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ABSTRACT
Group testing can save testing resources in the context of the
ongoing COVID-19 pandemic. In group testing, we are given
n samples, one per individual, and arrange them into m < n
pooled samples, where each pool is obtained by mixing a sub-
set of the n individual samples. Infected individuals are then
identified using a group testing algorithm. In this paper, we
use side information (SI) collected from contact tracing (CT)
within nonadaptive/single-stage group testing algorithms. We
generate data by incorporating CT SI and characteristics of
disease spread between individuals. These data are fed into
two signal and measurement models for group testing, where
numerical results show that our algorithms provide improved
sensitivity and specificity. While Nikolopoulos et al. utilized
family structure to improve nonadaptive group testing, ours
is the first work to explore and demonstrate how CT SI can
further improve group testing performance.

Index Terms— Contact tracing, nonadaptive group test-
ing, compressed sensing, overlapping group LASSO, general-
ized approximate message passing (GAMP).

1. INTRODUCTION

Widespread testing has been promoted for combating the on-
going COVID-19 pandemic. Samples are typically collected
from nasal or oropharyngeal swabs, and then processed by
a reverse transcription polymerase chain reaction (RT-PCR)
machine. However, widespread testing is hindered by supply
chain constraints and long testing times.

Pooled or group testing has been suggested for improving
testing efficiencies [2–17]. Group testing involves mixing a
subset of n individual samples into m < n pools. The mea-
surement process can be expressed as y = N(Ax), where x
is a vector that quantifies the health status of the n individu-
als, A is an m× n binary pooling matrix with Aij = 1 if the
jth individual contributes to the ith pool, else Aij = 0, y is
a vector of m noisy measurements or tests, and N represents
a probabilistic noise model that relates the noiseless pooled
results, Ax, to y. We consider two signal and noise models.
Model M1: A binary noise model used by Zhu et al. [6],
where x is binary, w = Ax is an auxiliary vector, and the
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measurement yi ∈ {0, 1} depends probabilistically on wi,
where Pr(yi = 1|wi = 0) and Pr(yi = 0|wi > 0) are proba-
bilities of erroneous tests.
Model M2: A multiplicative noise model of the form y =
Ax◦z as used in Ghosh et al. [8], where ◦ represents element-
wise multiplication, z is a vector ofm noisy elements defined
as zi = (1+q)ηi , q ∈ (0, 1] is a known amplification factor for
RT-PCR, ηi ∼ N (0, σ2), and σ2 � 1 is a known parameter
controlling the strength of the noise in RT-PCR. Under model
M2, x and y represent viral loads in the n individuals and m
pools, respectively. Assuming reasonably high viral loads in
x, Poisson effects in y can be ignored [8].

For both models, we wish to estimate x from y and
A. We use single-stage nonadaptive algorithms as in [6, 8],
rather than two-stage algorithms, which employ a second
stage of tests depending on results from the first stage, as in
Heidarzadeh and Narayanan [10] or the classical Dorfman
approach [2]. The advantage of nonadaptive algorithms is
that they reduce testing time, which is high for RT-PCR.
Algorithms that estimate x from y and A [8, 12] rely pri-
marily on the sparsity of x, which is a valid assumption for
COVID-19 due to low prevalence rates [18]. Zhu et al. [6]
also exploit probabilistic information such as the prevalence
rate and structure in x, and state the potential benefits of
using side information (SI). Specific forms of SI include
individuals’ symptoms and family structure [9]. Finally,
Nikolopoulos et al. independently observed that taking into
account community structure can improve the performance
of group testing [11,15]; these works focused on the encoder
design and used different contact models.

In this paper, we show how to estimate x while utiliz-
ing contact tracing (CT) SI, which allows one to analyze the
spread of the pandemic [19]. Our contributions are twofold.
First, we propose a generative model for a population of n
individuals that characterizes the spread of COVID-19 by ex-
plicitly using CT SI. Second, we show that CT SI, when used
appropriately, can help algorithms such as generalized ap-
proximate message passing (GAMP) [20] or LASSO vari-
ants [21, 22] better estimate x from y and A. Our work uses
more SI than Nikolopoulos et al. [11, 15], who only consid-
ered family-style structure in binary group testing.

