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ABSTRACT

End-to-end models for robust automatic speech recognition
(ASR) have not been sufficiently well-explored in prior work.
With end-to-end models, one could choose to preprocess the
input speech using speech enhancement techniques and train
the model using enhanced speech. Another alternative is to
pass the noisy speech as input and modify the model archi-
tecture to adapt to noisy speech. A systematic comparison
of these two approaches for end-to-end robust ASR has not
been attempted before. We address this gap and present a de-
tailed comparison of speech enhancement-based techniques
and three different model-based adaptation techniques cov-
ering data augmentation, multi-task learning, and adversarial
learning for robust ASR. While adversarial learning is the
best-performing technique on certain noise types, it comes at
the cost of degrading clean speech WER. On other relatively
stationary noise types, a new speech enhancement technique
outperformed all the model-based adaptation techniques.
This suggests that knowledge of the underlying noise type
can meaningfully inform the choice of adaptation technique.

Index Terms— Robust ASR, Speech Enhancement,
Multi-task and Adversarial Learning, Data Augmentation

1. INTRODUCTION

End-to-end (E2E) models, that directly convert a spoken ut-
terance into a sequence of characters, are becoming an in-
creasingly popular choice for ASR systems. They have been
shown to outperform traditional cascaded ASR systems when
large amounts of labeled speech are available. E2E ASR sys-
tems for low-resource scenarios have also emerged as an ac-
tive new area of research. While E2E ASR systems for clean
speech are growing rapidly in number, there have been rela-
tively fewer investigations on the use of E2E models for noisy
speech recognition [1, 2]. To the best of our knowledge,
we are the first to provide a detailed comparison of speech
enhancement-based techniques with a number of E2E model-
based adaptation techniques for noisy speech across a diverse
range of noise types. This comparison highlights the strengths
and limitations of both types of approaches and offers pre-
scriptions for which techniques are best suited for different
noise types. Our code and datasets are publicly available.1

1https://github.com/archiki/Robust-E2E-ASR

Prior work on robust ASR has predominantly used a
two-pass approach to tackle the problem of robust ASR. The
input speech is first passed through a speech enhancement
(SE) module and the enhanced speech is subsequently passed
through a standard speech recognition system. We adopt this
as one of our approaches as well and investigate the use of
three different speech enhancement techniques in conjunc-
tion with an E2E ASR system. As opposed to modifying the
input speech with front-end processing modules like speech
enhancement, one could use the noisy speech as-is and adapt
the E2E model itself to handle the noisy input speech. We
examine three model-based adaptation techniques:

1. Data Augmentation-based Training (DAT): Speech
samples are augmented with varying noise types of
varying signal to noise ratio (SNR) values and fed
as input to an E2E model. Larger gradient updates are
made in the lower layers of the E2E model compared to
the higher layers. This technique first appeared in [2].

2. Multi-task learning (MTL): The E2E model is jointly
trained with an auxiliary noise type classifier. MTL
with a noise type classifier has not been previously ex-
plored for robust ASR and turns out to be quite effective
as an adaptation technique.

3. Adversarial Training (AvT): Unlike MTL which drives
the learned representations to be more noise-aware, in
AvT, we train an E2E model with a gradient reversal
layer in conjunction with the noise classifier to learn
more noise-invariant representations.

2. RELATED WORK

We review some relevant supervised robust ASR techniques
under noisy conditions and single-channel setting, and do not
consider reverberation or multi-channel approaches. A sum-
mary of various deep learning techniques for robust ASR,
datasets, and benchmarks are provided in [3]. In [4], a noise
aware training (NAT) technique that uses a mean noise esti-
mate (assuming stationarity) in the input has been proposed to
give good results. This has been further improved in [5], by
jointly training a source separation model for noise estimation
and acoustic modeling. The work in [6] uses deep convolu-
tional neural network (CNN) to achieve the best ASR results
on Aurora-4 task [7].

https://github.com/archiki/Robust-E2E-ASR


One approach to improve the performance of E2E models
is by using data augmentation along with fine tuning as in [8].
Another approach is to formulate this as a domain adapta-
tion problem, and then use variational auto encoders (VAE)
[9]. Here, the source domain is clean speech and target do-
main is noisy speech. Similarly, [1] uses penalty terms on an
encoder-decoder type ASR model to achieve noise invariant
representations. The work in [10] uses a jointly adversarial
training framework, with a mask-based SE front-end along
with an attention-based E2E ASR model.

