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Abstract

The widespread use of machine learning algorithms calls for automatic change detection algorithms
to monitor their behavior over time. As a machine learning algorithm learns from a continuous, possibly
evolving, stream of data, it is desirable and often critical to supplement it with a companion change
detection algorithm to facilitate its monitoring and control. We present a generic score-based change
detection method that can detect a change in any number of components of a machine learning model
trained via empirical risk minimization. This proposed statistical hypothesis test can be readily im-
plemented for such models designed within a differentiable programming framework. We establish the
consistency of the hypothesis test and show how to calibrate it to achieve a prescribed false alarm rate.
We illustrate the versatility of the approach on synthetic and real data.

1 Introduction
Statistical machine learning models are fostering progress in numerous technological applications, e.g., vi-
sual object recognition and language processing, as well as in many scientific domains, e.g., genomics and
neuroscience. This progress has been fueled recently by statistical machine learning libraries designed within
a differentiable programming framework such as PyTorch [19] and TensorFlow [1].

Gradient-based optimization algorithms such as accelerated batch gradient methods are then well adapted
to this framework, opening up the possibility of gradient-based training of machine learning models from a
continuous stream of data. As a learning system learns from a continuous, possibly evolving, data stream,
it is desirable to supplement it with tools facilitating its monitoring in order to prevent the learned model
from experiencing abnormal changes.

Recent remarkable failures of intelligent learning systems such as Microsoft’s chatbot [17] and Uber’s
self-driving car [15] show the importance of such tools. In the former case, the initially learned language
model quickly changed to an undesirable one, as it was being fed data through interactions with users. The
addition of an automatic monitoring tool can potentially prevent a debacle by triggering an early alarm,
drawing the attention of its designers and engineers to an abnormal change of a language model.

To keep up with modern learning machines, the monitoring of machine learning models should be au-
tomatic and effortless in the same way that the training of these models is now automatic and effortless.
Humans monitoring machines should have at hand automatic monitoring tools to scrutinize a learned model
as it evolves over time. Recent research in this area is relatively limited.

We introduce a generic change monitoring method called auto-test based on statistical decision the-
ory. This approach is aligned with machine learning libraries developed in a differentiable programming
framework, allowing us to seamlessly apply it to a large class of models implemented in such frameworks.
Moreover, this method is equipped with a scanning procedure, enabling it to detect small jumps occurring
on an unknown subset of model parameters. The proofs and more details can be found in Appendix. The
code is publicly available at github.com/langliu95/autodetect.
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Figure 1: Illustration of monitoring a learning machine with auto-test.

Previous work on change detection. Change detection is a classical topic in statistics and signal
processing; see [2, 21] for a survey. It has been considered either in the offline setting, where we test the null
hypothesis with a prescribed false alarm rate, or in the online setting, where we detect a change as quickly
as possible. Depending on the type of change, the change detection problem can be classified into two main
categories: change in the model parameters [13, 10] and change in the distribution of data streams [16, 14, 9].
We focus on testing the presence of a change in the model parameters.

Test statistics for detecting changes in model parameters are usually designed on a case-by-case basis;
see [2, 7, 25, 8, 12] and references therein. These methods are usually based on (possibly generalized)
likelihood ratios or on residuals and therefore not amenable to differentiable programming. Furthermore,
these methods are limited to large jumps, i.e., changes occurring simultaneously on all model parameters,
in contrast to ours.

2 Score-Based Change Detection
Let W1:n := {Wk}nk=1 be a sequence of observations. Consider a family of machine learning models {Mθ :
θ ∈ Θ ⊂ Rd} such that Wk =Mθ(W1:k−1) + εk, where {εk}nk=1 are independent and identically distributed
(i.i.d.) random noises. To learn this model from data, we choose a loss function L and estimate model
parameters by solving the problem:

θ̂n := arg min
θ∈Θ

1

n

n∑
k=1

L
(
Wk,Mθ(W1:k−1)

)
.

This encompasses constrained empirical risk minimization (ERM) and constrained maximum likelihood
estimation (MLE). For simplicity, we assume the model is correctly specified, i.e., there exists a true value
θ0 ∈ Θ from which the data are generated.

Under abnormal circumstances, this true value may not remain the same for all observations. Hence, we
allow a potential parameter change in the model, that is, θ = θk may evolve over time:

Wk =Mθk(W1:k−1) + εk .

A time point τ ∈ [n − 1] := {1, . . . , n − 1} is called a changepoint if there exists ∆ 6= 0 such that θk = θ0

for k ≤ τ and θk = θ0 + ∆ for k > τ . We say that there is a jump (or change) in the data sequence if such
a changepoint exists. We aim to determine if there exists a jump in this sequence, which we formalize as a
hypothesis testing problem.
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(P0) Testing the presence of a jump

H0 : θk = θ0 for all k = 1, . . . , n

H1 : after some time τ , θk jumps from θ0 to θ0 + ∆ .

We focus on models whose loss L(Wk,Mθ(W1:k−1)) can be written as − log pθ(Wk|W1:k−1) for some
conditional probability density pθ. For instance, the squared loss function is associated with the negative
log-likelihood of a Gaussian density; for more examples, see, e.g., [18]. In the remainder of the paper, we
will work with this probabilistic formulation for convenience, and we refer to the corresponding loss as the
probabilistic loss.
Remark. Discriminative models can also fit into this framework. Let {(Xi, Yi)}ni=1 be i.i.d. observations,
then the loss function reads L(Yk,Mθ(Xk)). If, in addition, L is a probabilistic loss, then the associated
conditional probability density is pθ(Yk|Xk).

2.1 Likelihood score and score-based testing
Let 1{·} be the indicator function. Given τ ∈ [n − 1] and 1 ≤ s ≤ t ≤ n, we define the conditional
log-likelihood under the alternative as

`s:t(θ,∆; τ) :=

t∑
k=s

log pθ+∆1{k>τ}(Wk|W1:k−1) .

We will write `s:t(θ,∆) for short if there is no confusion. Under the null, we denote by `s:t(θ) := `s:t(θ, 0;n)
the conditional log-likelihood. The score function w.r.t. θ is defined as Ss:t(θ) := ∇θ`s:t(θ), and the observed
Fisher information w.r.t. θ is denoted by Is:t(θ) := −∇2

θ`s:t(θ).
Given a hypothesis testing problem, the first step is to propose a test statistic Rn such that the larger Rn

is, the less likely the null hypothesis is true. Then, for a prescribed significance level α ∈ (0, 1), we calibrate
this test statistic by a threshold r0 := r0(α), leading to a test 1{Rn > r0}, i.e., we reject the null if Rn > r0.
The threshold is chosen such that the false alarm rate or type I error rate is asymptotically controlled by α,
i.e., lim supn→∞ P(Rn > r0 | H0) ≤ α. We say that such a test is consistent in level. Moreover, we want the
detection power, i.e., the conditional probability of rejecting the null given that it is false, to converge to 1
as n goes to infinity. And we say such a test is consistent in power.

Let us follow this procedure to design a test for Problem (P0). We start with the case when the change-
point τ is fixed. A standard choice is the generalized score statistic given by

Rn(τ) := S>τ+1:n(θ̂n)In(θ̂n; τ)−1Sτ+1:n(θ̂n) , (1)

where In(θ̂n; τ) is the partial observed information w.r.t. ∆ [24, Chapter 2.9] defined as

Iτ+1:n(θ̂n)− Iτ+1:n(θ̂n)>I1:n(θ̂n)−1Iτ+1:n(θ̂n) . (2)

To adapt to an unknown changepoint τ , a natural statistic is Rlin := maxτ∈[n−1]Rn(τ). And, given
a significance level α, the decision rule reads ψlin(α) := 1{Rlin > Hlin(α)}, where Hlin(α) is a prescribed
threshold discussed in Sec. 3. We call Rlin the linear statistic and ψlin the linear test.

2.2 Sparse alternatives
There are cases when the jump only happens in a small subset of components of θ0. The linear test, which
is built assuming the jump is large, may fail to detect such small jumps. Therefore, we also consider sparse
alternatives.

