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ABSTRACT

Reverb plays a critical role in music production, where it provides
listeners with spatial realization, timbre, and texture of the music.
Yet, it is challenging to reproduce the musical reverb of a reference
music track even by skilled engineers. In response, we propose an
end-to-end system capable of switching the musical reverb factor of
two different mixed vocal tracks. This method enables us to apply
the reverb of the reference track to the source track to which the
effect is desired. Further, our model can perform de-reverberation
when the reference track is used as a dry vocal source. The proposed
model is trained in combination with an adversarial objective, which
makes it possible to handle high-resolution audio samples. The per-
ceptual evaluation confirmed that the proposed model can convert
the reverb factor with the preferred rate of 64.8%. To the best of our
knowledge, this is the first attempt to apply deep neural networks to
converting music reverb of vocal tracks.

Index Terms— Intelligent music production, Automatic rever-
beration, Fully convolutional networks, Deep learning.

1. INTRODUCTION

Reverberation or reverb is a combination of multiple sound reflec-
tions and diffractions that provides spatial perception. In the music
industry, reverb is arguably an integral part of most chart-topping
music. Generation and control of musical space with reverb is es-
sential because of space realization, timbre and texture modifica-
tion, and sound cohesion. Artificial reverb systems were developed
to overcome the limitations of natural reverb that has a high depen-
dence on initial space [1]. Through a digital reverb system based on
mathematical algorithms, the software reverb plug-in system is now
being generally used along with DAW (Digital Audio Workstation)
[2].

In music production, musicians and engineers often face diffi-
culties of figuring out reverb from reference track and applying it
to their own ones. Behind these difficulties, there are three possible
reasons as follows.

1. Reverb that one listened to may not be from a single reverb
plug-in, as use of reverb bus channel or reverb bus, which is
separate external channel where reverb plug-in is placed.

2. Even if reverb plug-ins are detected, it is almost impossible
to figure out all subdivided parameter settings inside.

3. Audio effect units such as equalization and compressor, are
often placed at front and back of reverb plug-in which change
the sound of the reverb.

*Equal contribution

Thus, simply by listening, even such experienced audio engineers
cannot easily judge what the applied reverb is and its detailed set-
tings [3].

Most reverb plug-ins in modern music production are a ‘black-
box’ system. These systems generate reverb factors through com-
plex operations, making it difficult for algorithms such as estimating
impulse response (IR) [4, 5] and modeling reverberator [6] to infer
them. To this end, we propose an end-to-end reverb conversion sys-
tem using a modified version of the U-Net [7], which its task is to
interchange the musical reverb factors of two different mixed tracks.
As it is the clearest part and placed at the very front of a song, we
used stereo-channeled and 44.1kHz of high-fidelity vocal tracks for
producing realistic musical reverb. Our model is not only capable
of directly converting the reverb of input audios in a single step but
is also capable of de-reverberation. Through objective evaluation,
we show that our model successfully converts the reverb factor of
the input and maintains its quality at the same time. Furthermore,
we subjectively evaluated our model and achieved a preferred rate of
64.8%, despite the difficulty of measuring spatial difference between
sounds quantitatively.

Examples of the generated audio samples are available at https:
//dg22302.github.io/MusicalReverbConversion/.

2. RELATED WORKS

Deep learning architectures for audio effects have been researched
lately for linear effects such as equalization [8, 9] and nonlinear
effects such as compressor [10]. In the case of the time-varying
effect reverb, speech recognition in reverberant environments [11]
and speech de-reverberation have become a heavily researched field
[12, 13]. In addition, Deep Neural Networks (DNN) for artificial re-
verb, commonly used in music production, has been explored in the
following areas: generating artificial reverb by IR estimation [14],
emulating and modeling of reverb algorithm [6, 15], parameter au-
tomation, and intelligent control of reverb plug-in [16], and match-
ing speech spaces by adding artificial reverb [17].

Prior to our work, end-to-end DNN for extracting and applying
reverb from musically mixed vocals has not yet been proposed. Due
to the three reasons in the introduction - the presence of multiple re-
verb bus channels, variously subdivided parameters inside the plug-
ins and the influence of other audio effect plug-ins in the channels
- and the black-box algorithms of plug-ins, replicating the musical
reverb of the reference track is nearly impossible to be achieved with
previous methods. Therefore, to solve the problem, we use a modi-
fied version of the U-Net to disjoint musical reverb factor from the
input mixture signal of a high resolution.

ar
X

iv
:2

10
3.

02
14

7v
1 

 [
ee

ss
.A

S]
  3

 M
ar

 2
02

1

https://dg22302.github.io/MusicalReverbConversion/
https://dg22302.github.io/MusicalReverbConversion/


Fig. 1. Overview of the proposed method. The proposed model is a modified version of the U-Net, which is trained to disentangle the reverb
factor of the input and convert them into those of counterpart input.