Models that operate in time-domain, such as SE-GAN [11]
and SE-VCAE [12] have been effective for SE as a front-end
technique in a two-pass approach. However, such models
rely on large datasets for training and enhancement, but need
not necessarily improve ASR. Deep Xi [13], a recent front-
end SE has been shown to provide improved ASR when
used with DeepSpeech2 [14] (DS2) as the back-end ASR.
A more recent approach that operates on raw waveform for
real-time speech enhancement is [15]. These two methods
will be further explained in Section 4.1, and will be used in
our analysis.

3. DATASETS AND E2E ASR SYSTEM

3.1. Implementation Details

In this work, we use DS2 as our main E2E ASR system.
DS2 is trained using the Connectionist Temporal Classifica-
tion (CTC) objective function and comprises two 2D convolu-
tional layers, followed by five bidirectional LSTM layers with
a final fully-connected (FC) softmax layer. The input features
are derived from short-time Fourier transform (STFT) mag-
nitude spectrograms and the baseline model is trained on 100
hours of clean speech from the Librispeech Dataset [16]. Ad-
ditional training-specific details can be found in [17].2

3.2. Data Description

We are specifically interested in applications that cater to cer-
tain noise types for which we do not have a lot of data. There
are not many existing datasets that are designed to be low-
resource.3 Hence, we constructed our own custom dataset.

Our custom dataset consists of the following noise types:
‘Babble’, ‘Airport/Station’, ‘Car’, ‘Metro’, ‘Cafe’, ‘Traffic’,
‘AC/Vacuum’4. The noise samples are sampled at 16 kHz and
were collected from FreeSound [19]. For each noise type,
we have 10 and 8 distinct samples in the train and test sets,
respectively. The total duration of the noise train and test sets

2We use the DS2 implementation available at: https://github.
com/SeanNaren/deepspeech.pytorch

3The DEMAND dataset [18] exists but has few samples per noise type.
4Airport/Station comprises background sounds containing announce-

ments at both airports and stations, while AC/Vacuum comprises room sounds
with an air conditioner or vacuum cleaner in the background. Within these
noise types, the noise sub-types are equally distributed in train and test sets.

Method Objective Scores
MOS-LQO PESQ STOI eSTOI

Baseline 1.29 1.80 80.68 60.66
SE-VCAE 1.38 1.83 80.64 62.85
Deep Xi 1.98 2.50 86.89 74.52
DEMUCS 2.17 2.73 91.66 82.19

Table 1. Objective scores for various enhancement methods.
Larger scores are better.

is close to 2 hours. For clean speech, we use the Librispeech
corpus [16]. We train the DS2 models using the train-clean-
100 set and add simulated noise using the training samples of
our noise dataset. Our development set is constructed using
the dev-clean set of Librispeech (duration of 5.4 hours) with
training noise samples from our noise dataset. During both
training and validation, a noise type was picked randomly and
the SNR of the additive noise was chosen randomly from {0,
5, 10, 15, 20, 25} dB. For testing, we randomly picked 120
files from the test-clean set of Librispeech. To create noisy
speech, for each utterance and each noise type from our noise
database, a random section of the noise is added at SNR levels
ranging from [0, 20] dB in increments of 5dB, resulting in a
total of 4200 noisy speech test utterances. (This process of
constructing noisy test samples was outlined in [13].)