(P1) Testing the presence of a small jump:
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Algorithm 1 Auto-test

1: Input: data (Wi)
n
i=1, log-likelihood `, levels αl and αs, and maximum cardinality P .

2: for τ = 1 to n− 1 do
3: Compute Rn(τ) in (1) using AutoDiff.
4: Compute Rn(τ, P ;αs) in (3).
5: end for
6: Output: ψauto(α) = max{ψlin(αl), ψscan(αs)} in (4).

H0 : θk = θ0 for all k = 1, . . . , n

H1 : after some time τ , θk jumps from θ0 to θ0 + ∆,
where ∆ has at most P nonzero entries .

Here P is referred to as the maximum cardinality, which is set to be much smaller than d, the dimension of
θ. We denote by T the changed components, i.e., ∆T 6= 0 and ∆[d]\T = 0.

Given a fixed T , we consider the truncated statistic

Rn(τ, T ) = S>τ+1:n(θ̂n)T
[
In(θ̂n; τ)T,T

]−1
Sτ+1:n(θ̂n)T .

Let Tp be the collection of all subsets of size p of [d]. To adapt to unknown T , we use

Rn(τ, P ;α) := max
p∈[P ]

max
T∈Tp

Hp(α)−1Rn(τ, T ) , (3)

where we use a different threshold Hp(α) for each p ∈ [P ]. Finally, since τ is also unknown, we propose
Rscan(α) := maxτ∈[n−1]Rn(τ, P ;α), with decision rule ψscan(α) := 1{Rscan(α) > 1}. We call Rscan(α) the
scan statistic and ψscan the scan test.

To combine the respective strengths of these two tests, we consider the test

ψauto(α) := max{ψlin(αl), ψscan(αs)} , (4)

with αl + αs = α, and we refer to it as the auto-test. The choice of αl and αs should be based on prior
knowledge regarding how likely the jump is small. We illustrate how to monitor a learning machine with
auto-test in Fig. 1.

2.3 Differentiable programming
An attractive feature of auto-test is that it can be computed by inverse-Hessian-vector products. That opens
up the possibility to implement it easily using a machine learning library designed within a differentiable
programming framework. Indeed, the inverse-Hessian-vector product can then be efficiently computed via
automatic differentiation; see Appendix A for more details. The algorithm to compute the auto-test is
presented in Alg. 1.

3 Level and Power
We summarize the asymptotic behavior of the proposed score-based statistics under null and alternatives.
The precise statements and proofs can be found in Appendix B.

Proposition (Null hypothesis). Under the null hypothesis and certain conditions, we have, for any subset
T ⊂ [d] and τn ∈ N such that τn/n→ λ ∈ (0, 1),

Rn(τn)→d χ
2
d and Rn(τn, T )→d χ

2
|T | ,
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Figure 2: Power curves for a linear model with d =
101 (left: p = 1; right: p = 20). The sample size is
n = 1000.
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Figure 3: Power curves of the auto-test for a text
topic model with p = 1 (left: (N,M) = (3, 6); right:
(N,M) = (7, 20)).

where we denote by →d the convergence in distribution. In particular, with thresholds Hlin(α) = qχ2
d
(α/n)

and Hp(α) = qχ2
p

(
α/[
(
d
p

)
n(p + 1)2]

)
, the tests ψlin(α), ψscan(α) and ψauto(α) are consistent in level, where

qD(α) is the upper α-quantile of the distribution D.

Most conditions in the above Proposition are standard. In fact, under suitable regularity conditions, they
hold true for i.i.d. models, hidden Markov models [3, Chapter 12], and stationary autoregressive moving-
average models [11, Chapter 13].

The next proposition verifies the consistency in power of the proposed tests under fixed alternatives.

Proposition (Fixed alternative hypothesis). Assume the observations are independent, and the alternative
hypothesis is true with a fixed change parameter ∆. Let the changepoint τn be such that τn/n → λ ∈ (0, 1).
Under certain conditions, the tests ψlin(α), ψscan(α) and ψauto(α) are consistent in power.

4 Experiments
We apply our approach to detect changes on synthetic data and on real data. We summarize the settings
and our findings. More details and additional results are deferred to Appendix C.

Synthetic data. For each model, we generate the first half sample from the pre-change parameter θ0

and generate the second half from the post-change parameter θ1, where θ1 is obtained by adding δ to the
first p components of θ0. Next, we run the proposed auto-test to monitor the learning process, where the
significance levels are set to be α = 2αl = 2αs = 0.05 and the maximum cardinality P = b

√
dc. We repeat

this procedure 200 times and approximate the detection power by rejection frequency. Finally, we plot the
power curves by varying δ. Note that the value at δ = 0 is the empirical false alarm rate.

Additive model. We consider a linear model with 101 parameters and investigate two sparsity levels,
p = 1 and p = 20. We compare the auto-test with three baselines given by the La norm of the score
function for a ∈ {1, 2,∞}, where these baselines are calibrated by the empirical quantiles of their limiting
distributions. Note that the linear test corresponds to the L2 norm with a proper normalization. And
the scan test with P = 1 corresponds to the L∞ norm. As shown in Fig. 2, when the change is sparse,
i.e., a small jump, the auto-test and L∞ test have similar power curves and outperform the rest of the tests
significantly. When the change is less sparse, i.e., a large jump, all tests’ performance gets improved, with
the L∞ test being less powerful than the other three. This empirically illustrates that (1) the L∞ test work
better in detecting sparse changes, (2) the L1 test and the L2 test are more powerful for non-sparse changes
and (3) the auto-test achieves comparable performance in both situations.

The proposed auto-test is calibrated by its large sample properties and the Bonferroni correction. This
strategy tends to result in tests that are too conservative, with empirical false alarm rates largely below 0.05.
We also use resampling-based strategy to calibrate the auto-test, i.e., generating bootstrap samples and
calibrating the test using the quantiles of the test statistics evaluated on bootstrap samples. The empirical
false alarm rates are around 0.065 for both p = 1 and p = 20.
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Table 1: Decision of the scan test on the TV-show application: each (row, column) pair stands for a
concatenation; “R” means reject and “N” means not reject. Red entries are false alarms.

F1 F2 M1 M2 S1 S2 D1 D2

F1 N N N N R R R R
F2 N N R N R R R R
M1 N R N N R R R R
M2 N N N N R R R R
S1 R R R R N N R R
S2 R R R R N N R R
D1 R R R R R R N R
D2 R R R R R R N N

Text topic model. We consider a text topic model [20] and investigate the auto-test for different sample
sizes. This model is a hidden Markov model whose emission distribution has a special structure. We examine
two parameter schemes: (N,M) ∈ {(3, 6), (7, 20)}, where N is the number of hidden states and M is the
number of categories of the emission distribution, and p is set to be 1. As demonstrated in Fig. 3, for the
first scheme, all tests have small false alarm rates, and their power rises as the sample size increases. For
the second scheme, the false alarm rate is out of control in the beginning, but this problem is alleviated as
the sample size increases. This empirically verifies that the auto-test is consistent in both level and power
even for dependent data.

Real data. We collect subtitles of the first two seasons of four TV shows—Friends (F), Modern Family
(M), the Sopranos (S) and Deadwood (D)—where the former two are viewed as “polite” and the latter two as
“rude”. For every pair of seasons, we concatenate them, and train the text topic model with N = b

√
n/100c

and M being the size of vocabulary built from the training corpus. The task is to detect changes in the
rudeness level. As an analogy, the text topic model here corresponds to a chatbot, and subtitles are viewed
as interactions with users. We want to know whether the conversation gets rude as the chatbot learns from
the data.

The linear test, i.e., the auto-test with αl = α and αs = 0, does a perfect job in reporting shifts in
rudeness level. However, it has a high false alarm rate (27/32). This is expected since the linear test may
capture the difference in other aspects, e.g., topics of the conversation. The scan test, i.e., the auto-test
with αl = 0 and αs = α, has much lower false alarm rate (11/32). Moreover, as shown in Table 1, there are
only two false alarms in the most interesting case, where the sequence starts with a polite show. We note
that this problem is hard, since rudeness is not the only factor that contributes to the difference between
two shows. The results are promising since we benefit from exploiting the sparsity even without knowing
which model components are related to the rudeness level.