3. PROPOSED METHOD

U-Net, the model originally tasked to perform a fast and precise
segmentation of images, had also shown prodigious performance
in speech related subjects, such as speech enhancement [18], and
source separation [19]. It is excellent with both modifying and pre-
serving the network inputs, where skip-connections have shown to
play a crucial role. In our case, retaining the contents of the input
audio is significant for replacing the reverb factor. For that reason,
we propose a modified version of the U-Net that disjoints the source
and reverb factor of the input. This idea of disentanglement using a
neural network was inspired by the method proposed in [20].

3.1. Input representation

For input data to train our model, reverb mixed tracks were used,
based on the understanding of reverb application in mixing music.
In the procedure, a source track, which is dry recorded sound, is
needed. Source track signal is sent to reverb bus channel, where
‘Wet 100%’ parameter setting reverb plug-in is placed. The output
signal of the channel is 100% reverberated source signal and it is
combined with the source signal by a certain percentage, called bus
send ratio.

Following the process, we mixed dry source tracks with their
corresponding fully reverberated tracks at a certain ratio, which
works as reverb bus, for generating model inputs :

1

γ + 1
(src+ γ · rev). (1)

The reverb mixed track can be represented as a sum of source signal
src and 100% reverberated source signal rev, with a factor of bus
send ratio γ. Dividing by (γ + 1), prevention of possible peak occurs
and normalization can be achieved. For convenience, let us abbrevi-
ate equation (1) as sxr#, a mixture of source x and reverb factor #.
For instance, a model input of source a combined with reverb 1 is
denoted as sar1.

3.2. Model architecture

As illustrated in Figure 1, the proposed network is a fully convolu-
tional network, aimed to convert the reverb factor of two input spec-
trograms that are combinations of sar1, and sbr2. The converting

procedure is done with attempts to disentangle the source and reverb
factor of outputs from each layer by channels, where the first half
channels is that of source, and the other half is that of reverb. The
disentangle procedure is carried out by converting reverb channels
of the outputs at the encoder’s last layer, and by channel-wise con-
catenating each reverb channels from other encoding layers to the
counterpart decoding layers. Therefore, in the case where the input
is sar1, the U-Net decoder is intended to decode the source factor of
the input spectrogram, and the reverb factor of sbr2 to generate out-
put of sar2. Lastly, the discriminator takes the output spectrogram
to train the network in an adversarial manner.

Additional modifications have been made, including the method
explained above, as follows. First, each layer of the encoder and de-
coder is a form of a Squeeze-and-Excitation (SE) [21] block, where
each block consists of two convolutional layers with a SE layer in
between them. The kernel size for each convolutional layer is 3x3
except for the uppermost layer, where the kernel size is 5x5. Each
convolutional layer is followed by a rectified linear unit (ReLU) acti-
vation. Second, instead of encoding the feature dimension with max-
pooling, we use a convolutional stride factor of 2x2 at the second
convolutional layer in each block. Similarly, for decoder, transposed
convolution with the same stride factor is performed to up-sample
feature dimension. Finally, skip connection is not performed at the
first layer.

3.3. Training

As our model requires two inputs (sar1 and sbr2) to convert the
reverb factor, we train our model by calculating both losses for each
result simultaneously. For convenience, we explain our loss term in
the case where the network converts input sar1 to sar2.

Our training loss is a combination of a spectrogram term, latent
term, and an adversarial term. The spectrogram loss Lspec penalizes
the distance between output of the U-Net’s decoder and ground truth
with mean absolute error and mean squared error. By assuming that
our network can successfully disjoint reverb and source factors by
channels, we add a latent loss Llatent to penalize the distance be-
tween reverb channels generated from each layer of the encoder. For
f1 ◦ f2 ◦ · · · fn = gn, where fn is nth layer of the encoder, the loss



term Llatent is as follow:

Llatent =

n∑
i=1

([[gi(sar1)]rev − [gi(sbr1)]rev|

+‖[gi(sar1)]rev − [gi(sbr1)]rev‖22).

(2)

Here, [gn]rev corresponds to reverb channels of the nth layer out-
put. Since Llatent only penalizes the reverb channels, we use two
different sources with the same reverb as the encoder’s inputs.

With the expectation of generating a realistic reverberant sound,
an adversarial loss Ladv is used, which follows the original GAN
loss introduced in [22]. The adversarial loss terms composed of the
discriminator loss LD and the generator loss Lψ are as follows,

LD = Esar2 [log(D(sar2))]

+ Esar1,sbr2 [log(1−D(ψ(sar1, sbr2)))],

Lψ = Esar1,sbr2 [log(1−D(ψ(sar1, sbr2)))],

(3)

where ψ represents the proposed model’s encoder and decoder com-
bined. The architecture of the discriminator D is almost equivalent
to the encoder, but an additional convolutional layer was used at the
end. The kernel size of the last layer is 4x3, where the input was max
pooled to match this shape. The final probability is produced with
a sigmoid activation function. To sum up, LD is maximized, where
Lspec, Llatent, and Lψ are minimized over the training process.