2. DATA GENERATION MODEL

In this section, we present a generative infection model in-
corporating CT SI, which we later use to prepare simulated
data for algorithmic evaluation. We model a population of
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Fig. 1. State transition diagram for a node. A node is in-
fectious only between days k1 and k2 (both inclusive) after
getting infected. In our work, we set (k1, k2) = (3, 7).

n individuals using a dynamical or time-varying graphical
model that contains nodes {vi}ni=1 and undirected edges{
e
(t)
ij

}n
i,j=1

. On a given day t, an edge e(t)ij between nodes

vi and vj encodes CT SI
(
τ
(t)
ij , d

(t)
ij

)
, which can be acquired

via Bluetooth-based CT applications [23]. Here, τ (t)ij repre-

sents the contact duration and d
(t)
ij represents a measure of

the physical proximity between two individuals. On day t, a
node can be in one of the following states: susceptible, in-
fected, infectious, and recovered. To keep the model simple,
we assume that there are no reinfections, i.e., recovered is a
terminal state, despite some reports of reinfection [24]. While
our model is inspired from the classical SEIR model also con-
sidered for COVID-19 [25], our state transitions explicitly use
CT information and knowledge about the pandemic [26].

We adopt a simplified infection dynamic wherein the in-
fectious period is preceded and followed by the infected state.
Our design parameters for the infection dynamics are based
on a World Health Organization report on COVID-19 [26].
Specifically, a node vi remains infected but noninfectious for
k1 = 3 days. On day t+ k1, the node becomes infectious and
may transmit the disease to a susceptible neighboring node vj
with probability p(t+k1)i,j whose construction is described be-
low. An infectious node can potentially transmit the infection
until k2 = 7 days after getting infected, and becomes nonin-
fectious afterward. We also model a small fraction of stray
infections that may occur, for example, due to sporadic con-
tact with contaminated surfaces. Such infections only affect
nodes in the susceptible state with a probability p1 = 2×10−4

of our choice. A state diagram appears in Fig. 1. Regarding
the viral load x(t)i for node i on day t, we assume x(t)i = 0
if the node is susceptible or recovered. For an infected or in-
fectious node, we make a simplified assumption that its viral
load x(t)i ∼ Uniform(1, 32768),1 once drawn, remains con-
stant throughout the combined 14-day period of infection.

Next, we model the probability p
(t)
i,j that the disease is

transmitted from node vi to vj on day t. We view the infection
times of the population throughout the pandemic as a nonho-
mogeneous Poisson process with time-varying rate function

1The cycle threshold for RT-PCR commonly ranges from 19 to 34 cycles
[27, Fig. 3], where 34 cycles corresponds to a low initial viral load of a few
molecules, and each cycle roughly doubles the viral density. Therefore, we
estimate the largest possible viral load as 234−19 = 215 = 32768.
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Fig. 2. (a) The number of active infections, and (b) cumu-
lative infections at different inter-clique contact levels α (de-
fined in Sec. 2). We chose 50-day windows for testing pro-
posed algorithms.

λ(t). Consider a τ (t)ij -hour contact on day t when susceptible
node vj is exposed to infectious node vi. The average infec-
tion rate λij(t) for day t is assumed to be proportional to both
the viral load x(t)i and the physical proximity d(t)ij , namely,

λij(t) = λ0 x
(t)
i d

(t)
ij , where λ0 is a tunable, baseline Poisson

rate. The probability that vj is infected by the end of contact

period τ (t)ij is therefore p(t)i,j = 1−exp
(
−λ0 x(t)i d

(t)
ij τ

(t)
ij

)
for

t ∈ [k1, k2] + ti. From the standpoint of susceptible node vj ,
all its neighbors vk that are infectious contribute to its proba-
bility of getting infected on day t, namely, 1−

∏
k

(
1−p(t)k,j

)
.