5 Conclusion
We introduced a change monitoring method called auto-test that is well suited to machine learning mod-
els implemented within a differentiable programming framework. The experimental results show that the
calibration of the test statistic based on our theoretical arguments brings about change detection test that
can capture small jumps in the parameters of various machine learning models in a wide range of statisti-
cal regimes. The extension of this approach to penalized maximum likelihood or regularized empirical risk
estimation in a high dimensional setting is an interesting venue for future work.
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Outline of Appendix
The outline of the appendix is as follows. Appendix A discusses implementation details of the proposed test
and its complexity analysis. Appendix B is devoted to prove the level and power consistency of the auto-test.
Appendix C provides addition experiment results on a times series model and a hidden Markov model.

A Implementation Details

For simplicity of the notation, we write Ŝi:j = Si:j(θ̂n) and Îi:j = Ii:j(θ̂n) throughout this section.

A.1 Algorithmic aspects
Recall that the computation of auto-test boils down to the computation of the linear statistic

Rlin := max
τ∈[n−1]

Rn(τ) := max
τ∈[n−1]

Ŝ>τ+1:nÎ−1
n,τ Ŝτ+1:n , (5)

where În,τ = Î1:τ − Î1:τ Î−1
1:nÎ1:τ , and the scan statistic

Rscan := max
τ∈[n−1]

max
T⊂[d],|T |≤P

Rn(τ, T ) := max
τ∈[n−1]

max
T⊂[d],|T |≤P

[Ŝτ+1:n]>T [În,τ ]−1
T,T [Ŝτ+1:n]T , (6)

where [În,τ ]−1
T,T should be understood as {[În,τ ]T,T }−1.

To compute these two statistics, a direct approach is to compute the full Fisher information matrices and
then invert them. Another approach consists in solving the linear system I−1S by the conjugate gradient
algorithm. We refer to it as the AutoDiff-friendly approach.

In the following, we analyze the time and space complexity of these two approaches in the most general
case, that is, the sequence {Î1:t}nt=1 does not admit a recursion that could simplify its computation. For
every t ∈ [n], we assume the computational graph of the log-likelihood is of size tC1 with C1 ≥ d. As a result,
computing Ŝ1:t by AutoDiff takes O(tC1) time and O(tC1) space. Similarly, we assume the computational
graph of the score Ŝ1:t is of size tC2. Then the time and the space complexity of computing Î1:t(θ) are
O(tdC2) and O(tC2), respectively, if we call AutoDiff on Ŝ>1:tek for each k ∈ [d], where {ek}dk=1 is the
standard basis of Rd. We usually have C2 > C1 when `(θ) is not linear in θ.

Computing the linear statistic using automatic differentiation. The main steps to compute the
linear statistic with the direct approach are summarized in Algorithm 2. The most time-consuming step is
the for loop in steps 5-9. For each τ ∈ [n− 1], steps 6-8 take time O(τC1), O(τdC2) and O(d3), respectively.
Therefore, the overall time complexity of Algorithm 2 is O(n2dC2 + nd3). The most space-consuming steps

Algorithm 2 Linear statistic with the direct approach

1: Input: Data (Wk)nk=1, log-likelihood `, and MLE θ̂n.
2: Compute Ŝ1:n by calling AutoDiff on `1:n(θ̂n).
3: Compute Î1:n by calling d times AutoDiff on Ŝ1:n.
4: Compute Î−1

1:n.
5: for τ = 1, . . . , n− 1 do
6: Compute Ŝ1:τ by calling AutoDiff on `1:τ (θ̂n), and then compute Ŝτ+1:n = Ŝ1:n − Ŝ1:τ .
7: Compute Î1:τ by calling d times AutoDiff on Ŝ1:τ .
8: Compute Rn(τ) in (5).
9: end for

10: Compute Rlin in (5).
11: Output: Rlin.

9



Algorithm 3 Linear statistic with the conjugate gradient algorithm

1: Input: Data (Wk)nk=1, log-likelihood `, and MLE θ̂n.
2: Compute Ŝ1:n by calling AutoDiff on `1:n(θ̂n).
3: Compute Î1:n by calling d times AutoDiff on Ŝ1:n.
4: for τ = 1, . . . , n− 1 do
5: Compute Ŝ1:τ by calling AutoDiff on `1:τ (θ̂n), and then compute Ŝτ+1:n = Ŝ1:n − Ŝ1:τ .
6: Compute Rn(τ) in (7) by the conjugate gradient algorithm.
7: end for
8: Compute Rlin in (5).
9: Output: Rlin.

are to store the computational graph of Ŝ1:n with complexity O(nC2), and to store the full Fisher information
matrix with complexity O(d2). Consequently, the overall space complexity is O(nC2 + d2).

We now investigate the AutoDiff-friendly approach. According to the Woodbury matrix identity, we have

Î−1
n,τ = Î−1

1:τ + I−1
τ+1:n .

The statistic Rn(τ) then reads

Rn(τ) = Ŝ>τ+1:nÎ−1
1:τ Ŝτ+1:n + Ŝ>τ+1:nÎ−1

τ+1:nŜτ+1:n . (7)

To compute Î−1
1:τ Ŝτ+1:n, we apply the conjugate gradient algorithm to solve the problem

min
x

{
1

2
x>Î1:τx− Ŝ>τ+1:nx

}
.

Each iteration of the conjugate gradient algorithm requires evaluating Î1:τx, which can be obtained by calling
AutoDiff on Ŝ>1:τx with O(τC2) time and O(τC2) space. Moreover, it converges in M ≤ d steps. As a result,
computing Î−1

1:τ Ŝτ+1:n takes O(τMC2) time and O(τC2) space. The steps to compute Î−1
τ+1:nŜτ+1:n is similar

since Îτ+1:nx = Î1:nx−Î1:τx. Hence, we may compute Rlin as in Algorithm 3. The most expensive steps are
the computation of Î1:n in step 3 and the for loop in steps 4-7. Step 3 takes O(ndC2) time and O(nC2 + d2)
space. For each τ ∈ [n − 1], the steps within the for loop, as discussed above, take O(τMC2) time and
O(τC2) space. Hence, the overall time and space complexities are O(n2MC2 + ndC2) and O(nC2 + d2).
Since M ≤ d, it is clear that this approach is more efficient than the direct one.

Computing the scan statistic using automatic differentiation. Computing the scan statistic
exactly may be exponentially expensive in the parameter dimension d, since it involves a maximization over
all subsets of [d] with cardinality p ≤ P . Alternatively, we approximate the maximizer of max|T |=pRn(τ, T ),
say Tp, by the indices of the largest p components in

v(τ) := Ŝ>τ+1:ndiag{În,τ}−1Ŝτ+1:n . (8)

That is, we consider all T with |T | = 1, and approximate the maximizer Tp by the union of the ones that
give the largest p values of Rn(τ, T ). We show in Appendix B that this approximation is accurate if the
difference between the largest eigenvalue and the smallest eigenvalue of În,τ is small compared to ‖Ŝτ+1:n‖2.
Formally, we approximate Rscan by

Rscan ≈ max
τ∈[n−1]

max
p≤P

Rn(τ, Tτ,p) := max
τ∈[n−1]

max
p≤P

[Ŝτ+1:n]>Tτ,p [În,τ ]−1
Tτ,p,Tτ,p

[Ŝτ+1:n]Tτ,p , (9)

where Tτ,p corresponds to the largest p indices of v(τ).
Note that, in order to compute the scan statistic in a similar fashion as the linear statistic, we may modify

the normalizing matrix [În,τ ]−1
T,T as

[Î1:τ ]−1
T,T + [Îτ+1:n]−1

T,T . (10)
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Figure 4: (a) Running time versus sample size for linear models with d = 1000; (b) Running time versus
number of parameters for linear models with n = 10000; (c) Running time versus sample size for multi-
layer perceptrons with d = 1035 (r = 45); (d) Running time versus number of parameters for multilayer
perceptrons with n = 10000.

