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ABSTRACT
Millimeter wave multiple-input multiple-output (mmWave-MIMO)
systems with small number of radio-frequency (RF) chains have
limited multiplexing gain. Spatial path index modulation (SPIM)
is helpful in improving this gain by utilizing additional signal bits
modulated by the indices of spatial paths. In this paper, we introduce
model-based and model-free frameworks for beamformer design in
multi-user SPIM-MIMO systems. We first design the beamformers
via model-based manifold optimization algorithm. Then, we leverage
federated learning (FL) with dropout learning (DL) to train a learning
model on the local dataset of users, who estimate the beamformers
by feeding the model with their channel data. The DL randomly
selects different set of model parameters during training, thereby
further reducing the transmission overhead compared to conventional
FL. Numerical experiments show that the proposed framework ex-
hibits higher spectral efficiency than the state-of-the-art SPIM-MIMO
methods and mmWave-MIMO, which relies on the strongest propa-
gation path. Furthermore, the proposed FL approach provides at least
10 times lower transmission overhead than the centralized learning
techniques.

Index Terms— Dropout learning, federated learning, manifold
optimization, massive MIMO, spatial modulation.

1. INTRODUCTION

The millimeter wave multiple-input multiple-output (mmWave-
MIMO) communications systems substantially improve the through-
put in the fifth generation (5G) networks [1, 2]. As an emerging 5G
technology, index modulation (IM) is attractive primarily because it
offers both improved energy efficiency and spectral efficiency over
conventional modulations. The IM encodes additional information
in the indices of the transmission media such as subcarriers [3, 4],
antennas [5, 6], and spatial paths [7–9]. In this paper, we focus
on spatial modulation (SM) in the context of mmWave-MIMO
systems [10].

In mmWave-MIMO, hybrid analog-digital beamformers are em-
ployed, where the number of radio-frequency (RF) chains is much
smaller than the antennas. While this saves cost and power, its mul-
tiplexing gain is limited [1]. The SM techniques have been shown
to be helpful in addressing this problem [7–9]. In [5], an antenna
grouping (AG) approach is proposed for point-to-point communica-
tion, wherein some antenna elements are (de)activated to provide
SM in terms of active/passive antenna indices. This approach suffers
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from reduced array gain because it always uses a subarray. For a
single-user scenario, [8] proposed beamspace-based approaches for
spatial path index modulation (SPIM), which modulates the indices
of the spatial paths to create different spatial patterns. The use of
beamspace model is further exploited in [9] by employing lens arrays
at both transmitter and receiver to improve the bit-error-rate (BER).

Apart from BER, spectral efficiency is utilized as a performance
metric in [7] for SPIM-based transmitter design. Here, theoretical
conditions for SPIM-MIMO to outperform mmWave-MIMO are intro-
duced. The SPIM structure in [7] considers only analog beamformer
design, for which the same baseband beamformers are used even if
the structure of the analog beamformer is changed due to the selec-
tion of different spatial patterns. Analog-only beamformer design
is also considered in [11] for uplink multi-user scenario with code-
book design. A joint design for analog and baseband precoders for
SPIM is performed in [12] by implementing zero-forcing baseband
precoding and selecting the steering vectors as analog beamformer
candidates. Similar to [12], [7, 8] also design the analog precoders
with a predefined codebook of steering vectors, which entails a beam
training task prior to the precoder design. Most of the aforementioned
works investigate the single-user scenario. Their extension to the
multi-user case remains a challenge. Although [11] considered the
uplink multi-user SPIM architecture, it included the codebook of
analog-only beamformers at the user end.