4. APPROACHES

4.1. Front-End Speech Enhancement

We experiment with three state-of-the-art speech enhance-
ment techniques detailed below.
SE-VCAE. Speech Enhancement Variance Constrained Au-
toencoder (SE-VCAE) [12] learns the distribution over la-
tent features given noisy data and acts directly on the time-
domain. It outperforms a popular generative modeling SE
technique SE-GAN [11]. We finetune the pretrained SE-
VCAE model on noisy speech samples from our dataset.
DeepXi. DeepXi was specifically proposed as a front-end to
be used with DeepSpeech [13]. This enhancement technique
acts on a noisy speech spectrogram and uses a priori SNR es-
timation to design a mask that is used to produce an estimate
of a clean speech spectrogram. DS2 is then fine-tuned for
10 epochs on the enhanced examples from Librispeech while
ensuring minimal loss in performance on clean speech data.
DEMUCS. [15] proposes an alternate encoder-decoder archi-
tecture for denoising speech samples. The model is trained on
a low-resource noisy dataset along with reverberation, with
data augmentation techniques to compensate for the limited
data. We use their pretrained model and fine-tune it on our
dataset for 20 epochs. Similar to DeepXi, DS2 is further
finetuned on the denoised samples. Table 1 shows objective
scores measuring the quality of enhanced speech using the
three SE techniques discussed here. DEMUCS clearly outper-
forms the other two techniques on all four metrics.

https://github.com/SeanNaren/deepspeech.pytorch
https://github.com/SeanNaren/deepspeech.pytorch


Fig. 1. Framework used in MTL (in black) and AvT (in red).
2D-convolutions, BiLSTM and FC layers are shown using or-
ange, blue and green circles, respectively.

4.2. Data Augmentation-based Training (DAT)

For this technique, clean speech samples are augmented with
noise with a probability of 0.5 and subsequently used to train
DS2. The model was trained for 25 epochs with a batch size
of 32 and a learning rate of 0.0001. In the end, the model that
performed the best on the development set (with similar noise
augmentation) was chosen. We will refer to this model as
“Vanilla DAT”. To enable better transfer learning from clean
to noisy speech, we incorporate the soft-freezing scheme pro-
posed in [2]. The learning rate of the FC layer along with the
last two LSTM layers is scaled down by factor of 0.5 (further
discussed in Section 5). This training strategy has the effect
of forcing the lower layers (that act as a feature extractor) to
learn noise-invariant characteristics in the noisy speech. This
model will henceforth be referred to as “Soft-Freeze DAT”.

4.3. Multi-Task Learning (MTL)

Figure 1 describes our MTL setup. The auxiliary classifier
predicts noise type labels5 and uses representations from an
intermediate LSTM layer as its input. This noise classifier
comprises one bidirectional LSTM layer followed by two lin-
ear layers. The model is trained with a hybrid loss, LH =
λLCTC +η(1−λ)LCE, where LCTC and LCE are the CTC loss
from DS2 and the cross entropy loss on the noise labels, re-
spectively. η and λ are scaling factors and η is annealed by
factor of 1.05 every epoch. In our experiments, we initialized
the model using Soft-Freeze DAT6 and set λ = 0.7, η = 10.

4.4. Adversarial Training (AvT)

Contrary to MTL where the model jointly minimizes the CTC
loss and the noise classification loss, adversarial training in-
vokes the use of a gradient reversal layer (GRL) [20] before

5There are 8 noise labels: 7 for noise types + 1 for clean speech
6We observed that on starting with the baseline model, the initial 10-15

epochs behaved similar to DAT. Hence, Soft-Freeze DAT served as a good
initialization and led to faster convergence.

the auxiliary classifier as shown in Fig 1. This forces the rep-
resentations before the GRL to be noise-invariant, thus mak-
ing it hard for the noise classifier to distinguish between noise
types7. AvT had to be carefully trained with setting differ-
ent learning rates, λf , λr and λn corresponding to the fea-
ture extractor, recognition model and noise classifier, respec-
tively. For our model, the base learning rate was set to 0.0008,
λf = 0.8, λr = 0.05 and λn = 1. Similar to MTL, we ini-
tialized the model with Soft-Freeze DAT.