While generating our data, we considered n = 1000
nodes divided into cliques based on the distribution of family
sizes in India [28, pg. 18], for a duration of tmax = 250
days. Fig. 2 shows the number of active infections and the
cumulative number of infections at the end of each day. The
clique structures were kept constant throughout the tmax days,
whereas inter-clique contacts corresponding to sporadic con-
tacts between people were dynamically added and removed.
Here, a contact is defined as a pair of individuals who come
in contact. We define the number of inter-clique contacts
divided by the number of contacts for a given day as the
inter-clique contact level, α. The varying α affects the spar-
sity of the underlying vector x as it brings infections to new
cliques/families. Pooling of samples is performed at the be-
ginning of each day from tpeak − 24 to tpeak + 25, where tpeak
is the day with the maximum number of active infections.

3. PROPOSED GROUP TESTING ALGORITHMS

This section describes two classes of group testing algorithms
for reconstructing the health status vector x from the pooled
tests, y, and pooling matrix, A.
Algorithms for binary noise. For model M1, Zhu et al. [6]
use generalized approximate message passing (GAMP) [20]
for group testing estimation. GAMP is comprised of two
components. The first component consists of an input channel
that relates a prior for n individuals’ viral loads, x = (xi)

n
i=1,

and pseudo data, v = x + q ∈ Rn, where the n coordinates
of x are correlated, and q is additive white Gaussian noise
with qi ∼ N (0,∆). We estimate x from v using a denoising
function (often called a denoiser):

x̂i = gin (v) = E [Xi | V = v] , (1)
where we use the convention that when both the upper
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and lower case versions of a symbol appear, the upper
case is a random variable and the lower case its realiza-
tion, and E [Xi|v] represents E [Xi|V = v] when the con-
text is clear. The second component of GAMP consists
of an output channel relating the auxiliary vector w to
the noisy measurements y as reviewed in Sec. 1. We
adopt the output channel denoiser of Zhu et al. [6], hi =
gout (yi; ki, θi) = (E [Wi | yi, ki, θi]− ki)/θi, where θi is the
estimated variance of hi, and ki is the mean of our estimate
for wi. Since yi depends probabilistically on wi, we have
f (wi | yi, ki, θi) ∝ Pr (yi | wi) exp

[
− (wi−ki)2

2θi

]
, where

Wi is approximated as Gaussian in the derivation of GAMP.
While Zhu et al. [6] considered Bernoulli x, which im-

plies a scalar separable denoiser gin for the input channel,
this paper accounts for probabilistic dependencies within x.
Our first probabilistic model considers groups of people, for
example, members of a family. Each family is modeled as
entirely healthy with probability 1 − πvf, else each individ-
ual within the family is infected with probability πind. This
model relates to our generative model of Sec. 2 by using fam-
ily structure as SI. Denoting the pseudo data of family F by
vF , the denoiser for the ith individual of family F is given by

gfamily
in (vF ) = E

[
Xi|F viral, vF

]
Pr
(
F viral|vF

)
, (2)

where E
[
Xi|F viral,vF

]
and Pr

(
F viral|vF

)
are parame-

terized by πvf, πind, and ∆. For detailed expressions, we refer
readers to Sec. 1.1 of the supplemental document.