It can be shown that (10) converges to the same limit as Î1:τ under the null so that the calibration discussed
in Appendix B remains valid. Hence, for the direct approach, we need the following steps to compute Rscan in
addition to Algorithm 2: 1) sort v(τ) and obtain {Tτ,p}p∈[P ], and 2) compute {Rn(τ, Tτ,p)}p∈[P ], for each τ ∈
[n−1]. For the AutoDiff-friendly approach, after we sort v(τ), we can again compute [Î1:τ ]−1

Tτ,p,Tτ,p
[Ŝτ+1:n]Tτ,p

by the conjugate gradient algorithm. Since P � d, the time complexity and space complexity of the linear
statistic dominate the ones of the scan statistic.

When the observations {Wk}nk=1 are independent, the score Ŝ1:τ and information Î1:τ can be computed
recursively in the direct approach. As a result, computing the auto-test with the direct approach will be
more efficient if n� d.

A.2 Running times
We then compare empirically the running time of the two approaches. For simplicity, we focus on applying
them to compute Î−1

1:nz for some randomly generated vector z ∈ Rd. We consider two models: 1) a linear
model Y = θ>X + ε with log-likelihood (up to a constant) `(θ) = −(Y − θ>X)2 (or quadratic loss), where
θ ∈ Rd; 2) a multilayer perceptron (MLP) with the following structure: x0 → x1 = σ(A1x0 + b1) → x2 =
A2x1 + b2, where x0 ∈ Rr is the input vector, A1 ∈ Rr×[r/2], b1 ∈ R[r/2], A2 ∈ R[r/2]×1 and b2 ∈ R.
Hence, there are d = r[r/2] + 2[r/2] + 1 parameters in this model. The loss function is again chosen as the
quadratic loss. For each of the two models, we generate n i.i.d. observations from this model and use the
two approaches (“Direct” and “Ours”) to compute Î−1

1:nz. For the conjugate gradient algorithm, we set the
target accuracy to be 10−7 and set the maximum number of iterations to be 2d. For each pair of (n, d),
we repeat the experiment 5 times and report the average running time with standard error in Fig. 4. The
experiments are performed on a machine with 32 2.8GHz Intel Core i9 CPUs.

For the linear model, the information matrix is well-conditioned, so it took strictly less than d iterations
for the conjugate gradient algorithm to converge. This contributes to the significant improvement on the
running time compared to the direct approach. As for the MLP, the information matrix is ill-conditioned,
so it usually took the conjugate gradient algorithm the maximum number of iterations, i.e., 2d, to converge.
In fact, the running time of the AutoDiff-friendly approach is about twice larger than the direct approach.
Note that this time could be potentially reduced by computing the inverse-matrix-vector product inexactly.

A.3 Examples
Example 1 (Text topic model). The text topic model introduced in [20] is a hidden Markov model with tran-
sition probability q and emission probability g, supported respectively on finite sets [N ] and [M ]. Moreover,
it satisfies the so-called Brown assumption: for each observation X ∈ [M ], there exists a unique hidden state
H(X) ∈ [N ] such that g(X|H(X)) > 0 and g(X|h) = 0 for all h 6= H(X). The authors proposed a class of
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spectral methods to recover approximately the map Ĥ up to permutation. Consequently, the log-likelihood can
be computed as

`n(θ) =

n∑
k=1

log q(Ĥk|Ĥk−1) + log g(Xk|Ĥk) ,

where X0 is assumed to be known.

Example 2 (Time series model). Consider an autoregressive moving-average (ARMA) model:

Xt =

r∑
i=1

φiXt−i + εt +

q∑
i=1

ϕiεt−i ,

where {εt} are i.i.d. standard norm random variables. Let θ = (φ;ϕ). Assume that r ≥ q and X1:r is
completely known. Then the log-likelihood reads:

`n(θ) = −1

2

n∑
t=r+1

ε2
t + C ,

where εt = Xt −
∑r
i=1 φiXt−i −

∑q
i=1 ϕiεt−i.

Example 3 (Hidden Markov model). Suppose that observations (Yk)nk=1 are from a hidden Markov model
(HMM)

Xk ∼ Q(Xk−1, ·) and Yk ∼ G(Xk, ·),

where G and Q are the transition distribution and emission distribution, respectively. For simplicity, we
write qx,x′ = Q(x, x′) and gk(x) = G(x, Yk). Its log-likelihood function can be computed by the normalized
forward recursion [6, Chapter 3]: `n(θ) =

∑n
k=1 log ck where, recursively,

ck =

M∑
xk−1,xk=1

φk−1(xk−1)qxk−1,xkgk(xk)

φk(xk) = c−1
k

M∑
xk−1=1

φk−1(xk−1)qxk−1,xkgk(xk), ∀xk ∈ [M ] ,

with initial conditions

c0 =

M∑
x0=1

g0(x0)ν(x0)

φ0(x0) = c−1
0 g0(x0)ν(x0), ∀x0 ∈ [M ] .

B Theoretical Results and Proofs

B.1 Null hypothesis
This section is devoted to determine thresholds for the linear test, scan test, and auto-test so that they are
consistent in level. For this purpose, we first derive the limiting distribution of Rn(τn) for any sequence
(τn)n≥1 such that τn/n→ λ ∈ (0, 1). We then determine the thresholds based on the limiting distribution.

Assumption 1. Let W1, . . . ,Wn be a time series with a correctly specified model {pθ : θ ∈ Θ ⊂ Rd}. Suppose
that the true parameter θ0 ∈ int(Θ) (the interior of Θ), and that the following assumptions hold:

12



A1 : Θ contains an open neighborhood Θ0 on which `n(θ) := log pθ(W1, . . . ,Wn) is twice continuously

differentiable and ‖n−1∇3
θ`n(θ)‖

a.s.
≤ M(W1, . . . ,Wn) = Op(1) for every θ ∈ Θ0.

A2 : −∇2
θ`n(θ0)/n→p I0 where I0 ∈ Rd×d is positive definite.

A3 : The MLE θ̂n exists and
√
n(θ̂n − θ0)→d N (0, I−1

0 ) (convergence in distribution).
A4 : The normalized score can be written as a sum of a martingale difference sequence, up to an op(1)

term, w.r.t. to some filtration {Ft}t∈Z, that is,

Zn(θ0) :=
1√
n
Sn(θ0) =

1√
n
∇θ`n(θ0) =

n∑
k=1

Mk√
n

+ op(1) ,

where E[Mk|Fk−1] = 0,∀k ∈ [n]. In addition, this martingale difference sequence satisfies the Lindeberg
conditions:

A4-(a) : n−1
∑n
k=1 E[MkM

>
k |Fk−1]→p I0 and

A4-(b) : ∀ε > 0 and α ∈ Rd, n−1
∑n
k=1 E

[
(α>Mk)21{|α>Mk| >

√
nε}|Fk−1

]
→p 0.

A useful sufficient condition for Assumption A4 is given below.

Lemma 1. Assume that the normalized score can be written as

Zn(θ0) =

n∑
k=1

Mk√
n

+ op(1) ,

where {Mk}k∈N+
is a stationary and ergodic martingale difference sequence w.r.t. its natural filtration, then

Assumption A4 holds true.

Proof By stationarity, there exists a fixed measurable function f : R∞ → R∞ such that, for all k ∈ N+,

E[MkM
>
k |Mk−1,Mk−2, . . . ] = f(Mk−1,Mk−2, . . . )

almost surely. Due to the ergodicity of Mk, the series Nk = f(Mk−1,Mk−2, . . . ) is also ergodic so that
Nn →a.s. E[N1], i.e., the condition A4-(a) holds true. Similarly, given c > 0,

Gn(c) :=
1

n

n∑
k=1

E
[
(α>Mk)2|1

{∣∣α>Mk

∣∣ > c
}
|Fk−1

]
→a.s. G(c)

for any α ∈ Rd, where G(c) = E[(α>M1)2|1
{∣∣α>M1

∣∣ > c
}

] can be arbitrarily small by setting c to be large.
Hence, for any δ > 0 and any α ∈ Rd, there exists a constant c0 and an integer N > 0 such that ∀n > N ,
we have Gn(c0) < δ almost surely. To verify the condition A4-(b), note that Gn(c) is decreasing in c, so, for
every ε > 0, there exists M > 0 such that n > M implies

1

n

n∑
k=1

E
[
α>M2

k |1
{∣∣α>Mk

∣∣ > ε
√
n
}
|Fk−1

]
≤ Gn(c0) < δ

almost surely. As δ is arbitrary, we know that the condition A4-(b) holds.