5. EXPERIMENTS AND RESULTS

Table 2 lists an exhaustive comparison of all previously men-
tioned techniques on seven different noise types and five dif-
ferent SNR values. We also report the WER on clean speech
to observe degradation with each noise adaptation technique
in place. We make a number of observations. Among the SE
techniques, DEMUCS which performs best on objective SE
scores (as shown in Table 1), also performs best in the ASR
experiments. SE-VCAE suffers from distortion of content in
the speech signal, which also reflects in its high degradation
of clean speech WER. We observe that DeepXi is outper-
formed (in most noise conditions, and is otherwise matched)
by techniques as simple as DAT. The performance mismatch
between the reported numbers in DeepXi [13] and our num-
bers could be attributed to the difference in sizes of our noise
datasets; their dataset was much larger in size compared to
ours. Interestingly, even with the relatively smaller amounts
of noise samples in our dataset, the DEMUCS technique is able
to generalize well. On the relatively stationary noise types
namely, ‘Car’, ‘Metro’ and ‘Traffic’ (Noise A), DEMUCS
outperforms all techniques including all the model-adaptation
techniques. For the relatively non-stationary noise types
namely, ‘Babble’, ‘Airport/Station’,‘Cafe’ and ‘AC/Vacuum’
(Noise B) DEMUCS and MTL are statistically very close.
AvT yields the largest reductions in WER on Noise B
samples (with few exceptions).

Another important distinction to make between the SE
techniques and the ML-based techniques is that the SE tech-
niques rely on high-quality pretrained models as a starting
point. With our small noise dataset, training the SE model
from scratch would not be an option. In contrast, our ML-
based techniques are expressive enough to be able to learn
from our limited noise datasets without any prior pretraining.

The overall takeaways from this investigation are the fol-
lowing: 1) Among the SE techniques, DEMUCS clearly out-
performs the other two SE techniques by large margins. 2)
Among the ML-based techniques, AvT is largely the best-
performing technique across all noise types, with some ex-
ceptions. While adversarial training drives the representa-
tions to be noise-invariant and helps the noisy speech WERs
(evident in low SNR conditions), it has an adverse effect on

7A setup similar to AvT was explored in [1] using the Musan corpus [21].
Due to lack of noise labels, the classifier output 2 labels: clean and noisy.



Method
WER under SNR (dB)

Babble Airport/Station AC/Vacuum Cafe
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Baseline 104.2 98.3 91.3 79.7 65.0 91.9 84.1 73.7 60.6 50.0 93.0 83.1 71.5 59.5 45.8 83.8 72.7 59.5 44.3 33.4

SE-VCAE 85.6 76.4 61.9 54.7 39.7 78.0 68.3 56.8 46.3 39.3 81.3 71.1 61.3 53.6 42.7 61.6 53.9 44.9 35.8 31.0
Deep Xi 81.4 69.4 54.0 44.5 31.9 71.4 60.9 46.5 37.8 27.4 73.9 58.2 45.4 35.1 27.0 52.3 39.7 32.8 25.0 20.4
DEMUCS 70.3 58.0 41.8 32.3 25.4 58.6 45.5 33.7 25.6 21.5 60.5 45.4 34.2 28.1 22.8 38.9 31.6 27.4 20.3 16.9

Vanilla DAT 80.6 68.1 53.6 41.8 30.3 67.1 55.4 41.9 31.2 24.9 66.4 49.8 38.3 31.3 24.5 52.8 41.6 34.5 24.5 19.2
Soft-Freeze DAT 77.4 65.5 52.2 38.5 28.3 64.2 52.9 39.0 29.2 23.7 63.1 46.8 37.1 30.2 23.9 49.1 40.1 33.1 24.4 19.0
MTL 71.4 58.8 45.9 35.5 25.8 55.7 46.8 35.3 26.2 20.7 57.0 41.0 33.0 26.7 21.5 44.9 35.5 24.8 23.6 15.3
AvT 66.8 55.1 39.5 31.1 24.6 53.8 43.3 33.4 25.2 20.9 56.4 40.8 33.4 29.3 23.2 37.1 32.0 26.3 21.4 18.5

