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ABSTRACT

Recently, a generative variational autoencoder (VAE) has been pro-
posed for speech enhancement to model speech statistics. However,
this approach only uses clean speech in the training phase, making
the estimation particularly sensitive to noise presence, especially in
low signal-to-noise ratios (SNRs). To increase the robustness of the
VAE, we propose to include noise information in the training phase
by using a noise-aware encoder trained on noisy-clean speech pairs.
We evaluate our approach on real recordings of different noisy envi-
ronments and acoustic conditions using two different noise datasets.
We show that our proposed noise-aware VAE outperforms the standard
VAE in terms of overall distortion without increasing the number of
model parameters. At the same time, we demonstrate that our model
is capable of generalizing to unseen noise conditions better than a
supervised feedforward deep neural network (DNN). Furthermore, we
demonstrate the robustness of the model performance to a reduction of
the noisy-clean speech training data size.

Index Terms— speech enhancement, generative model, varia-
tional autoencoder, semi-supervised learning.

1. INTRODUCTION

Speech enhancement refers to the problem of extracting a target speech
signal from a noisy mixture in order to enhance the quality and intelli-
gibility of the speech. This task is of particular interest for applications
like speech recognition and hearing aids. Single-channel speech en-
hancement is a challenging task, especially at low signal-to-noise ratios
(SNRs).

Speech enhancement typically requires the statistical estimation
of the noise and speech power spectral densities (PSDs) [1, 2]. Non-
negative matrix factorization (NMF) is a popular choice for PSD
estimation [3–6]. However, underlying linearity assumptions limit
the performance when modeling complex high-dimensional data. In
contrast, speech enhancement based on non-linear deep neural networks
(DNNs) has shown better modeling capacity. Common approaches
focus on inferring a time-frequency mask in a supervised manner [7].
However, to generalize to unseen noise conditions, DNNs require a
large number of pairs of noisy and clean speech in various acoustic
conditions [8].

Recently, there has been an increasing interest in generative models,
such as generative adversarial networks (GANs) [9] and variational
autoencoders (VAEs) [10, 11]. The generative VAE is a probabilistic
model widely used for learning latent representations of a probabilistic
distribution. The VAE features a similar architecture as a classical
autoencoder with an encoder and a decoder, but its latent space dif-
fers by being regularized to follow a standard Gaussian distribution.

Moreover, the VAE has been extended to deep conditional generative
models for effectively performing probabilistic inference [12,13]. VAEs
have been applied to speech enhancement in both single-channel and
multi-channel scenarios [14–16]. They have been used to model the
speech statistics by training on clean speech spectra only. However,
because no noise information is involved in its training phase, the
encoder of the standard VAE is sensitive to noise. In low SNRs, this
noise-sensitivity results in the erroneous estimation of latent variables
and thus in inappropriately generated speech coefficients and a reduced
performance.

In this work, inspired by conditional VAEs and its application
to image segmentation [12, 13, 17], to increase noise robustness, we
propose to replace the encoder of the VAE by a noise-aware encoder.
To learn this encoder, the VAE is first trained on clean speech spectra
only, and then, given noisy speech, the proposed noise-aware encoder
is trained in a supervised fashion to make its latent space as close
as possible to that of the first speech-only trained encoder. For our
analyses we rely on the VAE-NMF speech enhancement framework
[14, 15], which uses NMF to model the noise PSD. We show that the
proposed encoder is more robust to noise presence and improves speech
estimation without increasing the number of model parameters. The
method also shows robustness to unseen noise conditions by evaluating
on real recordings from different noise datasets. Finally, we illustrate
that already a small amount of noisy-clean speech data can lead to
improvements in overall distortion.

In section 2, we introduce problem settings and notations, as well
as the framework of the VAE-based speech model and the noise model
developed on the NMF. In section 3, we introduce details about the
proposed noise-aware VAE. After showing the experiment settings in
section 4, we present experimental evaluation results and conclusions
in section 5 and section 6.