Remark. Under suitable regularity conditions, Assumption 1 holds true for i.i.d. models, hidden Markov
models [3, Chapter 12], and stationary autoregressive moving-average models [11, Chapter 13].

Proposition 1 (Null hypothesis). Under Assumption 1, we have, for any τn ∈ N+ such that τn/n → λ ∈
(0, 1), √

n

τn(n− τn)
Sτn+1:n(θ̂n)→d N (0, I0) .
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In particular,

Rn(τn) = Sτn+1:n(θ̂n)>In(θ̂n; τn)−1Sτn+1:n(θ̂n)→d χ
2
d

Rn(τn, T ) = [Sτn+1:n(θ̂n)]>T [In(θ̂n; τn)]−1
T,T [Sτn+1:n(θ̂n)]T →d χ

2
|T |, for any T ⊂ [d] .

We start by showing that the partial observed information In(θ̂n; τn) defined in (2) is a consistent
estimator of I0 with proper normalization.

Lemma 2. Under assumptions A1-A3, we have, for any τn ∈ N+ such that τn/n→ λ ∈ (0, 1),

n

τn(n− τn)
In(θ̂n; τn)→p I0 .

Proof According to Assumption A1 and Taylor’s theorem, we obtain

1

n

∥∥∥∇2
θ`n(θ̂n)−∇2

θ`n(θ0)
∥∥∥ ≤ 1

n

∥∥∇3
θ`n(θn)

∥∥∥∥∥θ̂n − θ0

∥∥∥ ,

where
∥∥θn − θ0

∥∥ ≤ ∥∥∥θ̂n − θ0

∥∥∥. Let En be the event {θ̂n ∈ Θ0}. By Assumption A3, it holds that P(En)→ 0,
and thus

1

n

∥∥∥∇2
θ`n(θ̂n)−∇2

θ`n(θ0)
∥∥∥ ≤ ‖M(W1, . . . ,Wn)‖

∥∥∥θ̂n − θ0

∥∥∥+ op(1) = op(1) .

Consequently, by the triangle inequality, we get∥∥∥∥− 1

n
∇2
θ`n(θn)− I0

∥∥∥∥ ≤ − 1

n

∥∥∇2
θ`n(θn)−∇2

θ`n(θ0)
∥∥+

∥∥∥∥− 1

n
∇2
θ`n(θ0)− I0

∥∥∥∥→p 0 .

This yields −∇2
θ`n(θ̂n)/n→p I0. It follows that

1

n− τn
Iτn+1:n(θ̂n) = − 1

n− τn
∇2
θ`τn+1:n(θ̂n) = − 1

n− τn
[∇2

θ`1:n(θ̂n)−∇2
θ`1:τn(θ̂n)]

→p
1

1− λI0 −
λ

1− λI0 = I0 .

Recall that In(θ̂n; τn) = Iτn+1:n(θ̂n)− Iτn+1:n(θ̂n)>I1:n(θ̂n)−1Iτn+1:n(θ̂n), we can derive

n

τn(n− τn)
In(θ̂n; τn)→p

1

λ
I0 −

(
1

λ
− 1

)
I0 = I0 .

To derive the asymptotic distribution of the score Sτn+1:n(θ̂n), we will express it as a linear combination
of the normalized scores Zτn(θ0) := S1:τn(θ0)/

√
τn and Zn(θ0) := S1:n(θ0)/

√
n, and then prove its asymptotic

normality by the following lemma.

Lemma 3. Under Assumption A4, we have, for every sequence τn ∈ Z+ such that τn/n→ λ ∈ (0, 1),(
Zτn

√
τn/n

Zn

)
→d N

(
0,

(
λI0 λI0

λI0 I0

))
. (11)

Moreover, if
√
n(θ̂n − θ0) = I−1

0 Zn(θ0) + op(1), then

√
n

(
θ̂τn − θ0

θ̂n − θ0

)
→d N

(
0,

(
λ−1I−1

0 I−1
0

I−1
0 I−1

0

))
.
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Proof According to Cramér-Wold device, it is sufficient to show that for any (a>, b>) ∈ R2d,

a>
√
τn
n
Zτn + b>Zn →d N

(
0, λ(a+ b)>I0(a+ b) + (1− λ)b>I0b

)
, as n→∞ .

We will prove this by the Lindeberg theorem for martingales. In fact,

a>
√
τn
n
Zτn + b>Zn =

τn∑
k=1

(a+ b)>
Mk√
n

+

n∑
k=τn+1

b>
Mk√
n
.

Let Wn,k = (a+ b)>Mk, if k ∈ [τn]; and Wn,k = b>Mk, if k ∈ {τn + 1, . . . , n}. Then {Wn,k,Fk}k∈Z is also a
martingale difference sequence. Additionally,

1

n

n∑
k=1

E[W 2
n,k|Fk−1] =

1

n

τn∑
k=1

(a+ b)>E[MkM
>
k |Fk−1](a+ b) +

1

n

n∑
k=τn+1

b>E[MkM
>
k |Fk−1]b

=
τn
n

1

τn

τn∑
k=1

a> E[MkM
>
k |Fk−1](a+ 2b) +

1

n

n∑
k=1

b> E[MkM
>
k |Fk−1]b

→p λa
>I0(a+ 2b) + b>I0b = λ(a+ b)>I0(a+ b) + (1− λ)b>I0b ,

and, for any ε > 0,

1

n

n∑
k=1

E[W 2
n,k1(|Wn,k| > ε

√
n)|Fk−1]

=
1

n

τn∑
k=1

E
[(

(a+ b)>Mk

)2
1(|(a+ b)>Mk| > ε

√
n)

∣∣∣∣Fk−1

]
+

1

n

n∑
k=τn+1

E
[(
b>Mk

)2
1(|b>Mk| > ε

√
n)

∣∣∣∣Fk−1

]
→p 0 ,

by Assumption A4-(b). Therefore, the statement (11) holds by invoking the Lindeberg theorem for martin-
gales. Moreover,

√
n

(
θ̂τn − θ0

θ̂n − θ0

)
=

(
I−1

0

√
n
τn
Zτn + op(1)

I−1
0 Zn + op(1)

)
=

(
I−1

0 /λ 0
0 I−1

0

)(√
τn/nZτn
Zn

)
+ op(1)

→d N
(

0,

(
λ−1I−1

0 I−1
0

I−1
0 I−1

0

))
.

Proof of Prop. 1 Since θ̂n maximizes the log-likelihood function, it must satisfy the first order optimality
condition, i.e., S1:n(θ̂n) = 0. Then by Assumption A3 and Taylor expansion,

Zn(θ0) = Zn(θ̂n)−∇θZn(θ∗n)>(θ̂n − θ0) = − 1√
n
∇θZn(θ∗n)>

√
n(θ̂n − θ0) ,

where θ∗n is between θ0 and θ̂n. It follows that θ∗n →p θ0 and

− 1√
n
∇θZn(θ∗n) = − 1

n
∇2
θ`n(θ∗n) = I0 + op(1) (12)

by a similar argument as in Lemma 2. Note that
√
n(θ̂n − θ0) = Op(1), we obtain

√
n(θ̂n − θ0) = I−1

0 Zn(θ0) + op(1) . (13)

15



We then express the score Sτn+1:n as a linear combination of the normalized scores Zτn(θ0) and Zn(θ0).
By Lindeberg theorem for martingales [23, Chapter 4.5] and Cramér-Wold device [4], Assumption A4 implies
Zn(θ0)→d N (0, I0), and thus Zn(θ0) = Op(1) as n→∞. It follows that

Sτn+1:n(θ̂n)√
n− τn

=
Sτn+1:n(θ0)√

n− τn
+

1√
n− τn

∇θS>τn+1:n(θ∗n)(θ̂n − θ0)

=
Sτn+1:n(θ0)√

n− τn
+

(∇θS1:n(θ∗n)−∇θS1:τn(θ∗n))
>√

n(n− τn)

√
n(θ̂n − θ0)

=
Sτn+1:n(θ0)√

n− τn
+

[√
n

n− τn
Zn(θ∗n)√

n
− τn√

n(n− τn)

Zτn(θ∗n)√
τn

]>
(I−1

0 Zn(θ0) + op(1)), by (13)

=
Sτn+1:n(θ0)√

n− τn
+

(
λ√

1− λ
−
√

1

1− λ

)
I0I−1

0 Zn(θ0) + op(1), by (12)

= −
√

τn
n− τn

Zτn(θ0) +

√
n

n− τn
Zn(θ0) +

λ− 1√
1− λ

Zn(θ0) + op(1)

= −
√
λ√

1− λ
Zτn(θ0) +

λ√
1− λ

Zn(θ0) + op(1) .