Method
WER under SNR (dB) Clean

WERTraffic Metro Car
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Baseline 72.4 62.5 50.2 41.0 33.6 68.4 54.4 46.4 34.9 27.6 35.0 28.1 24.3 21.7 16.7 10.3

SE-VCAE 60.0 51.9 44.2 39.7 32.5 54.0 43.6 38.6 33.0 29.6 35.4 32.7 28.3 27.3 26.0 15.9
Deep Xi 48.0 40.6 29.8 26.0 22.7 44.8 30.5 28.1 20.2 20.5 23.0 19.4 15.4 16.0 14.1 10.9
DEMUCS 38.2 30.3 25.3 20.6 17.9 35.6 24.9 22.6 17.1 15.9 20.5 18.1 14.6 13.8 13.1 10.9

Vanilla DAT 48.5 37.8 31.2 23.3 21.8 41.8 33.1 27.1 21.9 19.1 24.0 19.4 16.1 16.4 14.0 10.8
Soft-Freeze DAT 47.2 35.1 29.8 23.4 20.2 40.8 30.7 27.0 21.3 18.6 23.4 18.9 16.8 15.2 14.7 10.9
MTL 39.9 32.4 29.4 21.3 18.4 38.7 29.2 24.4 20.6 17.3 22.9 19.0 16.3 14.7 14.5 11.0
AvT 40.7 32.5 26.3 21.4 18.5 36.1 26.5 22.6 18.4 17.8 21.8 18.9 16.8 16.0 15.3 13.1

Table 2. Comparison of the performance (WER % after greedy decoding) of all techniques for various noise types and SNRs
in the test set. The lowest SE and E2E WERs are shown in bold, and the lower WER among the two is highlighted in green.

clean speech and high SNR conditions. AvT incurs the high-
est WERs on clean speech WER (after SE-VCAE) and some-
times comes second to MTL in high SNR conditions. 3)
MTL and AvT are both significantly better than the DAT tech-
niques. Summarily, either of DEMUCS or AvT might be a
good choice for noise adaptation but the underlying noise type
should also factor into the choice. Table 3 provides an abla-
tion analysis justifying our choices of LSTM3 and LSTM4 for
Soft-Freeze DAT, LSTM2 for MTL and λr = 0.05 for AvT.
The other hyperparameters were less influential and were se-
lected based on performance on the development set.

6. CONCLUSIONS

In this work, we present a detailed comparison of three speech
enhancement techniques and three model-based adaptation
techniques for robust E2E ASR across a set of diverse noise
types. We observe different trends for different noise types;
while adversarial learning yields the largest improvements in
performance on non-stationary noise types, a new SE tech-
nique DEMUCS gives the best results on relatively stationary
noise types. In future work, we aim to extend our analysis to
transformer-based ASR systems and existing noisy datasets.

Method Clean
WER

WER under SNR (dB)
Babble Airport/Station Cafe AC/Vacuum Car Metro Traffic
0 15 0 15 0 15 0 15 0 15 0 15 0 15

Soft-Freeze DAT (LSTM4) 11.13 79.2 40.5 64.7 30.6 51.6 24.2 63.4 30.8 24.4 16.8 42.2 22.8 48.1 24.5
Soft-Freeze DAT (LSTM4 + LSTM3) 10.90 77.4 38.5 64.2 29.2 49.1 24.4 63.1 30.2 23.4 15.2 40.8 21.3 47.2 23.4
Soft-Freeze DAT (LSTM4 + LSTM3 + LSTM2) 10.97 79.4 40.4 66.3 30.8 52.0 24.3 63.4 29.4 22.9 15.2 41.5 22.1 47.8 24.0