4. EXPERIMENTS

4.1. Dataset

Our dataset is composed of stereo channeled dry and reverberated
vocal files, where the sampling rate is 44.1kHz and the bit rate 16-
bits. The total duration of the dataset is 32 hours and 10 minutes of
clean studio-recorded dry vocal tracks - singing, rapping, and speak-
ing voices by thirty-four multilingual vocalists, but mainly Korean.
We split the dataset into 30 and 2 hours for the training and vali-
dation set, respectively. From the clean source, corresponding fully
reverberated tracks are generated through multiple reverb plug-ins.

For the train set, we randomly set γ of ratio between 0% and
75% with 5% intervals to generate network inputs. Thirty-six reverb
presets from three Valhalla DSP reverb plug-ins – ValhallaVintage-
Verb, ValhallaPlate and ValhallaRoom - were used to generate train-
ing data whose samples were randomly chosen during training. For
the validation set, four reverb presets from three reverb plug-ins -
ChromaVerb of Logic Pro X, H-Reverb and Abbey Road Plates of
Waves - were used to generate data with various combinations of
presets and γ. All our evaluations shared fixed samples that could be
obtained from the validation set.

4.2. Experimental setups

Regarding the implementation of the proposed model, a Hamming
window of 2048 samples with 75% overlap, and 2048-point fast
Fourier transform (FFT) were employed for the STFT analysis. Only
the magnitude spectrograms were used as network inputs, where the
final audio is computed with the network output’s magnitude and the
input’s phase. The length of input audio is 7.43 seconds, and the
number of steps per epoch is the total length of training data divided
by the input audio length.

The encoder and decoder of the proposed model consist of 5 lay-
ers, where the number of channels increases to 32, 64, 128, 256, 512

Table 1. Model description.
Model Method

model 1 w/o (skip-connect reverb channels
& discriminator & latent loss)

model 2 w/o (discriminator & latent loss)
model 3 w/o (latent loss)
model 4 proposed

Table 2. Results of reverb conversion.
Methods PESQ STOI (%)

input 2.643 78.00
model 1 3.026 80.08
model 2 3.099 80.56
model 3 3.098 80.92
model 4 3.105 80.77

as the input is encoded. During the training stage, ground truth spec-
trograms were also encoded through the encoder to computeLlatent.
The Ladv was applied after 20 epochs of training, and the training
was stopped at 100 epoch. We use Rectified Adam optimizer [23]
with a learning rate of 0.001 and momentum parameters β1 = 0.9,
β2 = 0.999.

4.3. Quantitative evaluation

The quantitative evaluation includes two tasks; Reverb Conversion:
interchanging reverb of two different inputs and De-reverberation:
eliminating reverb of the target input. Four different proposed mod-
els with specifications indicated in Table 1 were compared for both
evaluations, where a WPE-based system [24] was included as the
baseline model in the de-reverberation task. We measure Reverb
Conversion with the wideband measurement of the perceptual eval-
uation of speech quality (PESQ) [25] and short-time objective in-
telligibility (STOI) [26], which are metrics frequently used in tasks
regarding speech enhancement. Speech-to-reverberation modulation
energy ratio (SRMR) [27] and scale-invariant source-to-noise ratio
(SI-SDR) [28] are further measured for de-reverberation. In the case
of PESQ, the samples are down-sampled to 16kHz for computation.
A higher value represents a better result in all the metrics used.

4.3.1. Reverb Conversion

Conventionally, metrics used in speech enhancement are a compar-
ison between clean and enhanced samples, where most metrics are
weighted more on the contents rather than on other acoustic effects,
including reverb. However, since our task is to convert the reverb
factor from one to another, we aim to measure the difference, includ-
ing the reverb factor. Consequently, we evaluate our metrics with a
comparison between target reverberated and interchanged samples
to differentiate from speech enhancement. For this, we measure the
results with PESQ and STOI, which are metrics able to convey the
reverb factor through prior experiments.

We solely compare our models with the input since there are
no other models available for this specific task. From Table 2, it is
observed that the evaluated values of the input were relatively high;
yet, all of our models’ evaluated scores surpassed that of the input.
Noting that the input shares the identical source of the target’s, we
can intuitively realize that our models not only could maintain the
contents of the input but also successfully converted the reverb factor
to that of the target. Furthermore, models using the discriminator
were better at converting the reverb factor than models that did not.
We later qualitatively evaluate Reverb Conversion in subsection 4.4
to supplement contents that could not be addressed with objective
measure.