Now by Lemma 3, we have√
n

τn(n− τn)
Sτn+1:n(θ̂n)→d N

(
0,
[ 1

λ

λ

1− λ −
2

λ

λ2

1− λ +
1

λ

λ2

1− λ
]
I0

)
=d N (0, I0) . (14)

Therefore, by Lemma 2 and (14), we have Rn(τn)→d χ
2
d and Rn(τn, T )→d χ

2
|T |.

Note that the linear statistic is the maximum of Rn(τ) over τ ∈ [n−1], so we use the Bonferroni correction
to compensate for multiple comparisons. This gives the threshold Hlin(α) = qχ2

d
(α/n)—the upper (α/n)-

quantile of χ2
d. Similarly, since the asymptotic distribution of Rn(τ, T ) with T ∈ Tp is χ2

p and |Tp| =
(
d
p

)
, the

Bonferroni correction leads to the threshold Hp(α) = qχ2
p
(α/[

(
d
p

)
n(p + 1)2]), where (p + 1)2 is required to

guarantee an asymptotic α level. In fact, we only need
∑
p∈P 1/(p+ 1)2 < 1 for controlling the level. Other

corrections are possible, but the former provides small thresholds when the change is sparse.

Corollary 4. Under Assumption 1, the three tests ψauto, ψlin, ψscan are consistent in level with thresholds
defined above.

Proof Let E0 and P0 be the expectation and probability distribution under the null hypothesis. We have

E0[ψlin(α)] = P0

{
max

τ∈[n−1]
Rn(τ) > Hlin(α)

}
≤
n−1∑
τ=1

P0(Rn(τ) > qχ2
d
(α/n)) ≤

n−1∑
τ=1

α

n
+ o(1) = α+ o(1) ,

and

E0[ψscan(α)] = P0

(
max

τ∈[n−1]
max
p≤P

max
T∈Tp

Hp(α)−1Rn(τ, T ) > 1
)

≤
n−1∑
τ=1

∑
p≤P

∑
T∈Tp

P0

(
Rn(τ, T )

qχ2
p

(
α/
((
d
p

)
n(p+ 1)2

)) > 1

)

≤
n−1∑
τ=1

∑
p≤P

∑
T∈Tp

α(
d
p

)
n(p+ 1)2

+ o(1) <

∞∑
p=1

α

(p+ 1)2
+ o(1) < α+ o(1) .
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For α = αl + αs, the autograd-test has false alarm rate

E0[ψ(α)] ≤ E0[ψlin(αl)] + E0[ψscan(αs)] ≤ αl + αs + o(1) = α+ o(1) .

Therefore, the three proposed tests are all consistent in level.

B.2 Fixed alternative hypothesis
Under fixed alternative hypothesis, we make the following assumptions.

Assumption 2. Let W1, . . . ,Wn be an independent sample and {pθ : θ ∈ Θ ⊂ Rd} be a family of density
functions. Suppose that there exists τn ∈ [n−1] such that W1, . . . ,Wτn ∼ pθ0 , Wτn+1, . . . ,Wn ∼ pθ1(θ1 6= θ0),
and τn/n→ λ ∈ (0, 1). Moreover, suppose that the following assumptions hold:
A’1 : F (θ) := λDKL(pθ0‖pθ) + λDKL(pθ1‖pθ) has a minimizer θ∗ ∈ int(Θ), where λ = 1− λ and DKL is

the KL-divergence.
A’2 : Θ contains an open neighborhood Θ∗ of θ∗ for which
A’2-(a) : `(θ) := `(θ|x) := log pθ(x) is twice continuously differentiable in θ almost surely.

A’2-(b) : ∇3
ijk`(θ|x) exists and satisfies

∣∣∣∇3
ijk`(θ|x)

∣∣∣ ≤Mijk(x) for θ ∈ Θ∗ and i, j, k ∈ [d] almost surely
with EθlMijk(W ) <∞ for l ∈ {0, 1}.

A’3 : Eθl [∇θ`(θ∗)] = ∇θEθl [`(θ)]|θ=θ∗ = S∗l for l ∈ {0, 1}.
A’4 : Eθl [−∇2

θ`(θ
∗)] = I∗l is positive definite for l ∈ {0, 1}.

Proposition 2 (Fixed alternative hypothesis). Under Assumption 2, there exists a sequence of MLE such
that θ̂n →p θ

∗ and, for any τn/n→ λ ∈ (0, 1),
1
nRn(τn)→p (λS∗1 )>(I∗)−1(λS∗1 ) , (15)

where I∗ = λI∗1 − λI∗1
(
λI∗0 + λI∗1

)−1
λI∗1 is a positive definite matrix.

Proof Among all solutions of the likelihood equation ∇θ`n(θ) = 0, let θ̂n be the one that is closest to θ∗

(this is possible since we are proving the existence). We firstly prove that θ̂n →p θ
∗. For ε > 0 sufficiently

small, let Bε = {θ ∈ Rd : ‖θ − θ∗‖ ≤ ε} ⊂ Θ∗ and bd(Bε) be the boundary of Bε. We will show that, for
sufficiently small ε,

P (`n(θ) < `n(θ∗),∀θ ∈ bd(Bε))→ 1 . (16)

This implies, with probability converging to one, `n(θ) has a local maximum (also a solution to the likelihood
equation) in Bε, and thus θ̂n ∈ Bε. Consequently, P(‖θ̂n − θ∗‖ > ε)→ 0.

To prove (16), we write, for any θ ∈ bd(Bε), that

1

n
[`n(θ)− `n(θ∗)] =

1

n
(θ − θ∗)>∇θ`n(θ∗)− 1

2
(θ − θ∗)>

(
− 1

n
∇2
θ`n(θ∗)

)
(θ − θ∗)

+
1

6n

d∑
i=1

d∑
j=1

d∑
k=1

(θi − θ∗i )(θj − θ∗j )(θk − θ∗k)∇ijk`n(θn)

=: D1 +D2 +D3 ,

where θn ∈ Bε satisfies
∥∥θn − θ∗∥∥ ≤ ‖θ − θ∗‖. Let us bound D1, D2, and D3 separately. Note that, by the

law of large numbers,

D1 →p (θ − θ∗)>
[
λEθ0 [∇θ`(θ∗)] + λEθ1 [∇θ`(θ∗)]

]
= (θ − θ∗)>∇θ

[
λEθ0 [`(θ)] + λEθ1 [`(θ)]

]∣∣
θ=θ∗

, by Assumption A’3

= − (θ − θ∗)>∇θ
[
λDKL(pθ0‖pθ) + λDKL(pθ1‖pθ)

]∣∣
θ=θ∗

= 0 ,
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where the last equality follows from Assumption A’1. Moreover, by Assumption A’4,

D2 →p −
1

2
(θ − θ∗)>

(
λI∗0 + λI∗1

)
(θ − θ∗) ≤ −1

2
λminε

2 ,

where λmin is the smallest eigenvalue of λI∗0 + λI∗1 . If we set ε small enough such that bd(Bε) ⊂ Θ∗, then
we have, by Assumption A’2,

|D3| ≤
1

6n

∑
ijk

|θi − θ∗i |
∣∣θj − θ∗j ∣∣ |θk − θ∗k| n∑

l=1

∣∣∇ijk`(θn|Wl)
∣∣ , by triangle inequality

≤ 1

6
ε3
∑
ijk

1

n

n∑
l=1

Mijk(Wl), by |θi − θ∗i | ≤ ‖θ − θ∗‖ = ε

→p
ε3

6

∑
ijk

(
λEθ0 [Mijk(W )] + λEθ1 [Mijk(W )]

)
.