In this paper, we design both analog and digital beamformers for
a downlink multi-user scenario using model-based and model-free
techniques. We leverage the optimality of the manifold optimization
(MO) [13, 14] for the model-based approach. Then, taking advantage
of the model-free structure of learning-based methods [15–17] to
improve robustness and computational efficiency, we train a global
model through federated learning (FL). All users contribute to the
learning process by computing the model updates with respect to their
local datasets. The model updates are then collected at the base station
(BS) for model aggregation and then sent back to the users for the
next communication round and the global model is iteratively updated.
Once trained, the model parameters are shared with each user, which
can estimate the beamformers by simply feeding the model with its
downlink channel matrix. As a result, a non-linear data mapping is
constructed between the channel data (input) and the beamformers
(output), wherein a convolutional neural network (CNN) with dropout
learning (DL) is designed [18]. The DL allows randomly selecting a
fraction (up to ~50%) of the model parameters, thus further reducing
the communication cost during FL-based training.

Unlike the conventional centralized learning (CL) methods [19–
21], where the BS collects all of the training datasets from users,
our proposed FL-based approach is advantageous because of less
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transmission overhead; it is further reduced by employing DL to send
approximately half of the model parameters to the users. We validate
this through extensive numerical experiments and demonstrate that
the proposed model-based and model-free approaches have supe-
rior spectral efficiency than the state-of-the-art model-based SPIM
techniques [7] as well as outperforming the conventional mmWave-
MIMO [22]. Apart from maintaining satisfactory prediction perfor-
mance, the model-free FL offers a communication-efficient train-
ing, which requires approximately 10 times lower communication
exchange for model parameter transmission than the conventional
CL-based techniques.

2. SYSTEM MODEL

Consider a multi-user MIMO scenario with SPIM (SPIM-MIMO),
where the BS has NT antennas to communicate with U users, each of
which has NR antennas, via a single data stream. Then, the vector of
all data symbols are given by s = [s1, . . . , sU ]T ∈ CU . Additionally,
the spatial path index information represented by s0 is fed to the
switching network (Fig. 1) to randomly assign the outputs of NRF =
U ≤ M̄ RF chains to the M̄ taps of the analog beamformer. Thus, the
BS can process at most M̄ spatial paths, for which M̄ = UM ≤ NT,
where M denotes the number of available spatial paths for each user.
Compared to the conventional mmWave-MIMO, SPIM-MIMO has
the advantage of transmitting additional data streams by exploiting
the spatial pattern of the mmWave channel with limited RF chains,
i.e., NRF ≤ M̄ [7]. If M = 1, i.e., NRF = M̄ , then SPIM-MIMO
reduces to conventional mmWave-MIMO because there is only one
choice of transmission [9].

Assume F
(i)
RF ∈ CNT×U and F

(i)
BB ∈ CU×U be the analog and

baseband beamformers corresponding to the i-th spatial pattern, re-
spectively, for i = 1, . . . ,MU , i.e., selecting one of the M paths for
each user. The signal vector transmitted by the NT antennas is

x(i) = F
(i)
RFF

(i)
BBs. (1)

Note that (1) includes the design of both analog and baseband beam-
formers for each spatial pattern whereas the method in [7] designs
only analog beamformers and uses a fixed baseband beamformer.

The RF precoders F
(i)
RF, which are constructed by phase shifters,

have constant-modulus elements, i.e., |[F(i)
RF]m,n| = 1√

NT

. In ad-

dition, we have the power constraint ‖F(i)
RFF

(i)
BB‖

2
F = NRF that is

enforced by the normalization of F
(i)
BB. Finally, the NR × 1 received

signal by the u-th user becomes

y(i)
u = HuF

(i)
RFF

(i)
BBs + nu, (2)

where Hu ∈ CNR×NT represents the mmWave channel matrix be-
tween the BS and the u-th user and nu ∼ CN (0, σ2

nINR) is tem-
porarily and spatially white zero-mean Gaussian noise with variance
σ2
n. The mmWave channel can be modeled as the contribution of M

clustered paths from each user [22, 23]. Thus, Hu can be given by

Hu = A
(u)
R ΣuA

(u)H

T , (3)

where the steering matrices A
(u)
R = [a

(u)
R (φ1), . . . ,a

(u)
R (φM )] ∈

CNR×M and A
(u)
T = [a

(u)
T (ϕm), . . . ,a

(u)
T (ϕM )] ∈ CNT×M cor-

respond to the angle-of-arrival/angle-of-departure (AoA/AoD) an-
gles φm and ϕm, for m = 1, . . . ,M , respectively. For a uni-
form linear array (ULA), the n-th element of a