2. PROBLEM FORMULATION

2.1. Mixture model

In our work, we employ an additive signal model, where a noisy mixture
is seen as a superposition of clean speech and additive noise. In the
short-time Fourier transform (STFT) domain, it shows as

xft = sft + nft, (1)

where xft, sft, and nft represent each time-frequency coefficient
in spectra of noisy mixture X ∈ CF×T , speech S ∈ CF×T , and
noise N ∈ CF×T respectively. F denotes the number of frequency
bins, T represents the number of time frames, which are indexed by
f and t, respectively. The speech and noise spectra are assumed to
be mutually independent complex Gaussian distributions with zero-
mean, i.e., sft ∼ NC(0, σ

2
s,ft), nft ∼ NC(0, σ

2
n,ft) where σ2

s,ft,
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σ2
n,ft represent the variances of speech and noise. The PSD of signals

is characterized by the parameter variance under the local stationary
assumption [18].

Furthermore, to provide an increased robustness to the loudness of
the audio utterances, a time-dependent and frequency-independent gain
gt is introduced [15]. Eventually, this modifies the additive mixture
model in (1) to

xft =
√
gtsft + nft. (2)

Given the observed noisy mixture which follows a complex Gaussian
distribution as xft ∼ NC(0, gtσ

2
s,ft + σ2

n,ft), the desired speech can
be extracted by separately modeling the speech and noise variances.

2.2. Speech model

For the VAE-based speech model, a frame-wise D-dimensional latent
variable zt ∈ RD is defined, and an F -dimensional speech frame st
is assumed to be sampled from the conditional likelihood distribution
pθ(st|zt). This is achieved by the decoder of VAE, also called the
generative model. The variable θ here indicates the parameters of the
decoder network. σ̂2

s : RD → RF+ denotes the nonlinear function from
the latent space to the reconstructed signal given by the generative
model of the VAE.

The VAE provides a principled method to jointly learn latent vari-
ables and the inference model [10]. Following a Bayesian framework,
this requires to approximate the intractable true posterior distribu-
tion p(zt|st). In the VAE, the encoder, also called the inference
model, is used to approximate the true posterior, denoted as qφ(zt|st).
The variable φ here indicates the parameters of the encoder network.
µ̂d : RF+ → RD , σ̂2

d : RF+ → RD+ indicate the nonlinear mapping of
the neural network given by the inference model of the VAE. Under
stochastic gradient descent, the generative model’s parameters θ and the
inference model’s parameters φ are jointly optimized by maximizing
variational lower bound, given by

log p(S) ≥−
∑
t

KL[qφ(zt|st)||p(zt))]

+
∑
t

Eqφ(zt|st)[log pθ(st|zt)].
(3)

The quantity p(zt) represents the prior distribution of the D-dimen-
sional variable zt, and KL indicates Kullback-Leibler divergence.
The prior of the latent variables is defined as a zero-mean isotropic
multivariate Gaussian zt ∼ N (0, I) as in [10]. The first term in the
objective function (3) refers to the regularization error in the latent
space to ensure meaningful latent variables, and the second term is the
reconstruction error.

As shown in Fig. 1, the VAE is trained on the periodograms of
clean speech |st|2 [14, 15]. During testing, the estimates of the clean
speech power spectra σ̂2

s(zt) are expected to be generated from latent
variables learnt from the noisy periodograms |xt|2 ∈ RF+. Note that a
robust estimation of latent variables that represents the clean speech
statistics plays a crucial role in the generative process.

2.3. Noise model

NMF tries to find an optimal approximation to an input matrix by a
dictionary matrix containing basis functions weighted by a coefficients
matrix [3]. Here NMF is used to model the noise variance [14, 15].
The variance of noise σ2

n is approximated by a multiplication of the
dictionary matrix W ∈ RF×K+ and the coefficients matrix H ∈

Fig. 1. The generative model and inference model of the adopted VAE.
The dashed line here indicates the sampling process.

RK×T+ , computed as

σ2
n =WH =

∑
ft

∑
k

wfkhkt, (4)

where K indicates the rank of the noise model indexed by k. wfk and
hkt are elements from W and H respectively at the corresponding row
and column indexed by f , k, and t.