Our second probabilistic model uses CT. Consider a hy-
pothetical widespread testing program that relies on CT SI,
where all individuals are tested 8 days before the group testing
program begins resulting in a good estimate of their ground-
truth health status. After the program begins, probability es-
timates from the previous group test are used as priors for
the n individuals when performing the current group test. We
provide detailed analysis in Secs. 2.2–2.3 of the supplemental
document on the use of prior infection status. The final form
of the denoiser for the CT model is as follows:

gCT
in (vi)=

{
1+
[

Pr(Xi =1)−1−1
]

exp
[(
vi− 1

2

)/
∆
]}−1

. (3)

Here, Pr(Xi = 1) for day k + 1 can be estimated by aggre-
gating CT information of individual i over the past 8 days,

namely, P̂r
(k+1)

(Xi = 1) = 1−
∏k
d=k−7

∏n
j=1

(
1− p̂(d)i,j

)
,

where p̂(d)i,j is the estimated probability of infection of indi-
vidual i due to contact with individual j. This probability,
p̂
(d)
i,j , can be determined by the CT information (τ (d)ij , d

(d)
ij ), as

well as their infection status as follows:

p̂
(d)
i,j = exp

(
−
(
λ τ

(d)
ij d

(d)
ij Ψ

(d)
ij + ε

)−1)
, (4)

where Ψ
(d)
ij = 1− P̂r

(d)
(Xi=0) P̂r

(d)
(Xj=0), λ is a Poisson

rate parameter, and ε is used to avoid division by zero. Note
that p̂(t)i,j depends on λ, which is unknown in practice. We
estimate it using a plug-in approach by Ma et al. [29]. More
details are given in Sec. 1.2 of the supplemental document.
Algorithms for multiplicative noise. For model M2, re-
call that x and y represent viral loads of individual samples

and pools, respectively. The core algorithm presented in [8]
uses the LASSO estimator, x̂LASSO = arg minx ‖y −Ax‖22 +
ρ‖x‖1 [30], where ρ is a smoothness parameter. LASSO ex-
ploits the sparsity of x but uses no SI. Despite the multi-
plicative nature of the noise, LASSO yields good estimation
performance [8] for three measures: (i) relative root mean
squared error (RRMSE) = ‖x − x̂‖2/‖x‖2; (ii) false neg-
ative rate (FNR) = #incorrectly detected negatives

/
#true

positives; and (iii) false positive rate (FPR) = #incorrectly
detected positives

/
#true negatives. Note that FNR = 1−

sensitivity and FPR = 1− specificity.
In some cases, the n individuals in x can be partitioned

into n1 � n disjoint groups of people, for example family
members, who interact closely with each other and are thus
likely to pass the virus between group members. This family-
style structure leads to a situation where either all members
of the group are uninfected, or a majority of members are
infected. Note that the family-style structure also includes
groups of coworkers, students taking a course together, and
people sharing common accommodation. If reliable SI about
how the n individuals are partitioned into families is avail-
able, and only a small portion of families, n2 � n1, are
infected, then LASSO can be replaced by group square-root
LASSO (SQRT-GLASSO) [21].2 The latter is defined as

x̂SQRT-GLASSO = arg min
x
‖y −Ax‖2 + ρ

n1∑
g=1

‖xg‖2, (5)

where xg consists of viral loads of people from the gth family.
In other cases, accurate family SI may be unavailable or

unreliable. Moreover, family SI does not account for con-
tact between members of different families. In such cases,
we use CT SI commonly available via Bluetooth [23] to di-
rectly infer family-style structure using clique detection algo-
rithms; contacts between members of different families can
also be considered to be small cliques. In particular, we use
the Bron–Kerbosch algorithm [32] to find maximal cliques in
the CT graph, and label each clique as a family. Note that one
could generate these groups differently [33, Sec. 7], for ex-
ample, decomposition into k-clique communities [34]. How-
ever, such a decomposition may partition the n individuals
into n3 � n family structures that overlap with each other,
unlike the earlier case of disjoint families. In a scenario with
overlapping families, we use the overlapping group square-
root LASSO (COMP-SQRT-OGLASSO) estimator [33],

x̂SQRT-OGLASSO = arg min
x
‖y −Ax‖2 + ρΩoverlap(x), (6)

where Ωoverlap(x) = infv∈VG,
∑

g∈G vg=x

∑
g∈G ‖vg‖2, G

denotes a set of possibly overlapping groups each containing
a subset of the n individuals in x, VG is a set of |G|-tuples of
vectors v = (vg)g∈G, g is an index for the groups in G, and
vg ∈ Rn is a vector whose support is a subset of g. Advan-
tages of OGLASSO over GLASSO for overlapping groups are
summarized in Fig. 1 and Sec. 3 of [33].