(u)
R (φ) and a

(u)
T (ϕ)

can be defined as [a
(u)
R (φ)]n = 1√

NR

exp{−jπ (n − 1) sin(φ)}

Fig. 1. The SPIM-MIMO architecture processes the incoming data
streams {su}u∈U and employs spatial path index information s0

in a switching network, which connects NRF = U RF chains to
M̄ = UM taps on the analog beamformers to exploit one of the M
spatial paths per user.

and [a
(u)
T (ϕ)]n = 1√

NT

exp{−jπ (n − 1) sin(ϕ)}, respectively.

Σu = diag{√γu,1, . . . ,
√
γu,M} is an M × M diagonal matrix

including the scattering path gains γu,m [7].
The received signal y

(i)
u is then processed by analog combiner

w
(u,i)
RF ∈ CNR as

ỹ(i)
u = w

(u,i)H

RF HuF
(i)
RFF

(i)
BBs + ñu, (4)

where ñu = w
(u,i)H

RF nu. Similar to the analog precoders, the
analog combiner w

(u,i)
RF also has constant-modulus elements, i.e.,

|[w(u,i)
RF ]n| = 1/

√
NR, n = 1, . . . , NR.

Our goal is to design the beamformers, F
(i)
RF, F

(i)
BB and W

(i)
RF =

[w
(1,i)
RF , . . . ,w

(U,i)
RF ] by exploiting SPIM. The downlink channel Hu

is available for u ∈ U = {1, . . . , U} and used to design the beam-
formers with FL-based training, in which a learning model is trained
to provide a mapping from the channel matrix to the beamformers.

3. BEAMFORMING VIA MODEL-BASED APPROACH

We construct the analog beamformers via simultaneously incorporat-
ing all of theM spatial paths, in which the analog beamformers corre-
sponding to all spatial paths F

(u)
RF = [f

(u,1)
RF , . . . , f

(u,M)
RF ] ∈ CNT×M

per user and W
(u)
RF = [w

(u,1)
RF , . . . ,w

(u,M)
RF ]∈ CNR×M are designed

for u ∈ U . Then, we design the baseband precoders after taking into
account the interference among the users. Given Hu

1, the analog
beamformer F

(u)
RF ∈ CNT×M is designed by minimizing the distance

between the beamformer F
(u)
RFf

(u)
BB ∈ CNT and the optimal digital

precoder fopt
u ∈ CNT , available from singular value decomposition

(SVD) of Hu [23]. Thus, the maximizing the spectral efficiency [20]
is equivalent to solve

minimize
F

(u)
RF ,f

(u)
BB

‖fopt
u − F

(u)
RFf

(u)
BB‖2F

subject to |[F(u)
RF]m,n| =

1√
NT

, ‖F(u)
RFf

(u)
BB‖2F = M, (5)

which is solved for u ∈ U to obtain the analog precoders {F(u)
RF}u∈U .

Similarly, the following optimization yields analog combiners

1The estimate of Hu is obtained via both learning- [17, 24, 25] and non-learning-
based [22, 26] approaches. We assume Hu is obtained prior to the beamformer design.