2.4. Clean speech inference

By modeling speech and noise with VAE and NMF respectively, the
distribution of the noisy mixture can be represented as

xft ∼ NC(0, gtσ̂
2
s,f (zt) +

∑
k

wfkhkt), (5)

where σ̂2
s,f : RD → R+ denotes the nonlinear function σ̂2

s for f -
th frequency bin. Given the noisy mixture as an observation, the
Monte Carlo expectation-maximization (MCEM) algorithm is utilized
to estimate the NMF parameters and the gain factor [15, 19]. The
sampling strategy is based on the Metropolis-Hastings algorithm [20].
The clean speech can be extracted from a noisy mixture in the time-
frequency domain by constructing a Wiener filter denoted by m̂ft,
given as

m̂ft =
σ̂2
s,f (zt)

gtσ̂2
s,f (zt) +

∑
k wfkhkt

. (6)

Although modeling speech with a VAE can be achieved by training
solely on clean speech data, using it for speech enhancement is another
matter since gaining robustness to noise is difficult without including
noise samples in the training data and the model. However, the standard
VAE does not allow for including noise at the training phase.

3. NOISE-AWARE VAE

Instead of using the encoder trained on the clean speech signals, we
propose a noise-aware VAE that can improve the robustness of the
encoder against noise presence. For a generative process, it is difficult or
even impossible to derive the optimal mapping between latent variables
and targets. However, we argue that it might be relevant to make latent
variables estimated from noisy mixtures as close as possible to the ones
inferred from the corresponding clean speech.

To obtain the noise-aware VAE based on this assumption, we pro-
pose a two-step learning algorithm, which learns a non-linear mapping
from the noisy signals to latent variables that represent the clean speech
statistics. We first train a VAE using Equation (3) to learn a regularized



(a) (b)

Fig. 2. The proposed architecture for minimizing divergence between
latent variables. The constraint in the latent space is shown in (a), and
its graphic explanation given in (b).

latent space over the clean speech signals. The noise-aware encoder
is then proposed to approximate the probability qγ(z′t|xt) to output
D-dimensional latent variables z′t ∈ RD conditioned on the noisy mix-
ture xt. It is also assumed that the conditional probability qγ(z′t|xt)
follows a standard Gaussian distribution. The variable γ indicates the
parameters of the new encoder. Finally, the distance of z′t obtained from
noisy speech to the latent variables zt inferred form the corresponding
clean speech is minimized based on the Kullback–Leibler divergence
as shown in Fig. 2 (a), given by

L(γ) =
∑
t

KL(qφ(zt|st)||q′γ(z′t|xt)) (7)

=
∑
t,d

{ 1

2
log

σ̃2
d(|xt|2)
σ̂2
d(|st|2)

− 1

2

+
σ̂2
d(|st|2) + (µ̂d(|st|2)− µ̃d(|xt|2))2

2σ̃2
d(|xt|2)

} (8)

where µ̃d : RF+ → RD and σ̃2
d : RF+ → RD+ represents the nonlinear

mapping of the neural networks for the mean and variance of the
posterior Gaussian distribution for the variable z′t. The parameters
of the new inference model γ are optimized by minimizing the cost
function using stochastic gradient descent algorithms. In this way, we
combine unsupervised learning of the speech characteristics by the
VAE and supervised learning using the pairs of noisy-clean speech
signals.

Eventually, as graphically shown in Fig. 2 (b), by introducing
this cost function in the latent space, the latent variables z′t estimated
from the noisy mixture xt is pulled towards zt estimated from the
corresponding clean speech st. The dashed lines here indicate the
nonlinear mapping from the signal space to the latent space, and
different colors indicate two mapping pairs. At the inference stage, the
noise-aware inference model is used to replace the standard speech-
based encoder. The decoder of the VAE remains unchanged.

4. EXPERIMENTAL SETTINGS

4.1. Datasets

We evaluate the performance of the proposed model by using signals
from the speech dataset Wall Street Journal (WSJ0) [21], and the noise
databases QUT-NOISE [22] and DEMAND [23]. QUT-NOISE is used
in constructing datasets of both training and evaluation using 4 noise
types ”cafe”, ”car”, ”home”, and ”street” recorded in unique locations.
DEMAND is introduced as another evaluation dataset corresponding to
completely unseen noise conditions in the training set, and the noise
signals are randomly sampled from recordings of 12 noise types in the
categories ”domestic”, ”public”, ”street”, and ”transportation”.