(a) SRMR (b) PESQ (c) STOI (d) SI-SDR

Fig. 2. Results of de-reverberation with four different quantitative metrics. Values on the x-axis are the percentage of bus send ratio (γ) set
for mixing source and reverb factor. The unit for STOI is percent (%), and SRMR and SI-SDR are in decibel (dB).

Table 3. Preferred rate of GT
Status Overall (%) W→D (%) D→W (%)
Total 64.8 85.7 43.9

Experienced 62.1 81.7 43.3
Inexperienced 67.5 89.6 44.4

4.3.2. De-reverberation

Although our main objective is not de-reverberation, evaluating this
task could objectively demonstrate the performance of our models
along with the baseline model. Given two inputs sar1 and sbr2,
our network can perform de-reverberation of sar1 when γ2 is set
to 0. With this example, Fig.2 shows the model results measured
according to the ratio of γ1. Note that even when γ1 is set to 70%,
the actual source-to-reverb ratio is 59% to 41%, using equation (1).

All of our models showed an eased decay for the increasing
percent of γ in all metric scores than the input and baseline model.
The WPE achieved lower scores than the input with evaluations
except for SRMR, a non-intrusive metric. From here, scores of the
baseline model start to exceed input’s after γ of 40%. Given that
audio contents is the main factor in the evaluations, our result can
be interpreted as not because the WPE system was not capable of
de-reverberation, but that there was a content degradation for the
baseline system while the input retained the high quality of the
clean source. Nevertheless, the performance of our model further
exceeded both input and the baseline as the γ increased, while there
was little difference in performance among model 2, 3, and 4. From
this, we can infer that in de-reverberation task, our model success-
fully maintained both the contents and quality of the input regarding
its high resolution.

4.4. Listening test

We conducted listening test with twenty participants. Ten partici-
pants were musicians and sound engineers denoted as experienced,
and the other ten participants denoted as inexperienced were not fa-
miliar with critical listening. The participants were randomly given
one of two different test sets with twenty-four questions each. The
questions were equally distributed by considering presets and γ dif-
ferences between two inputs (∆γ), which were set at 0%, 20%, 40%
and 60%. Among the chosen samples, there were no samples with γ
that exceeded 75%, and samples of 0% γ when ∆γ was set to 0%.
For each question, three samples are presented - a reference sam-
ple, which is the output of the proposed model, with two different
samples, which are an input of the model and ground truth of the
reference sample (GT). The aim of the test was to assess the perfor-

mance of our model’s reverb conversion, by identifying whether the
sound of GT is preferred to have more similar spatiality - a sense of
space - with reference sound of model output, compared to that of
input in actual listening.

As shown in Table 3, experienced participants were less likely to
feel similar spatiality between reference and GT sounds than inex-
perienced. Because the presented samples share identical vocal seg-
ments of high-resolution, it was hard to assess the spatial difference
with presets and ∆γ. Thus, we listened then manually distinguished
the input and GT samples of each question with a drier or wetter
reverb factor, except for six ambiguous questions.

Based on the analysis, we approached preference for GT by
dividing generated samples into two groups: W→D and D→W.
W→D represents samples generated with input’s wetter sound con-
verted to target’s drier sound. For example, suppose the model re-
ceives an input track sar1 and a reference track sbr2. When r1
has a wetter reverb factor than r2, the model’s output is consid-
ered as W→D. Contrariwise, D→W represents samples generated
with drier r1 and wetter r2. Regarding the preference tendency, pre-
ferred rate of W→D was higher than D→W across all participants.
This perceptual finding confirms that the proposed model especially
shows better conversion performance on drier r application, similar
to the de-reverberation process, than the conversion performance on
wetter r application. This can be reasoned with our network’s lim-
itation of generating only the magnitude of the input spectrogram,
where the phase is not inferred. To be specific, in the case of D→W,
the output magnitude containing the generated reverb factor will be
converged with the input phase and create an artificial noise, which
may be unpleasant to listeners.

5. CONCLUSION

The proposed model is an end-to-end system that converts the musi-
cal reverb factor of the mixed vocal track into that of the reference
track with the fully convolutional architecture. We handle audio with
high-resolution, and our network generated samples that preserved
the quality and the contents of input. The evaluation showed that
despite this being a challenging task, our model could successfully
interchange the reverb factor from given inputs. Our model is also
capable of de-reverberation and showed promising results compared
to the baseline.

A couple of points can be noted as future work. First, phase in-
ference and different models can be applied for generating a more re-
alistic reverb. Second, by assuming that various instrumental tracks
are available, our model has the potential of converting the reverb of
both single-track and multi-tracks of instruments.
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