W
(u)
RF ∈ CNR×M for all possible paths:

minimize
W

(u)
RF ,w

(u)
BB

‖w(u)
MMSE −W

(u)
RFw

(u)
BB‖

2
F

subject to |[W(u)
RF]n,m| =

1√
NR

, (6)

where w
(u)H

MMSE =
(
foptH

u HH
uHufopt

u +σ2
n

)−1
foptH

u HH
u is theNR×1

optimum combiner using minimum-mean-squared-error (MMSE)
estimation, which is used to obtain unconstrained combiner [23].

w
(u)
BB = (W

(u)H

RF ΛyuW
(u)
RF)−1(W

(u)H

RF Λyuw
(u)
MMSE) ∈ CM is used

to compute all analog combiners. Once W
(u)
RF is found, the receiver

only uses a single column of W
(u)
RF as a combiner vector. The co-

variance matrix of the received signal in (2), for which the ana-
log and baseband precoders are replaced with F

(u)
RF and F

(u)
BB, is

Λyu = HuF
(u)
RFF

(u)
BBF

(u)H

BB F
(u)H

RF HH
u +σ2

nINR ∈ CNR×NR .
The optimization problems in (5) and (6) are effectively solved via

alternating minimization techniques, such as manifold optimization
(MO) or “Manopt” algorithm [13, 14, 24]. This is optimal in the
sense that it achieves the minimum Euclidean distance between the
unconstrained and hybrid beamformers.

To exploit SPIM, only one column of F
(u)
RF and W

(u)
RF is selected

for the i-th spatial pattern as f
(u,i)
RF = F

(u)
RFb(u,i) and w

(u,i)
RF =

W
(u)
RFb(u,i). Denote B(u) = {b(u,i1), . . . , b(u,iM )} to be the set of

selected paths for all possible path configurations of the u-th user
for im = 1, . . . ,M . Then, the entries of b(u,i) ∈ RM are all zeros
except the im-th element, which is unity and denotes selection of the
im-th spatial path for the u-th user.

In order to mitigate interference among the users, the baseband
beamformer needs to be updated by computing the effective channel

as H
(i)
eff =

 h
(1,i)
eff

...
h

(U,i)
eff

 ∈ CU×U , where h
(u,i)
eff = w

(u,i)
RF HuF

(i)
RF ∈

C1×U where F
(i)
RF = [f

(1,i)
RF , . . . , f

(U,i)
RF ]. Finally, the baseband pre-

coder F
(i)
BB is obtained as F

(i)
BB = H

(i)−1

eff and it is normalized as
[F

(i)
BB]u,: = [F

(i)
BB]u,:/‖[F(i)

BB]u,:‖2.

4. BEAMFORMING VIA FEDERATED LEARNING

The learning model accepts Hu as input and yields F(i) =

F
(i)
RFF

(i)
BB ∈ CNT×U and w

(u,i)
RF at the output. Define Du be

the local dataset of the u-th user, in which the l-th element is
Dl = (X (l)

u ,Y(l)
u ), where X (l)

u and Y(l)
u are the input and out-

put for l = 1, . . . ,Du, and Du = |Du| is the size of the local
dataset. The input Xu ∈ RNR×NT×3 can be constructed by
“three-channel” data, whose the first and second “channel” can be
designed as the element-wise real and imaginary part of Hu as
[Xu]1 = Re{Hu} and [Xu]2 = Im{Hu}, respectively. Also, the
third channel can be constructed as [Xu]3 = ∠{Hu}, which is
demonstrated to improve the feature extraction performance [19,
27]. Then, the output Yu ∈ R(2NTU+NR)×1 is constructed as

Yu = vec{vec{Re{F(i)}, Im{F(i)}}T,∠w
(u,i)T

RF }T.
In FL, the training datasetD is partitioned into small portions, i.e.,

Du, u ∈ U , which are available at the users and not transmitted to the
BS. Let θ ∈ RP denote the learnable parameters of size P , then FL
solves the following problem for the t-th communication round of the

model training, i.e., minimizeθ
1

Du

∑Du
l=1 L(f(X (l)

u |θt−1),Y(l)
u ),

with the use of the local gradient gu(θt), where θt denotes the
model parameters at the t-th iteration and L(·) is the loss function.
Then, the u-th user transmits gu(θt) to the BS. Once the gradient
data from all users are collected, the BS finally incorporates gu(θt)
for u ∈ U to update θt as θt+1 = θt − ηt 1

U

∑U
u=1 gu(θt), where

gu(θt) = 1
Du

∑Du
l=1∇θL(f(X (l)

u |θt),Y(l)
u )) for learning rate ηt.