To train the noise-aware encoder, around 25 hours of speech sam-
ples are chosen from WSJ0 and mixed with the sampled noise signals
at a SNR randomly chosen from the range of -5 dB to 5 dB with a gap
of 1 dB. Two speaker-independent evaluation datasets each containing
around 2.3 hours of 1000 noisy samples are created by mixing the
speech and noise signals at SNRs of -10 dB, -5 dB, 0 dB, 5 dB, and 10
dB.

4.2. Baselines

We show evaluation results by comparing the proposed noise-aware
VAE to the standard VAE, and a fully-connected DNN model. The
DNN model outputs a Wiener filter based on a mean square error cost
function [24], referred to as DNN-WF. The standard VAE is trained on
the same amount of the clean speech signals that are not mixed with
the noise signals, while the supervised DNN-WF is trained on the same
dataset as the noise-aware encoder.

4.3. Hyperparameters

All signals are sampled at 16 kHz. The signal is transformed into
the STFT domain with a sine window of length 1024 (F = 513)
and a 25% hop size. Global normalization to zero mean and unit
standard deviation is employed for training the noise-aware encoder,
since Kullback–Leibler divergence is scale-dependent. The rank of
NMF is chosen to be K = 8 when modeling noise, and its composing
matrices W and H are randomly initialized. The parameters of MCEM
algorithm follow the setting in [15].

The VAE is comprised of an encoder and a decoder both with
two feedforward hidden layers of 128 units. The hyperbolic tangent
activation function is applied to all hidden layers, except the output
layer. The dimension of the latent space L is fixed at 16. The noise-
aware encoder has the same structure as the speech-based encoder of the
standard VAE. The fully supervised DNN-WF contains 5 hidden layers,
each with 128 units, and its architecture is built to contain a similar
number of parameters as our VAE model. No temporal information is
considered in DNN-WF, which is consistent with the non-sequential
characteristic of the VAE. We apply the ReLU activation function to
all hidden layers, and the sigmoid function is put on the output layer
to ensure the estimate of the Wiener filter mask lies in the range [0, 1].
The parameters θ and φ of the VAE are optimized by Adam [25] with a
learning rate of 1e-3, and the parameters γ of the noise-aware encoder
with a learning rate of 1e-4.

4.4. Evaluation metrics

To show the enhancement performance, we employ scale-invariant
signal-to-distortion ratio (SI-SDR) in decibel (dB) [26] to measure the
overall distortion, which takes both noise reduction and artifacts into
account.



SNR Average -10 dB -5 dB 0 dB 5 dB 10 dB
Unprocessed -0.04 ± 0.44 -10.02 ± 0.03 -5.03 ± 0.01 -0.03 ± 0.01 4.95 ± 0.01 9.90 ± 0.02

DNN-WF 6.92 ± 0.42 -1.96 ± 0.66 3.43 ± 0.53 7.25 ± 0.42 11.58 ± 0.38 14.25 ± 0.34
VAE 6.72 ± 0.43 -1.92 ± 0.75 2.99 ± 0.59 6.89 ± 0.49 11.43 ± 0.42 14.14 ± 0.37

proposed NA-VAE 7.29 ± 0.43 -1.00 ± 0.78 3.64 ± 0.59 7.30 ± 0.50 11.85 ± 0.42 14.57 ± 0.39

Table 1. Performance comparison in SI-SDR on 5 different SNR conditions trained and evaluated on different subsets of the QUT-NOISE dataset
(4 noise types). Values of SI-SDR are given in mean ± confidence interval (95% confidence) over all utterances of the evaluation dataset with unit
dB. NA-VAE refers to the proposed noise-aware VAE.