MTL (noise classifier after LSTM1) 11.04 72.3 36.5 56.2 26.5 45.9 23.3 57.9 28.2 22.6 15.2 38.5 20.2 44.0 21.6
MTL (noise classifier after LSTM2) 11.05 71.4 35.5 55.7 26.2 44.9 23.6 57.0 26.7 22.9 14.5 38.7 20.6 39.9 21.3
MTL (noise classifier after LSTM3) 11.24 75.8 38.7 60.4 27.5 49.0 23.5 60.0 28.2 23.0 15.7 40.4 21.6 46.0 22.4

15 20 15 20 15 20 15 20 15 20 15 20 15 20
AvT (recognition scaling factor λr = 0.2) 13.79 31.9 26.2 27.8 22.1 21.9 18.9 29.1 23.5 17.1 16.2 20.7 19.4 21.9 19.2
AvT (recognition scaling factor λr = 0.1) 13.37 30.8 24.9 25.4 21.7 21.7 17.8 27.9 23.3 16.2 15.6 20.3 17.1 21.8 19.0
AvT (recognition scaling factor λr = 0.05) 13.07 31.1 24.6 25.2 20.9 21.4 18.5 29.3 23.2 16.0 15.3 18.4 17.8 22.1 18.7

Table 3. WER % after greedy decoding under different settings for DAT, MTL and AvT. The best numbers are shown in bold.



7. REFERENCES

[1] Davis Liang, Zhiheng Huang, and Zachary C Lip-
ton, “Learning noise-invariant representations for robust
speech recognition,” in 2018 IEEE Spoken Language
Technology Workshop (SLT). IEEE, 2018, pp. 56–63.

[2] Shucong Zhang, Cong-Thanh Do, Rama Doddipatla,
and Steve Renals, “Learning noise invariant features
through transfer learning for robust end-to-end speech
recognition,” in 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 7024–7028.

[3] Zixing Zhang, Jürgen Geiger, Jouni Pohjalainen, Amr
El-Desoky Mousa, Wenyu Jin, and Björn Schuller,
“Deep learning for environmentally robust speech
recognition: An overview of recent developments,”
ACM Transactions on Intelligent Systems and Technol-
ogy (TIST), vol. 9, no. 5, pp. 1–28, 2018.

[4] Michael L Seltzer, Dong Yu, and Yongqiang Wang, “An
investigation of deep neural networks for noise robust
speech recognition,” in 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing.
IEEE, 2013, pp. 7398–7402.

[5] Arun Narayanan and DeLiang Wang, “Joint noise adap-
tive training for robust automatic speech recognition,”
in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2014,
pp. 2504–2508.

[6] Yanmin Qian and Philip C Woodland, “Very deep
convolutional neural networks for robust speech recog-
nition,” in 2016 IEEE Spoken Language Technology
Workshop (SLT). IEEE, 2016, pp. 481–488.

[7] David Pearce and J Picone, “Aurora working group:
DSR front end LVCSR evaluation AU/384/02,” Inst. for
Signal & Inform. Process., Mississippi State Univ., Tech.
Rep, 2002.

[8] Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L
Seltzer, and Sanjeev Khudanpur, “A study on data
augmentation of reverberant speech for robust speech
recognition,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2017, pp. 5220–5224.

[9] Wei-Ning Hsu, Yu Zhang, and James Glass, “Unsuper-
vised domain adaptation for robust speech recognition
via variational autoencoder-based data augmentation,”
in 2017 IEEE Automatic Speech Recognition and Un-
derstanding Workshop (ASRU). IEEE, 2017, pp. 16–23.

[10] Bin Liu, Shuai Nie, Shan Liang, Wenju Liu, Meng
Yu, Lianwu Chen, Shouye Peng, and Changliang Li,
“Jointly adversarial enhancement training for robust
end-to-end speech recognition,” Proc. Interspeech, pp.
491–495, 2019.

[11] Santiago Pascual, Antonio Bonafonte, and Joan Serrà,
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