After model aggregation, the BS returns the updated model parame-
ters θt+1 to the users, which will be used for the computation of the
gradients in the next iteration.

The proposed network architecture is a CNN comprised of 10
layers. The first layer is the input layer, which accepts the input data
of size NR ×NT × 3. The {2, 4, 6}-th layers are the convolutional
layers with NSF = 128 filters, each of which employs a 3× 3 kernel
for 2-D spatial feature extraction. The {3, 5, 7}-th layers are the
normalization layers. The eighth layer is a fully connected layer
with NFCL = 1024 units, whose main purpose is to provide feature
mapping. The ninth layer is a dropout layer with κ = 1/2 probability.
The dropout layer applies an NFCL × 1 mask on the weights of the
fully connected layer, whose elements are uniform randomly selected
from {0, 1}. As a result, at each iteration, DL randomly selects
different set of weights in the fully connected layer, thereby reducing
the size of θt and gu(θt), thereby, reducing model transmission
overhead. Finally, the last layer is output regression layer, yielding
the output channel estimate of size (2NTU + NR) × 1. Once the
training is completed, each user feeds the model with Hu and obtains
its beamformer w

(u,i)
RF and F(i), which is fed back to the BS.

We further examine the transmission overhead which can be
defined as the size of the transmitted data during model training.
Let TFL and TCL denote the transmission overhead of FL and CL,
respectively. Define D =

∑
u∈U Du so that TCL =

(
3NTNR +

2NTU +NR

)
D, which includes the number of symbols in the uplink

transmission of the training dataset D from the users to the BS. In
contrast, the transmission overhead of FL includes the transmission
of gu(θt) and θt in uplink and downlink communication for t =
1, . . . , T , respectively. Finally, TFL is given by TFL = 2PTU. We
can see that the dominant terms are D and P , which are the number of
training data pairs and the number of CNN parameters, respectively.
While D can be adjusted according to the amount of available data
at the users, P is usually unchanged during model training. Here,
P = NCL(CNSFWxWy) + κNSFWxWyNFCL, where NCL = 3
is the number of convolutional layers and C = 3 is the number of
spatial “channels”. Wx = Wy = 3 are the 2-D kernel sizes. As a
result, we have P = 600, 192 whereas P = 1, 190, 016 if dropout
layer is removed.

5. NUMERICAL SIMULATIONS

We compared the performance of FL-based SPIM-MIMO with
mmWave-MIMO and the state-of-the-art model-based SPIM-MIMO
Wang et al. [7] in terms of spectral efficiency averaged over 1000
Monte Carlo trials. The local dataset of each user includes N = 200
different channel realizations for U = 8 users. The number of anten-
nas at the BS and the users are NT = 128 and NR = 9, respectively.
We select the number of available spatial paths for each user as
M = 2. The location of each user is selected as φu,m ∈ Φu and
ϕu,m ∈ Ψ̄u, for m = 1, . . . ,M , where Φu and Ψ̄u are the equally-
divided subregions of the angular domain Θ =

⋃
u∈U Φu =

⋃
u Ψ̄u,

Θ ∈ [30◦, 150◦] as in [16]. During training, each channel realization
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Fig. 2. Spectral efficiency for mmWave-MIMO and SPIM-MIMO.

is corrupted by synthetic noise on the input data for three SNRTRAIN

levels, i.e., SNRTRAIN = {20, 25, 30} dB, forG = 200 realizations
in order to provide robust performance against noisy input [25, 27].
As a result, the number of input-output pairs in the whole training
dataset is D = 3UNG = 3× 8× 200× 200 = 960, 000.