2We observed that SQRT-GLASSO, which has an `2 data fidelity term
instead of a squared `2 one [31], outperformed GLASSO. In contrast, con-
ventional LASSO outperformed SQRT-LASSO.
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Sparsity: 2.12% 3.98% 6.01% 8.86%
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Fig. 3. Performance of the proposed group testing methods M1 (top row) with binary noise and M2 (bottom row) with multi-
plicative noise at four averaged sparsity levels and three measurement levels for a population of n = 1000 individuals.

All three algorithms included a non-negativity constraint
on x, and were preceded by a step that executed combina-
torial orthogonal matching pursuit (COMP). COMP declares
all samples that contributed to a pool with zero viral load to
be negative. This COMP preprocessing step reduces the prob-
lem size and improves all three algorithms’ performance, as
well as speed. We refer to our algorithms as COMP-LASSO,
COMP-SQRT-GLASSO and COMP-SQRT-OGLASSO.

4. NUMERICAL RESULTS

We now present numerical results obtained for models M1
and M2. The data was generated based on Sec. 2, and group
testing inference was performed using the algorithms pro-
posed in Sec. 3. Since there are no publicly available datasets
for pooling with associated SI, we believe that our results
present strong (simulated) empirical evidence that motivates
the collection of such SI for group testing in order to lower
testing expenditures. We generated datasets using 4 levels of
cross-clique contacts, leading to 4 averaged sparsity levels,
2.12%, 3.98%, 6.01%, and 8.86%, for x. At each sparsity
level, we perform pooling experiments using Kirkman triple
matrices as proposed in [8] usingm ∈ {150, 300, 375}. Mea-
surement vectors y for M1 were generated using probabilities
for erroneous binary tests, Pr(yi = 1|wi = 0) = 0.001 and
Pr(yi = 0|wi > 0) = 0.02, per Hanel and Thurner [35].
Vectors y for M2 were generated by setting the parameter re-
flecting the strength of noise in RT-PCR to σ2 = 0.01. Fig. 3
shows the performance of the proposed algorithms in terms of
FNR and FPR3 averaged across the inference results obtained
for the time window of 50 days described in Sec. 2.

For model M1, we tested the family denoiser (2) and the
CT denoiser (3). Fig. 3 shows that the CT denoiser outper-

3For M1, we chose to report the FPR and FNR pair such that the sum
of the two error rates is minimized. Complete ROC curves are shown in
Sec. 2.1 of the supplemental document [1]. For M2, we reported the error
rates by thresholding the estimated viral load using τ = 0.2. The error rates
do not change much when τ varies between 0 and 1.

forms the family denoiser in all settings. Both algorithms
yield lower (better) FNR and FPR as the number of measure-
ments, m, increases. Moreover, the CT denoiser’s error rates
are below 0.05, except for the challenging cases where the
sparsity level is 8.86% and m ∈ {150, 300}.

For model M2, we tested four algorithms: COMP, COMP-
LASSO, COMP-SQRT-GLASSO, and COMP-SQRT-OGLASSO.
The results show that both COMP-SQRT-GLASSO and COMP-
SQRT-OGLASSO outperform COMP-LASSO in terms of FNR
and FPR, which shows the benefit of using CT SI. Note that
COMP-SQRT-OGLASSO performs on par with COMP-SQRT-
GLASSO, even though the former infers everything on the
fly from CT SI without explicit access to family SI. The
COMP algorithm by itself produces no false negatives (cor-
responding to FNR = 0), but many false positives. Further,
all four algorithms yield lower (better) FNR and FPR as m
increases or the averaged sparsity level decreases. Finally,
we remark that COMP-SQRT-OGLASSO outperforms COMP-
SQRT-GLASSO for more general CT graphs consisting of
slightly incomplete cliques. We refer the readers to Sec. 3 of
the supplemental document for details.