Hence, for any given δ > 0, any ε > 0 sufficiently small, any n sufficiently large, with probability larger
than 1− δ, we have, for all θ ∈ bd(Bε),

|D1| < ε3, D2 < −λminε
2/4, |D3| ≤ Aε3 ,

where A > 0 is a constant. It follows that,

D1 +D2 +D3 < ε3 +Aε3 − λmin

4
ε2 =

(
(A+ 1)ε− λmin

4

)
ε2 < 0, if ε <

λmin

4(A+ 1)
,

and thus (16) holds.
Now, following a similar argument as in Lemma 2, we obtain

1

n
Sτn+1:n(θ̂n) =

1

n
Sτn+1:n(θ∗) + op(1)→p λS

∗
1

1

n
In(θ̂n; τn) =

1

n
In(θ∗; τn) + op(1)→p λI∗1 − λI∗1

(
λI∗0 + λI∗1

)−1
λI∗1 ≡ I∗ ,

where I∗ is positive definite since both I∗0 and I∗1 are positive definite. This implies

1

n
Rn(τn) =

(
1

n
Sτn+1:n(θ̂n)

)>(
1

n
In(θ̂n; τn)

)(
1

n
Sτn+1:n(θ̂n)

)
→p (λS∗1 )>(I∗)−1(λS∗1 ) .

To show the power consistency of the proposed tests, it suffices to prove Hlin(α)/n = o(1) and Hp(α)/n =
o(1) for all p ∈ [P ]. For this purpose, we recall a concentration inequality valid for χ2 distributions introduced
in [5].

Lemma 4. Let W be a chi-square random variable with degrees of freedom d, that is, W ∼ χ2
d. Then, for

all x > 0,

P
{
W ≥ d+ 2

√
dx+ 2x

}
≤ e−x .

Corollary 5. Suppose that Assumption 2 is true and S∗1 6= 0, then the three tests ψauto, ψlin, ψscan are
consistent in power.
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Proof According to Lemma 4, we have, for any α ∈ (0, 1),

Hlin(α) = qχ2
d
(α/n) ≤ d+ 2

√
d log(n/α) + 2 log(n/α) ,

and thus Hlin(α)/n→ 0. Recall from Prop. 2 that

1

n
Rn(τn)→p (λS∗1 )>(I∗)−1(λS∗1 ) .

If S∗1 6= 0, then it follows from the positive definiteness of I∗ that

P(ψlin(α) = 1) = P (Rlin > Hlin(α)) ≥ P
(

1

n
Rn(τn) >

1

n
Hlin(α)

)
→ 1 .

Analogously, we get

Hp(α) = qχ2
p

(
α/

((
d

p

)
n(p+ 1)2

))
≤ p+ 2

{
p log

[(d
p

)
n(p+ 1)2/α

]}1/2

+ 2 log
[(d
p

)
n(p+ 1)2/α

]
,

which implies Hp(α)/n→ 0. Therefore, it follows that P(ψscan(α) = 1)→ 1, and subsequently, P(ψauto(α) =
1)→ 1.

B.3 Local alternative hypothesis
Under local alternative hypothesis, we make the following assumptions.

Assumption 3. Let W1, . . . ,Wn be an independent sample and {pθ : θ ∈ Θ ⊂ Rd} be a family of density
functions. Suppose that there exists τn ∈ [n−1] such that W1, . . . ,Wτn ∼ pθ0 , Wτn+1, . . . ,Wn ∼ pθn in which
θn = θ0 +hn−1/2 with h 6= 0, and τn/n→ λ ∈ (0, 1). Moreover, suppose that the following assumptions hold:
A”1 : Θ contains an open neighborhood Θ0 of θ0 for which

A”1-(a) : `(θ) := `(θ|x) := log pθ(x) is twice continuously differentiable in θ almost surely.

A”1-(b) : ∇3
ijk`(θ|x) exists and satisfies

∣∣∣∇3
ijk`(θ|x)

∣∣∣ ≤ Mijk(x) for θ ∈ Θ0 and i, j, k ∈ [d] almost
surely with Eθ0Mijk(W ) <∞.

A”2 : Eθ0 [∇θ`(θ0)] = ∇θEθ0 [`(θ)]|θ=θ0 = S0.
A”3 : Eθ0 [∇θ`(θ0)∇θ`(θ0)>] = Eθ0 [−∇2

θ`(θ0)] = I0 is positive definite.

Proposition 3 (Local alternative hypothesis). Under Assumption 3, there exists a sequence of MLE θ̂n
such that

n

τn(n− τn)
In(θ̂n; τn)→p I0 (17)

√
n(θ̂n − θ0)→d Nd

(
λh, I−1

0

)
(18)√

n

τn(n− τn)
Sτn+1:n(θ̂n)→d Nd(

√
λλ I0h, I0) . (19)

In particular,

Rn(τn)→d χ
2
d

(
λλh>I0h

)
Rn(τn, T )→d χ

2
|T |

(
λλ[I0h]>T [I0]−1

T,T [I0h]T

)
.
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Proof In this proof we firstly analyze the behavior of the score statistic under the null hypothesis, then
we use Le Cam’s third lemma (e.g., [22]), to attain the asymptotic distribution of the test statistic under
local alternatives.

Under P0 := Pθ0 , an argument similar to the one in Prop. 2 implies that there exists a sequence of MLE
such that θ̂n →p θ0, then (17) directly follows from the proof in Lemma 2. Furthermore, by Assumption
A”1-(a) and the mean value theorem, there exists θn such that ‖θn − θ0‖ ≤ ‖θ̂n − θ0‖, and

0 =
1√
n
S1:n(θ̂n) =

1√
n
S1:n(θ0) +

1

n
∇θS1:n(θn)

√
n(θ̂n − θ0) .

Since θ̂n →p θ0, we have θn → θ0 and thus, by Assumption A”1-(b),

1

n
∇θS1:n(θn) =

1

n
∇θS1:n(θ0) + op(1) = −I0 + op(1) .

Therefore,

√
n(θ̂n − θ0) = I−1

0

1√
n
S1:n(θ0) + op(1) =

1√
n

n∑
i=1

Si(θ0) + op(1) ,

where Si(θ0) = I−1
0 ∇θ`i(θ0).

We then prove the local asymptotic linearity of the log-likelihood ratio. We denote the joint probability
measure of W1, . . . ,Wn under the local alternative as P(τn)

θ0,θn
. It holds that

log
dP(τn)

θ0,θn

dPnθ0
= `τn+1:n(θn)− `τn+1:n(θ0)

= (θn − θ0)>Sτn+1:n(θ0) +
1

2
(θn − θ0)>∇θSτn+1:n(θ0)(θn − θ0) + op(1)

=
h>√
n
Sτn+1:n(θ0) +

1

2
h>
∇θSτn+1:n(θ0)

n
h+ op(1) = h>

1√
n
Sτn+1:n(θ0)− λ

2
h>I0h+ op(1) .

For any a ∈ Rd, it follows from the multivariate Central Limit Theorem [4] thata>√n(θ̂n − θ0)

log
dP(τn)
θ0,θn

dPnθ0

 =
1√
n

[
τn∑
i=1

(
a>Si(θ0)

0

)
+

n∑
i=τn+1

(
a>Si(θ0)
h>Si(θ0)

)]
−
(

0
σ2

2

)
+ op(1)

→d N2

((
0

−σ2/2

)
,

(
a>I−1

0 a λa>h

λa>h σ2

))
,

where σ2 := λh>I0h. Hence, the assumptions of Le Cam’s third lemma are fulfilled, and we conclude that,
under P(τn)

θ0,θn
,

a>
√
n(θ̂n − θ0)→d N

(
λa>h, a>I−1

0 a
)
.

