (

√
g), i.e. the PDF fG(g) is

fG(g) =
∂FG(g)

∂g
=

1

2
√
g
fY (

√
g) =

1

2π
√

g3/2(1−√
g)
. (21)

Therefore, the PDF of Θ is obtained by standard transformation of

random variables as fΘ(θ) = 1

25/4π

√

1−
√

θ
2
θ3/4

, which results in

the PDF of |h|4Θ = |h|4
2β
∑

k=1

x4
k as fΘ|H(θ|h) = 1

|h|4 fΘ
(

θ
|h|4

)

=

1

2π
√
θ3/2(

√
2|h|2−

√
θ)
. By unconditioning on |h|, we obtain fΘ(θ) =

1

2
5

4
√
πθ

3

4

e
−
√

θ
2 . Hence, we obtain

zNC = r
−α
ρ1E[∆] + r

−2α
ρ2E[Θ] = r

−α
ρ1 +

3

2
r
−2α

ρ2. (22)

8.2. Case β > 1

As the proof can be obtained by following a similar procedure as

described in Appendix B, i.e. we follow a CLT-based approach, the

detailed derivation has been omitted due to space limitation. Finally,

by combining the two cases of β = 1 and β > 1,we obtain zNC =
r−αρ1β + 3

2
r−2αρ2β, ∀ β.
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