The proposed CNN model is realized and trained in MATLAB on
a PC with a 2304-core GPU. For CL, we use the stochastic gradient
descent (SGD) algorithm with momentum of 0.9 and the mini-batch
size MB = 128, and update the network parameters with learning
rate 0.001. For FL, we train the CNN for T = 50 iterations/rounds.
Once the training is completed, the labels of the validation data (i.e.,
20% of the whole dataset) are used in prediction stage.

It was shown in [7] that SPIM-MIMO outperforms mmWave-
MIMO for M = 2 with γ1 ≤ 4γ2, where γm = γu,m for u ∈ U
and m = 1, 2. Figure 2 shows the spectral efficiency with respect
to SNR when the spatial path gains for all users are selected as
γ1 = γ2 = 0.5. Note that both SPIM-MIMO and mmWave-MIMO
use the same number of RF chains while SPIM-MIMO exploits the
spatial distribution of the paths. In contrast, mmWave-MIMO designs
the precoders in accordance to the largest path gains, i.e., γ1, in our
case. We observe that Wang et al. provides less spectral efficiency
than the proposed model-based approach because it employs a single
baseband beamformer for all spatial patterns whereas the proposed
model-based approach updates the baseband beamformer F

(i)
BB in

accordance to the different spatial patterns as well as suppressing
the interference among the users. The proposed FL approach has
slight performance loss than the model-based method due to the loss
during model training. It is worth noting that the performance of
FL is upper bounded by the model-based technique since FL cannot
perform better than its labels.

In Fig. 3, we compare SPIM-MIMO and mmWave-MIMO with
respect to γ1 when γ2 = 1 − γ1. We observe that both techniques
meet when γ1 = 4γ2 for γ1 = 0.8. This clearly shows that the usage
of SPIM is appropriate if the path gain are close. The SPIM-MIMO
performance degrades as long as the difference between the path
gains are large. As a result, mmWave-MIMO becomes favorable.
We note from both Fig. 2 and Fig. 3 that our proposed FL approach
closely follows the model-based technique.

Next, we present the effectiveness of FL-based model training
by comparison to the CL-based training. According to the analysis
in Sec. 4, the transmission overhead of FL and CL are 2PTU =
2 ·600, 192 ·50 ·8 ≈ 480×106 and (3NTNR + 2NTU +NR)D =

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
4

5
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Fig. 3. Spectral efficiency versus γ1 when SNR = 20 dB.
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108 FL completes data transmission 
after  952,000 blocks

FL completes data transmission 
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Fig. 4. Transmission overhead comparison of CL with FL, including
and excluding DL.

(3 ·128 ·9+2 ·128 ·8+9) ·960, 000 ≈ 5.3×109, respectively. This
clearly shows the effectiveness of FL over CL, i.e., approximately
10 times lower transmission overhead. In Fig. 4, we visualize the
number of transmitted symbols with respect to transmission blocks,
each of which carries 1000 symbols. We see that FL completes model
training quicker than CL after approximately 480, 000 and 952, 000
transmission blocks with and without DL, respectively.

6. SUMMARY

We presented both model-based and model-free frameworks for beam-
former design in multi-user SPIM-MIMO systems. Whereas the for-
mer leverages MO for beamformer design, the latter employs FL to
efficiently train the learning model. Our experiments showed that
the proposed approach has superior performance than the state-of-
the-art SPIM techniques as well as outperforming the conventional
mmWave-MIMO systems in terms of spectral efficiency. Further-
more, the proposed FL approach exhibits a more communication-
efficient learning method than conventional CL for model training.
We demonstrated that FL with (without) DL enjoys approximately 10
(5) times lower transmission overhead during model training lower
transmission overhead than CL.
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