By the Cramér-Wold device, the statement (18) holds.
Notice that, under Pθ0 ,

1√
n
Sτn+1:n(θ̂n) =

1√
n
Sτn+1:n(θ0)− λI0

√
n(θ̂n − θ0) + op(1)

=
1√
n

[
τn∑
i=1

−λSi(θ0) +

n∑
i=τn+1

λSi(θ0)

]
+ op(1) .
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An analogous argument gives, under P(τn)
θ0,θn

,

1√
n
Sτn+1:n(θ̂n)→d Nd(λλI0h, λλI0) ,

which yields (19). Now, the asymptotic distributions of Rn(τn) and Rn(τn, T ) follows immediately from the
continuous mapping theorem.

B.4 Approximation in the scan statistic
Recall that, in the computation of the scan statistic, we approximate the maximizer of maxT∈Tp Rn(τ, T )

by the indices of the largest p components in v(τ) := Sτ+1:n(θ̂n)>diag(In(θ̂n; τ))−1Sτ+1:n(θ̂n). The next
lemma verifies that this approximation is accurate when the difference between the largest eigenvalue and
the smallest eigenvalue of In(θ̂n; τ)−1 is small compared to ‖Sτ+1:n(θ̂n)‖2.

Lemma 5. Let α ∈ Rd, and A ∈ Rd×d be a symmetric positive definite matrix. Consider the optimization
problem:

T ∗ = arg max
T⊂[d],|T |=p

f(T ) = arg max
T⊂[d],|T |=p

α>T [AT,T ]−1αT , p ∈ [d] .

Let 0 < λ1(A) ≤ · · · ≤ λd(A) be the eigenvalues of A, and T̂ be the indices of the largest p components
in diag(A)−1α�2, where α�2 is the element-wise power. Then we have |f(T ∗) − f(T̂ )| ≤ 2[λ1(A)−1 −
λd(A)−1] ‖α‖2.

Proof Define g(T ) := α>T diag(AT,T )−1αT . According to the definition of T̂ , we have, for any |T | = p,
g(T ) ≤ g(T̂ ). In particular, we have g(T ∗) ≤ g(T̂ ). This implies that

0 ≤ f(T ∗)− f(T̂ ) ≤ f(T ∗)− g(T ∗) + g(T̂ )− f(T̂ ) ,

and thus it suffices to bound |f(T )− g(T )| for every |T | = p.
On the one hand, note that

f(T )− g(T ) = α>TA
−1
T,TαT − α>T (diag(AT,T ))−1αT ≤ λp(A−1

T,T ) ‖αT ‖2 − a−1
max ‖αT ‖2 ,

where amax := maxi∈[d] aii. By the Courant-Fischer-Weyl min-max principle, we have 0 < λ1(A) ≤ λ1(AT,T ),
which implies λp(A−1

T,T ) = λ1(AT,T )−1 ≤ λ1(A)−1. Moreover, since 0 < λ1(A) ≤ amax ≤ λd(A), we have
a−1

max ≥ λd(A)−1. It follows that

f(T )− g(T ) ≤ [λ1(A)−1 − λd(A)−1] ‖α‖2 .

On the other hand, we can obtain, similarly,

g(T )− f(T ) ≤ [a−1
min − λ1(A−1

T,T )] ‖α‖2 ≤ [λ1(A)−1 − λd(A)−1] ‖α‖2

with amin := mini∈[d] aii. Therefore, we have

0 ≤ f(T ∗)− f(T̂ ) ≤ 2[λ1(A)−1 − λd(A)−1] ‖α‖2 .
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Figure 5: Power versus magnitude of change for HMMs with N hidden states (left: N = 3; right: N = 7).

C Additional Experimental Results
In this section, we give additional experimental results investigating and comparing the performance of the
linear test, the scan test and the auto-test on synthetic data. We use three different types of lines to represent
three tests, and different colors to indicate different sample sizes. Note that all the statistics are computed
only for τ ∈ [n/10, 9n/10] to prevent encountering ill-conditioned Fisher information matrix.

Hidden Markov model. We consider HMMs with N ∈ {3, 7} hidden states and normal emission
distribution. The transition matrix is sampled in the following way: each row (the distribution of next state
conditioning on current state) is the sum of vector (2N)−11N and a Dirichlet sample with concentration
parameters 0.51N , where 1N is an all one vector of length N . All entries in the resulting vector are positive
and sum to one. Given the state k ∈ {0, . . . , N − 1}, the emission distribution has mean k and standard
deviation 0.01 + 0.09k/(N − 1) so that they are evenly distributed within [0.01, 0.1]. Since each row of the
transition matrix must sum to one, we only view entries in the first N − 1 columns as transition parameters.
The post-change transition matrix is obtained by subtracting δ from the (1, 1) entry and adding δ to the
(1, N) entry.

Results are shown in Fig. 5. When N = 3, three tests have almost identical performance. When N = 7,
the change becomes sparser, and subsequently, the scan test and the auto-test outperform the linear test. In
both cases, the three tests show consistent behavior as the sample size increases.

Time series model. We then consider two autoregressive–moving-average models—ARMA(3, 2) and
ARMA(6, 5). For the resulting time series to be stationary, we need to ensure that the polynomial induced by
AR coefficients has roots within (−1, 1). We take the following procedure: we firstly sample p0 ∈ {3, 6} values
that are larger than 1, say λ1, . . . , λp0 , then use the coefficients of the polynomial f0(x) =

∏p0
i=1(x − λ−1

i )
as AR coefficients; MA coefficients are obtained similarly. Furthermore, the post-change AR coefficients are
created by adding δ to those p0 values and extracting the coefficients from f1(x) =

∏p0
i=1(x − (λi + δ)−1).

The error terms follow a normal distribution with mean 0 and standard deviation 0.1. Note that for ARMA
models we do not have exact control of ‖∆‖ /√p, so readers need to be careful about the range of x-axis in
Fig. 6.

As demonstrated in Fig. 6, the scan test works fairly well for these two ARMA models. However, the
linear test and the auto-test have extremely high false alarm rate. This problem gets more severe as the
sample size increases, and hence is not due to the lack of accuracy of the maximum likelihood estimator.

Restricted screening components. To investigate the high false alarm rate problem in Fig. 6, we
consider the same two ARMA models with the restriction that we only detect changes in the AR coefficients.
As presented in Fig. 7, all three tests are now consistent in level, and the linear test and the auto-test
are slightly more powerful than the scan test. This suggests that this problem is caused by the non-
homogeneity of model parameters. Indeed, in the experiments in Fig. 6, the derivatives w.r.t. AR coefficients
are significantly larger than the ones w.r.t. MA coefficients. This results in ill-conditioned information matrix

22



0.00 0.02 0.04 0.06 0.08 0.10
‖∆‖/√p

0.0

0.2

0.4

0.6

0.8

1.0
P
ow

er scan

linear

auto-test

n = 1000

n = 5000

n = 10000

0.00 0.05 0.10 0.15 0.20
‖∆‖/√p

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er scan

linear

auto-test

n = 5000

n = 10000

n = 20000

Figure 6: Power versus magnitude of change for
ARMA(3, 2) (left) and ARMA(6, 5) (right).

0.00 0.02 0.04 0.06 0.08 0.10
‖∆‖/√p

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er scan

linear

auto-test

n = 1000

n = 5000

n = 10000

0.00 0.05 0.10 0.15 0.20
‖∆‖/√p

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er scan

linear

auto-test

n = 5000

n = 10000

n = 20000

Figure 7: Power versus magnitude of change for
ARMA models with restricted components (left:
ARMA(3, 2); right: ARMA(6, 5)).

and subsequent unstable computation of the linear statistic. On the contrary, the scan statistic only inverts
the submatrix of size p×p, whose condition number is much smaller. In fact, the parameters selected by the
scan statistic are all AR coefficients in our experiments. Therefore, the scan statistic can produce reasonable
results even if the parameters are heterogeneous. We note that in such situations we can select a small (or
even zero) significance level for the linear part in the auto-test to obtain reasonable results.
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