Our algorithms, when presented with SI, reduce the FNR
and FPR, despite not knowing which individuals are infected
within each infected family (within infected families, roughly
70% of individuals are infected, on average). Note that none
of the algorithms for model M2 make use of previous infer-
ence results, whereas the CT denoiser for model M1 uses such
information. This distinction makes the two approaches ap-
plicable in different scenarios, namely, the CT denoiser can
be used for a CT and testing program where the population is
tested regularly, e.g., warehouse employees, whereas COMP-
SQRT-OGLASSO is useful when a population is tested once.
Furthermore, while model M1 performs well in the presence
of erroneous binary tests, it does not yield viral load estimates
as COMP-SQRT-OGLASSO does. Viral load estimates could
prove to be useful, since there is a positive correlation be-
tween mortality and viral loads [36, 37].

8171



5. REFERENCES

[1] R. Goenka, S.-J. Cao, C.-W. Wong, A. Rajwade, and D. Baron,
“Contact tracing enhances the efficiency of COVID-19 group
testing,” https://arxiv.org/abs/2011.14186, Nov. 2020.

[2] R. Dorfman, “The detection of defective members of large pop-
ulations,” Annals of Mathematical Statistics, vol. 14, no. 4, p.
436–440, 1943.

[3] M. Aldridge, O. Johnson, and J. Scarlett, Group Testing: An
Information Theory Perspective, 2019.

[4] C. Hogan, M. Sahoo, and B. Pinsky, “Sample pooling as a strat-
egy to detect community transmission of SARS-CoV-2,” Jour-
nal of the American Medical Association (JAMA), vol. 323,
no. 19, pp. 1967–1969, Apr. 2020.

[5] B. Abdalhamid et al., “Assessment of specimen pooling to con-
serve SARS CoV-2 testing resources,” American Journal of
Clinical Pathology, vol. 153, no. 6, pp. 715–718, May 2020.

[6] J. Zhu, K. Rivera, and D. Baron, “Noisy pooled PCR for virus
testing,” https://arxiv.org/abs/2004.02689, Apr. 2020.

[7] J. Yi, R. Mudumbai, and W. Xu, “Low-cost and high-
throughput testing of COVID-19 viruses and antibodies via
compressed sensing: System concepts and computational ex-
periments,” https://arxiv.org/abs/2004.05759, Apr. 2020.

[8] S. Ghosh, R. Agarwal, M. A. Rehan, S. Pathak, P. Agrawal,
Y. Gupta, S. Consul, N. Gupta, R. Goyal, A. Rajwade, and
M. Gopalkrishnan, “A compressed sensing approach to group-
testing for COVID-19 detection,” https://arxiv.org/abs/2005.
07895, May 2020.

[9] J. Zhu, K. Rivera, C. Rush, and D. Baron, “Noisy pooled PCR
for COVID-19 testing,” Paris Machine Learning Meetup, May
2020. [Online]. Available: https://youtu.be/gYJqnXbi1Bg

[10] A. Heidarzadeh and K. Narayanan, “Two-stage adaptive pool-
ing with RT-qPCR for COVID-19 screening,” https://arxiv.org/
abs/2007.02695, Jul. 2020.

[11] P. Nikolopoulos, T. Guo, C. Fragouli, and S. Diggavi, “Com-
munity aware group testing,” https://arxiv.org/abs/2007.08111,
Jul. 2020.

[12] N. Shental et al., “Efficient high throughput SARS-CoV-2 test-
ing to detect asymptomatic carriers,” Science Advances, vol. 6,
no. 37, Sep. 2020.