SNR Average -10 dB -5 dB 0 dB 5 dB 10 dB
Unprocessed -0.04 ± 0.44 -10.01 ± 0.01 -5.02 ± 0.01 -0.03 ± 0.01 4.95 ± 0.01 9.90 ± 0.02

DNN-WF 2.93 ± 0.45 -7.38 ± 0.38 -1.65 ± 0.26 3.25 ± 0.24 8.07 ± 0.22 12.34 ± 0.21
VAE 11.44 ± 0.54 2.74 ± 1.20 7.90 ± 1.07 12.27 ± 0.90 15.27 ± 0.72 19.02 ± 0.68

proposed NA-VAE 11.88 ± 0.52 3.45 ± 1.10 8.60 ± 1.03 12.70 ± 0.89 15.63 ± 0.71 19.06 ± 0.67

Table 2. Performance comparison in SI-SDR on 5 different SNR conditions trained on the QUT-NOISE dataset and evaluated on the DEMAND
dataset (12 noise types, completely unseen noise conditions). Values of SI-SDR are given in mean ± confidence interval (95% confidence) over all
utterances of the evaluation dataset with unit dB.
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Fig. 3. Influence of the amount of noisy-clean speech training data on
SI-SDR improvements for both VAE models, averaged over all noise
conditions.

5. RESULTS AND DISCUSSIONS

5.1. Performance evaluation

As can be seen from the results in Table 1 which presents results trained
and evaluated on different subsets of QUT-NOISE, the proposed noise-
aware VAE outperforms the standard VAE in terms of overall distortion
in all SNR scenarios, and the SI-SDR improvements are more evident
at low SNR conditions. For example, the noise-aware VAE outperforms
the baseline VAE by nearly 1 dB at an input SNR of -10 dB. Table 1
also shows that the DNN-WF performs better than the plain VAE,
which implies that appropriate prior noise information is beneficial.
In Table 2, which shows the evaluation performed on the DEMAND
database while training is still conducted on QUT-NOISE, we see that
the fully connected DNN-WF performs significantly worse than the
other models. This was expected as we now test on a different more
diverse dataset with 12 noise types instead of only 4. The supervised
DNN-WF can not transfer the denoising capability to unseen noise
types implying that inappropriate prior noise information may even
deteriorate performance [8, 14]. However, the proposed noise-aware
VAE can still outperform VAE in all SNR conditions, which suggests
that the proposed method of improving latent variables in the latent
space under this configuration is more capable of generalizing to

unseen noise scenarios. Informal listening confirms the SI-SDR results
especially for Table 1, while the improvements reported in Table 2 are
relatively subtle. Audio examples are available online 1.

5.2. Analysis of the amount of training data

We then look at the influence of the amount of noisy-clean speech
training data for estimating the speech latent variable. To achieve
this, we initialize the noise-aware encoder with the encoder parameters
of the pre-trained standard VAE and then train the new encoder by
randomly selecting 1%, 3%, 5%, 10%, 25%, 50% of the noisy-clean
speech pairs constructed with the QUT-NOISE dataset. In Fig. 3, it is
shown that the performance can already be improved by using only a
small percentage of the paired noisy-clean speech data. A value of more
than 0.2 dB SI-SDR improvement can be observed with just 1% of the
total paired data. It can also be observed that increasing the number
of data in the later stage leads to gradual improvements, which may
be due to the noise diversity already being largely represented in the
small fraction of data used. The research can be extended by increasing
the diversity of the noise types in the training phase. This ability of
improving performance with only few labeled data shows potential in
alleviating overfitting issues in supervised training strategies.

6. CONCLUSION

In this paper, we proposed a noise-aware encoding scheme to improve
the robustness of the VAE encoder particularly in low SNRs. For this
we incorporate noise information into the VAE encoder to enable a
more accurate speech variance estimation based on improved latent
variables. By constraining the latent space, the VAE with the proposed
noise-aware encoder can learn a non-linear mapping from the noisy
mixture to latent variables that represent the clean speech statistics. Our
proposed VAE outperforms the standard VAE and a supervised DNN-
based filter in SI-SDR. Experiments also showed the generalization
ability to unseen noise scenarios by evaluating across different datasets.
Moreover, we showed that we could improve the performance even
with a small amount of noisy-clean speech data. For future work, our
approach could also be integrated with deep generative models that
combine temporal dependencies [27].

1https://uhh.de/inf-sp-navae2021

https://uhh.de/inf-sp-navae2021
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