[13] Y.-J. Lin, C.-H. Yu, T.-H. Liu, C.-S. Chang, and W.-T.
Chen, “Comparisons of pooling matrices for pooled testing of
COVID-19,” https://arxiv.org/abs/2010.00060, Sep. 2020.

[14] ——, “Positively correlated samples save pooled testing
costs,” https://arxiv.org/abs/2011.09794, Nov. 2020.

[15] P. Nikolopoulos, S. R. Srinivasavaradhan, T. Guo, C. Fragouli,
and S. Diggavi, “Group testing for overlapping communities,”
https://arxiv.org/abs/2012.02804, Dec. 2020.

[16] S. Ahn, W.-N. Chen, and A. Ozgur, “Adaptive group testing
on networks with community structure,” https://arxiv.org/abs/
2101.02405, Jan. 2021.

[17] B. Arasli and S. Ulukus, “Group testing with a graph infection
spread model,” https://arxiv.org/abs/2101.05792, Jan. 2021.

[18] D. Benatia, R. Godefroy, and J. Lewis, “Estimating COVID-
19 prevalence in the United States: A sample selection model
approach,” https://doi.org/10.1101/2020.04.20.20072942.

[19] Center for Disease Control and Prevention, “Contact tracing
for COVID-19,” https://www.cdc.gov/coronavirus/2019-ncov/
php/contact-tracing/contact-tracing-plan/contact-tracing.html.

[20] S. Rangan, “Generalized approximate message passing for es-
timation with random linear mixing,” in IEEE Int. Symp. Inf.
Theory, 2011, pp. 2168–2172.

[21] M. Yuan and Y. Lin, “Model selection and estimation in re-
gression with grouped variables,” J. Royal Stat. Soc. Series B,
vol. 68, no. 1, 2006.

[22] D. Jacot, G. Greub, K. Jaton, and O. Opota, “Viral load of
SARS-CoV-2 across patients and compared to other respiratory
viruses,” Microbes and Infection, 2020.

[23] A. Hekmati, G. Ramachandran, and B. Krishnamachari,
“CONTAIN: Privacy-oriented contact tracing protocols for
epidemics,” https://arxiv.org/abs/2004.05251.

[24] W. Haseltine, “What COVID-19 reinfection means for
vaccines,” https://www.scientificamerican.com/article/
what-covid-19-reinfection-means-for-vaccines/.

[25] J. M. Carcione, J. E. Santos, C. Bagaini, and J. Ba, “A simu-
lation of a COVID-19 epidemic based on a deterministic SEIR
model,” Frontiers in Public Health, vol. 8, p. 230, 2020.

[26] World Health Organization, “Coronavirus disease 2019
(COVID-19) situation report–73,” https://tinyurl.com/
ybnbky8m.

[27] B. Buchan et al., “Distribution of SARS-CoV-2 PCR cy-
cle threshold values provide practical insight into overall and
target-specific sensitivity among symptomatic patients,” Amer-
ican Journal of Clinical Pathology, 2020.

[28] United Nations, “Household size and composition around the
world 2017,” https://tinyurl.com/vo7hrlv.

[29] Y. Ma, J. Tan, N. Krishnan, and D. Baron, “Empirical Bayes
and full Bayes for signal estimation,” in Inf. Theory App. Work-
shop, San Diego, CA, Feb. 2014, pp. 994–1001.

[30] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learn-
ing with Sparsity: The LASSO and Generalizations. CRC
Press, 2015.

[31] A. Belloni, V. Chernuzhukov, and L. Wang, “Square-root
LASSO: Pivotal recovery of sparse signals via conic program-
ming,” Biometrika, vol. 98, no. 4, pp. 791–806, 2011.

[32] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques
of an undirected graph,” Commun. ACM, vol. 16, no. 9, p.
575–577, 1973.

[33] L. Jacob, G. Obozinski, and J.-P. Vert, “Group LASSO with
overlap and graph LASSO,” in ICML, 2009.
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